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Abstract— Thermostatic Radiator Valves (TRV) have proved
their significant contribution in energy savings for several years.
However, at low heat demands, an unstable oscillatory behavior
is usually observed and well known for these devices. This
instability is due to the nonlinear dynamics of the radiator
itself which result in a large time constant and high gain for
radiator at low flows. A remedy to this problem is to make the
controller of TRVs adaptable with the operating point instead
of widely used fixed PI controllers. To this end, we have derived
a linear parameter varying model of radiator, formulated based
on the operating flow rate, room temperature and the radiator
specifications. In order to derive such formulation, the partial
differential equation of the radiator heat transfer dynamics is
solved analytically. Using the model, a gain schedule controller
among various possible control strategies is designed for the
TRV. It is shown via simulations that the designed controller
based on the proposed LPV model performs excellent and stable
in the whole operating conditions.

I. INTRODUCTION

Efficient control of heating, ventilation and air condition-
ing (HVAC) systems has a great influence on the thermal
comfort of residents. The other important objective is energy
savings, mainly because of the growth of energy consump-
tion, costs and also correlated environmental impacts.

Hydronic radiators controlled by thermostatic radiator
valves (TRV) provide good comfort under normal operating
conditions. Thermal analysis of the experimental results
of a renovated villa in Denmark, built before 1950, has
demonstrated that energy savings near 50% were achieved
by mounting TRVs on all radiators and fortifying thermal
envelope insulation [1].

A. System Description

The case study is composed of a room and a radiator with
thermostatic valve. Disturbances which excite the system are
ambient temperature and heat dissipated by radiator. It is
assumed that heat transfer to the ground is negligible having
thick layers of insulation beneath the concrete floor. Block
diagram of the system is shown in Fig. 1. All of the symbols,
subscripts and the parameters value are listed in table I
and table II. The chosen values for all parameters are in
accordance with the typical experimental and standard values
[2]. As mentioned before, the case study is adopted to the
one previously studied in [3].

The TRV is driven by a batterized stepper motor. Pressure
drop across the radiator valve is maintained constant unlike
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Fig. 1. Closed loop control system of room and radiator

what is taken as the control strategy in [4]. Instead, flow
control is assumed to be feasible by the accurate adjustment
of the valve opening. The valve opening is regulated by the
stepper motor which allows the concrete adjustment.

B. Problem Definition

To maintain the temperature set point in a high load
situation, TRVs are usually tuned with a high controller
gain.The inefficiency appears in the seasons with low heat
demand especially when the water pump or radiator are over
dimensioned [5]. In this situation, due to a low flow rate, loop
gain increases; and as a result oscillations in room tempera-
ture may occur. Besides discomfort, oscillations decrease the
life time of the actuators. This problem is addressed in [4]
for a central heating system with gas-expansion based TRVs.
It is proposed to control the differential pressure across the
TRV to keep it in a suitable operating area using an estimate
of the valve position.

The dilemma between stability and performance arises
when TRV is controlled by a fixed linear controller. De-
signing TRV controller for high demand seasonal condition,
usually leads to instability in low demand weather condition.
A high loop gain and long time constant are the main
reasons of this phenomenon. In contrast, selecting a smaller
controller gain to handle the instability situation, will result
in a poor radiator reaction while the heat demand is high.

Figures 2 and 3 show the results of a simulation where
oscillations and low performance occur. In the shown simu-
lation results, the forward water temperature is at 50◦C. The
proportional integral (PI) controller of TRV is tuned based
on Ziegler-Nichols step response method [6].

A remedy to this dilemma is choosing an adaptive con-
troller instead of the current fixed PI controller.

It is, also, worth mentioning that the same problem was
investigated via simulation based studies in [3]. The LPV
control oriented model of radiator was, however, developed
based on simulations.

In order to validate the controller performance, we uti-
lized simulation models of the HVAC components. Two
approaches for HVAC systems modeling are the forward, [7],



Fig. 2. Undamped oscillations in room temperature and radiator flow
which occur in low demand situation while the controller is designed for
high demand condition.

Fig. 3. Poor performance in the cold weather condition, applying the
controller designed for the low demand situation

[8], [9] and the data-driven methods [10], [11], [12] indicated
by [2].

In this paper, we adopted heat balance equations of the
room model in accordance to the analogous electric circuit,
described formerly in [13]. Radiator dynamics are formulated
as a distributed system in order to analyze the radiator
transferred heat.

Rest of the paper is organized as follows: In section II,
the radiator transferred heat is derived analytically. Based
on the result, control oriented models are developed in
section III. Utilizing the models, the control structure based
on flow adaptation is proposed in the same section. A
simulation-based test is conducted in section IV. Discussion
and conclusions are given finally in Sections V.

II. SYSTEM MODELING

A. Heat Balance Equations

Radiator is modeled as a lumped system with N elements
in series. The nth section temperature is given by, [14]:

Crad
N

Ṫn = cwq(Tn−1 − Tn)− Kr

N
(Tn − Ta) (1)

in which Crad is the heat capacity of the water and radiator
material, Tn is the temperature of the radiator’s nth element
and n = 1, 2, . . . , N . The temperature of the radiator
ending points are inlet temperature: T0 = Tin, and return

temperature: TN = Tout. In this formulation, we assumed
the same temperature of the radiator surface as the water
inside radiator. Besides, heat transfer only via convection
is considered. Kr represents the radiator equivalent heat
transfer coefficient which is defined based on one exponent
formula, [14] in the following:

Kr =
Φ0

∆Tm,0
n1

(Tn − Ta)n1−1 (2)

in which Φ0 is the radiator nominal power in nominal
condition which is Tin,0 = 90◦C, Tout,0 = 70◦C and Ta =
20◦C. ∆Tm,0 expresses the mean temperature difference
which is defined as ∆Tm = Tin−Tout

2 − Ta in nominal
condition. n1 is the radiator exponent which varies between
1.2 and 1.4, but 1.3 is the value of the exponent for most
radiators. In such case, we can approximate the non fixed,
nonlinear term in Kr with a constant between 2.5 and 3.2
for a wide enough range of temperature values. Picking 2.8
as the approximation value, Kr = 2.8× Φ0

∆Tm,01.3 .
The power transferred to the room can be described as:

Qr =

N∑
n=1

Kr(Tn − Ta) (3)

Heat balance equations of the room is governed by the
following lumped model [9]:

CeṪe = UeAe(Tamb − Te) + UeAe(Ta − Te) (4)

Cf Ṫf = UfAf (Ta − Tf )

CaṪa = UeAe(Te − Ta) + UfAf (Tf − Ta) +Qr

in which Te represents the envelop temperature, Tf the
temperature of the concrete floor and Ta the room air
temperature. Qr is the heat power transferred to the room by
radiator. Each of the envelop, floor and room air are consid-
ered as a single lump with uniform temperature distribution.

Assuming a constant pressure drop across the valve,
the thermostatic valve is modeled with a static polynomial
function mapping the valve opening δ to the flow rate q:

q = −3.4× 10−4δ2 + 0.75δ (5)

The above presented radiator model is highly nonlinear
and not suitable for design of controller; thus a simplified
control oriented LPV model is developed in the next section.

B. Control Oriented Models

The relationship between room air temperature and radi-
ator output heat can be well approximated by a 1st order
transfer function.

Ta
Qrad

(s) =
Ka

1 + τas
(6)

The above model parameters can be identified simply via a
step response test as well.

Step response simulations and experiments confirm a first
order transfer function between the radiator output heat and
input flow rate at a specific operating point as

Qr
q

(s) =
Krad

1 + τrads
(7)



In the next section, parameters of the above model are
formulated based on the closed-form solution of the radiator
output heat, Qr(t, q, Ta).

C. Radiator Dynamical Analysis

In this paper, unlike [3], we found the closed-form map
between the radiator heat and operating point which is
corresponding flow rate q, and room temperature Ta. We,
previously, derived this dependency via a simulative study
in the form of two profile curves, [3].

To develop Q(t, q, Ta), a step flow is applied to the
radiator, i.e. changing the flow rate from q0 to q1, at a
constant differential pressure across the valve. Propagating
with the speed of sound, the flow shift is seen in a fraction
of second all along the radiator. Hence, flow is regarded
as a static parameter for t > 0, rather than temperature
distribution along radiator.

Consider a small radiator section ∆x with depth d and
hight h as shown in Fig. 4. The temperature of incoming
flow to this section is T (x), while the outgoing flow is at
T (x+∆x)◦C. Temperature is considered to be constant T (x)
in a single partition.

Fig. 4. A radiator section area with the heat transfer equation governed
by (8)

The corresponding heat balance equation of this section is
given as follows.

qcw (T (x)− T (x+ ∆x)) +Kr
∆x

`
(Ta − T (x)) = (8)

= Cr
∆x

`

∂T

∂t

in which flow rate is q0 at t = 0 and q1 for t > 0. Cr is the
heat capacity of water and the radiator material defined as:
Cr = cwρwVw. Dividing both sides by ∆x and approaching
∆x→ 0, we have:

−qcw
∂T (x, t)

∂x
+
Kr

`
(Ta − T (x, t)) =

Cr
`

∂T (x, t)

∂t
(9)

with boundary condition T (0, t) = Tin, T (`, 0−) = Tout,0
and T (`,∞) = Tout,1. If there exists a separable solution,
it would be like T (x, t) = T (t)×X(x). Substituting it into
(9), we achieve:

T (0, t) = c1e
k1t + c2 (10)

which implies a contradiction.
Before proceed to solve the full PDE (9), we need to

find the two boundary conditions Tout,0 and Tout,1. For this
purpose, take the steady state form of (9) as follows.

−qcw
dT

dx
+
Kr

`
(Ta − T (x)) = 0 (11)

which can be written as:
dT

dx
+
β

γ
T (x) = Ta (12)

with constants β = Kr
Cr

and γ = qcw`
Cr

. We will be using the
two definitions throughout the paper frequently.

Therefore, the steady state temperature, T (x, t)|t→∞ will
be achieved as:

T (x) = c1e
− βγ x + c0 (13)

at the specific flow rate q. Substituting the above equation in
(12) gives c0 = Ta. Knowing T (0) = Tin, c1 is also found.
Finally T (x) looks like:

T (x) = (Tin − Ta)e−
β
γ x + Ta (14)

Therefor the two boundary conditions are: Tout,0 =

(Tin − Ta)e−
β
γ0
x + Ta and Tout,1 = (Tin − Ta)e−

β
γ1
x + Ta

corresponding to the flow rates q0 and q1.
Generally solving the full PDE (9) in time domain is a

difficult task. However we are interested in the radiator trans-
ferred heat to the room rather than temperature distribution
along the radiator. Instead of T (x, t), therefore, we will find
Q(t) which is independent of x. Q(t) can be formulated as:

Q(t) =

∫ `

0

Kr

`
(T (x, t)− Ta) dx (15)

Taking time derivative of the above equation and using (9):

dQ

dt
=

∫ `

0

Kr

Cr

(
−qcw

∂T

∂x
+
Kr

`
(Ta − T (x, t))

)
dx (16)

with β = Kr
Cr

. The above equation can be rewritten as:

dQ

dt
+ βQ = βqcw (Tin − Tout) (17)

in which Tin is the constant forward temperature. However
Tout in the above equation is a function of time. Therefor
we need an expression for Tout(t) which is attained in the
following. To develop Tout(t), consider (9) at x = `:

−qcw
∂T

∂x
|` +

Kr

`
(Ta − T (`, t)) =

Cr
`

dT (`, t)

dt
(18)

The first term in the left side of the above equation is an
unknown function of time which we call it f(t). Thus the
above equation can be rewritten as:

Ṫout + βTout = βTa − γf(t) (19)

with β = Kr
Cr

and γ = qcw`
Cr

. In order to estimate f(t) we
take a look at the simulation result for this function which is
a position derivative of T (x, t) at the end of radiator. It turns
out we can approximate f(t) with an exponential function
roughly as shown in Fig.5

We know the initial and final value of f(t). Also, the
minimum of f(t) occurs at the transportation time of flow
to the end of radiator i.e. ρwVwq . Therefore, we approximate
f(t) as bellow:

f(t) = (f0 − f1)e−τt + f1 (20)



Fig. 5. Simulation results for scaled Tout(t), its first position derivative
and its approximation are shown. The first position derivative i.e. f(t) is
approximated with an exponential function.

with f0 = − β
γ0

(Tin−Ta)e−
β
γ0
`, f1 = − β

γ1
(Tin−Ta)e−

β
γ1
`

and τ = q
ρwVw

.
Substituting f(t) in (18), the return temperature is ob-

tained as follows:

Tout(t) = c1e
−βt + c2e

−τt + c0 (21)

with c0 = Ta− γ1
β , c2 = γ1(f0−f1)

τ and c1 = Tout,0−c0−c2.
Back to (17), we substitute Tout(t) in the equation. Q(t)

becomes:

Q(t) = (k1t+ k0)e−βt + k2e
−τt + k3 (22)

k1 = −βqcwc1

k2 =
βqcwc2
τ − β

k3 = qcw(Tin − c0)

k0 = cwq0(Tin − Tout,0)− k2 − k3

The result is not a precise solution because we have
made an approximation while deriving Tout(t). But it is still
enough for us to extract usefull information regarding the
time constant and gain. The analytic solution and simulation
for a specific flow rate is shown in Fig.6.

Fig. 6. Simulation and analysis results for Q(t). The analytic solution
gives us a good enough approximation of the transient and final behavior
of the radiator output heat. We utilize this analytic solution to extract the
parameters of a first order approximation of Q(t) step response.

The overshoot in the analytic solution compared to the
simulation is due to neglecting an undershoot in Tout(t)
calculations.

In the next section, we utilize the derived formula to
extract the required gain and time constant for the control
oriented LPV model.

D. Radiator LPV Model
Parameters Krad and τrad of the radiator LPV model (7)

are derived based on first order approximation of the radiator
power step response (22). The steady state gain is:

Krad = cw(Tin − Tout,1) (23)

with Tout,1 corresponding to the flow rate q1. Using the
tangent to Q(t) at t = 0 we can obtain the time constant.
The slope of the tangent would be equivalent to the first
derivative of Qfinal+ (Q0−Qfinale)e−

t
τrad at t = 0 which

gives:

τrad =
Qfinal −Q0

k1 − βk0 − τk2
(24)

Therefore, at a specific operating point, the radiator gain
and time constant can be obtained via (24) and (23). For a
set of operating points these parameters are shown as two
profile of curves in Fig. 7.

Fig. 7. Steady state gain and time constant variations for various values of
the radiator flow and room temperature. The arrows show the direction of
room temperature increase. Room temperature is changed between −10 ◦C
and 24 ◦C and flow is changed between the minimum and maximum flow

Fig. 7 shows that the radiator gain and time constant of the
heat-flow transfer function significantly depend on the flow
rate. The high gain and the long time constant in the low
heat demand conditions mainly contribute to the oscillatory
behavior. The control oriented model of room-radiator can
be written as:

Ta
q

(s) =
KradKa

(1 + τrads)(1 + τas)
(25)

Room parameters, Ka and τa can be estimated easily by
preforming a simple step response experiment. We obtained
these parameters based on [2] assuming specif materials for
the components.

III. GAIN SCHEDULING CONTROL DESIGN BASED ON
FLOW ADAPTATION

In the previous section, we developed a linear parameter
varying model for radiator instead of the high-order nonlinear
model (1). To control this system, among various possi-
ble control structures, gain scheduling approach is selected
which is a very useful technique for reducing the effects
of parameter variations [15]. Therefore, the name of flow
adaptation indicates to this fact that controller parameters
are dependent on the estimated radiator flow.



The main idea for design of adaptive controller is to
transform the system model (25) to a system independent of
the operating point. Then, the controller would be designed
based on the transformed linear time invariant (LTI) system.
The block diagram of this controller is shown in Fig. 8.

Fig. 8. Block diagram of the closed loop system with linear transformation

Function g is chosen such that to cancel out the moving
pole of the radiator and places a pole instead in the desired
position. This position corresponds to the farthest position
of the radiator pole which happens in high flows or high
demand condition. Therefore, the simplest candidate for the
linear transfer function g is a phase-lead structure, (26).

g(Krad, τrad) =
Khd

Krad

τrads+ 1

τhds+ 1
(26)

in which Khd and τhd correspond to the gain and time
constant of radiator in the high demand situation when the
flow rate is maximum. Consequently, the transformed system
would behave always similar to the high demand situation.
By choosing the high demand as the desired situation, we
give the closed loop system the prospect to have the dominant
poles as far as possible from the origin, and as a result as
fast as possible.

The controller for the transformed LTI system is a fixed PI
controller then. The parameters of this controller is calculated
based on Ziegler-Nichols step response method [6]. To this
end, the transformed second order system is approximated
by a first-order system with a time delay, (27). The choice
of PI controller is to track a step reference with zero steady
state error.

Ta
q

(s) =
k

1 + τs
e−Ls (27)

The time delay and time constant of the above model can
be found by a simple step response time analysis of the
transformed second-order model:

Ta(t) = KhdKa(1 +
τhd

τa − τhd
e

−t
τhd (28)

+
τa

τhd − τa
e

−t
τa )q(t)

in which q(t) = u(t) is the unit step input. The apparent
time constant and time delay are calculated based on the
time when 0.63 and 0.05 of final Ta is achieved, respectively.
The positive solution of the following equation gives the time
delay when χ = 0.95 and the time constant when χ = 0.37.

(χ+ 1)t2 + 2(τhd + τa)(χ− 1)t2 + a(χ− 1)τhdτa = 0 (29)

Having τ and L calculated, the parameters of the regulator
obtained by Ziegler-Nichols step response method would be

the integration time Ti = 3L and proportional gain Kc = 0.9
a

with a = k LT and k = Khd ×Ka which is the static gain.

A. Simulation Results
The proposed controller parameterized based on radiator

parameters, is applied to the simulation models of room and
radiator. Parameters of the PI controller are found based on
the parameter values in table II as Kc = 0.01 and Ti =
400. Ambient temperature is considered as the only source
of disturbance for the system. In a partly cloudy weather
condition, the effect of intermittent sunshine is modeled by
a fluctuating outdoor temperature. A random binary signal is
added to a sinusoid with the period of two hours to model
the ambient temperature.

Simulation results with the designed controller and the
corresponding ambient temperature are depicted in Fig. 9
and Fig. 10. The results are compared to the case with fixed
PI controllers designed for both high and low heat demand
conditions.

Fig. 9. (Top) ambient temperature, (bottom) room temperature for three
controllers. The results of simulation with flow adaptive controller together
with two fixed PI controllers are shown. The PI controller designed for
the high demand situation encounters instability in the low heat demand
condition.

The simulation results of the proposed control structure
show significant improvement in the system performance and
stability compared to the fixed PI controller.

IV. DISCUSSIONS

All the gain scheduling control approaches are based
on this assumption that all states can be measured and a
generalized observability holds [15]. In this study, we also
need to clarify if this assumption is valid. The parameters
that we need to measure or estimate are room temperature
and radiator flow rate. Measuring the first state is mandatory
when the goal is seeking a reference for this temperature.
However, radiator flow is not easily measurable.

To have an estimation of the radiator flow rate, one
possibility is using a new generation of TRVs which drive
the valve with a step motor. It is claimed that this TRV can
give an estimation of the valve opening. Knowing this fact
and assuming a constant pressure drop across the radiator
valve, we would be able to estimate the flow rate.



Fig. 10. (Top) ambient temperature, (bottom) room temperature for three
controllers. The results of the simulation with flow adaptive controller
together with two fixed PI controllers are shown. The PI controller designed
for the low demand condition is very slow for the high demand situation.

We have shown through the paper that using the new
generation of TRVs, gain scheduling control would guarantee
the efficiency of the radiator system.

V. CONCLUSION

The dynamical behavior of a TRV controlled radiator is
investigated. A dilemma between stability and performance
for radiator control is presented. We dealt with the dilemma
using a new generation of thermostatic radiator valves. With
the new TRV, flow estimation and control would be possible.
Based on the estimated flow, we have developed a gain
schedule controller which guarantees both performance and
stability for the radiator system. To this end, we derived
low-order models of the room-radiator system. The model is
parameterized based on the estimated operating point which
is radiator flow rate. Gain schedule controller is designed for
the resulted time varying model.
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TABLE I
SYMBOLS AND SUBSCRIPTS

Nomenclature
A surface area (m2)
C thermal capacitance (J/kg ◦C)
cw thermal capacitance of both water and radiator material
d depth of radiator
g linear transformation function
G transfer function
h height of radiator (m)
ha air convective heat transfer coefficient
K DC gain
Kc controller gain
Kr equivalent heat transfer coefficient of radiator (J/sec ◦C)
L time delay (sec.)
N total number of radiator distributed elements
n1 radiator exponent
Q heat (W )
q water flow through radiator (kg/sec)
T temperature (◦C)
Ti integration time
Tin inlet water temperature
Tn temperature of the radiator nth element (◦C)
Tout outlet water temperature
T i
out steady state Tout corresponding to flow rate qi
U thermal transmittance (kW/m2 ◦C)
Vw water capacity of radiator (m3)
ρ density (kg/m3)
τ time constant (sec.)
δ valve opening
` length of radiator

Subscripts
a room air
amb ambient temperature (outdoor)
e envelop
f floor
hd high demand
rad radiator
ref reference temperature of room

TABLE II
SYSTEM PARAMETERS

Room Parameters Radiator Parameters

Ae 56 m2 Ar 1.5 m2

Af 20 m2 Crad 3.1× 104 J/kg ◦C
Ca 5.93× 104 J/kg ◦C cw 4186.8 J/kg ◦C
Ce 5× 104 J/kg ◦C N 45
Cf 1.1× 104 J/kg ◦C n1 1.3
Ue 1.2 kW/m2 ◦C qmax 0.015 kg/sec
Uf 1.1 kW/m2 ◦C Ts 70 ◦C

V 5 Liter


