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ABSTRACT

We address the problem of constructing a linear 

parameter varying (LPV) model for a nonlinear marine 

cooling system with flow dependent delays. We focus 

on the choice of scheduling variables for the LPV 

model to represent important nonlinear dynamics, and 

to preserve the flow dependency of the transport delays 

in the system. To this end, we redefine one of the 

system inputs to obtain a scheduling parameter that 

describes the time-varying operating point for this 

input, and also make some simple, but justifiable 

approximations in order to keep the number of 

scheduling variables low. A simulation example is 

provided to illustrate the performance of the LPV model 

compared to the original nonlinear model.

Keywords: Nonlinear systems, LPV modeling, 

Transport delay, Marine systems

1. INTRODUCTION

In this paper we consider the nonlinear marine cooling

system with flow dependent delays that was first 

introduced in (Hansen, Stoustrup and Bendtsen 2011).

The cooling system is used aboard container vessels for 

cooling the main engine and auxiliary components such 

as main engine scavenge air coolers, turbo chargers, 

diesel generators, etc. The motivation for considering 

this system is the potential energy savings that can be 

obtained by improving the currently implemented

control, which is very energy inefficient due to an 

excessive use of the pumps in the cooling system.

However, because of the structure of the system, the

dynamic behavior includes transport delays and 

nonlinearities, which complicates the design of more 

advanced control laws. This entails that the models used 

for control design must describe the important dynamics 

of the system sufficiently accurate, but also has a form 

that fits the control design method.

One approach for dealing with the problem of

control design for nonlinear systems is by use of linear 

parameter varying (LPV) control theory (Toth, 2010).

LPV systems are characterized by being dependent on 

an unknown, but measurable time-varying parameter 

that describes the variations in the plant dynamics. 

When designing control for the LPV system, the time-

varying parameter is used for scheduling the control 

laws according to how the system dynamics changes. 

This makes LPV control applicable to a wide range of 

systems, including a large class of nonlinear systems 

that can be converted to an LPV form. With the 

combination of theory from optimal and robust control 

it is possible to guarantee stability, optimal performance 

and robustness of an LPV model in the entire field of 

operation. This is contrary to former gain scheduling 

approaches where a global nonlinear control design is 

obtained from interpolating local linear controllers, and 

where guarantees of performance and robustness cannot

be made in general (Shamma and Athans, 1991),

(Apkarian and Adams, 1998). Some results on the use 

of LPV control theory for systems with time-varying 

delays have been presented in (Zope, Mohammadpour, 

Grigoriadis, and Franchek, 2010), (Tan, Grigoriadis, 

and Wu, 2003), (Wu and Grigoriadis, 2001) and is part 

of the motivation for this work. However, the use of 

LPV control theory requires that the system model has 

an LPV representation which can be difficult to obtain 

(Jung and Glover, 2003).

The objective in this paper is to rewrite the 

nonlinear model from (Hansen, Stoustrup and Bendtsen,

2011) into the form of an LPV model that includes the 

flow dependent transport delays, and represents

important dynamics sufficiently accurate. We only 

consider the thermodynamic part of the model, while 

appropriate control is assumed to be designed for the 

hydraulics such that the flows in the system can be 

considered as free input variables. 

Related work is presented in (Jung and Glover,

2003) where a third order nonlinear model of the airpath 

of a turbocharged diesel engine is converted to an LPV 

model. However, delays are not a part of the nonlinear 

model considered (Jung and Glover, 2003), and the 

resulting LPV model is of the quasi-LPV type i.e, where 

scheduling variables depends on the system dynamics, 

which is somewhat different from what we seek here. 

The main contribution of this paper lies in the inclusion 

of transport delays when converting the nonlinear 

model to an LPV representation, and in the 

corresponding choice of scheduling parameters for 

adequately describing the transport delays as well as the 

nonlinear dynamics in the resulting LPV model.

The remaining paper is structured as follows: In 

Section 2 we make a brief presentation of the nonlinear 
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model considered in this paper. In Section 3 we bring 

the model into an LPV form and in Section 4 we 

compare the performance of the LPV model with the 

original nonlinear model. Finally, concluding remarks 

are presented in Section 5.

We make use of the following fairly standard 

notation: denotes the set of real numbers while 

denotes the set of non-negative real numbers. is 

the set of real matrices and is the set 

of continuous functions mapping from to with 

first order continuous derivatives.

2. NONLINEAR MODEL

The cooling system consists of three circuits; a sea 

water (SW) circuit, a low temperature (LT) circuit and a 

high temperature (HT) circuit. In this work the HT 

circuit is not of interest, and is therefore left out in the 

following. A simplified layout of the system considered 

in this work is illustrated in Figure 1.
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Figure 1: Simplified layout of the cooling system 

considered. The sea water (SW) circuit is to the left, 

while the low temperature (LT) circuit containing all the 

consumers is to the right.

The SW circuit pumps sea water through the cold 

side of the heat exchanger for lowering the temperature 

of the coolant in the LT circuit. The LT circuit contains 

all the main engine auxiliary components in a parallel 

configuration, and the supplied cooling is controlled 

through the flow rates in the system, and

.

The nonlinear thermodynamic model consists of 

two parts; one to describe the temperature change in the 

coolant out of each consumer in the LT circuit, and one 

to describe temperature change of the coolant out of the 

LT side of the heat exchanger.

The dynamics for the consumers , with

is described by:

(1)

where is the volumetric flow rate through the 

consumer, is the internal volume of the consumer, 

is the outlet temperature of the consumer and 

is the outlet temperature of the heat exchanger 

(into the LT circuit). Also, is the heat transfer 

from the consumer to the coolant, is the density of the 

coolant and is the specific heat of the coolant.

We here consider the case where the flows 

are not independents, but satisfy 

the relation:

where are positive constants, subject to:

For the dynamics of we have that:

(2)

where is the specific heat of sea water, is the 

density of sea water, and is the temperature 

of the coolant into the LT side of the heat exchanger. 

Also, and are the temperatures of 

the sea water in and out of the SW side of the heat 

exchanger. The transport delays are described by the 

relation:

(3)

where and are system specific positive 

constants.

It is assumed that the temperatures ,

and are measurable while the heat 

transfers are unknown but belongs to 

the set:

(4)

i.e., the heat transfer from each consumer is continuous, 

positive and bounded from below by while bounded 

from above by . Also, we assume that delays 

belongs to the set:

(5)
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which ensures that is monotonically 

increasing for all . The requirement that the first 

order derivative of the delays must be less than one is a 

necessary requirement, but obviously causes restrictions 

to how fast the input is allowed to change due to the 

relation between the inputs and the delays. In other 

words this means that the flow rates in the system 

cannot be allowed to decrease arbitrarily fast. Also, 

since it is required that the delays are positive and 

bounded from above by , the flow rates 

must be non-zero and positive, which is 

considered to be the case for all relevant operating 

conditions.

3. CONSTRUCTION OF LPV MODEL

We seek a representation of the input-affine time delay 

system given by (1) and (2) on the LPV form of (Wu, 

2001):

(6)

where is the state vector, , is the 

disturbance vector and is the input vector. 

The initial condition for the delay system in (6) is given 

by:

(7)

The time-varying parameter, , belongs to the 

set of allowable parameter trajectories defined as:

(8)

where are positive constants, which means that 

the parameters have bounded trajectories, and bounded 

variation rate.

Choosing scheduling variables is not a trivial 

matter as there are several factors that come into play. It 

is obviously desired to describe the important dynamics 

of the system adequately by the choice of parameters. 

However, it is also essential to keep the number of 

parameters as low as possible, as a high number of 

parameters complicate the control design for the system 

(Jung and Glover, 2003).

In this particular case, a reasonable choice for a 

scheduling variable is the temperature difference 

which is measurable and 

satisfies the requirements for bounded trajectories and 

bounded variation rates as given by (8). However, in 

order to describe the dynamics of on the linear 

form (6), as well as to preserve the flow dependency of 

the delays, we need an additional parameter. We 

therefore write as:

(9)

where represents the time varying operating 

point of the flow, while is a small perturbation 

from this operating point.

Choosing as a scheduling variable along 

with , we get that:

            (10)

This brings (1) and (2) to the form:

(11)

            (12)

We define the state, disturbance and input vectors, 

from (6) as:

(13)

It is clear that (11) and (12) cannot be brought directly 

to the form of (6) without simplifications or introducing 

additional scheduling variables. Since it is desired to 

keep the number of scheduling variables low, we make 

the following approximation for (11):

where are and are constant set point values for 

and , respectively. This approximation can 

be justified by the fact that the purpose of designing 

control laws for the system is to keep the temperatures 

at or close to predefined set points. This means that with 

properly designed control laws, the temperatures 

and should be close to and at all times, 

making the approximation small.
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For (12) we make the approximation:

           

The argument here is that it is not desired to use 

as an control input for , and since it only 

constitutes a small perturbation from it is 

reasonable to discard it in this context, as it otherwise 

appears multiplicative with the disturbance .

This results in approximated models given by:

(14)

            (15)

The system given by (14) and (15) can now be written 

in the form of (6). With the choice of input, state and 

disturbance vectors as given by (13) we get that 

can be written as:

            (16)

For matrices we have that:

(17)

for and where is defined as:

Furthermore, for and we have that:

(18)

(19)

Equations (16)-(19) constitutes the generic LPV model 

for the cooling system, and with the definitions of 

scheduling variables in (10) we have that delays are 

written as:

(20)

To make the structure of the LPV model clear, as 

well as to illustrate how the LPV model compares to the

original nonlinear model, we construct a fictitious 

simulation example in the following section.

4. SIMULATION STUDIES

We consider a simulation example for a system with 

two consumers i.e., where . According to (16)-

(19) we have that:

(21)

Accordingly, delays and are given 

by:

            (22)

Thermodynamic parameters are shown in Table 1

while system parameters are illustrated in Table 2. Be 

aware that only the and parameters have been 

estimated from an actual cooling system, while other 
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system specific parameters have been chosen for this 

example. The reason for not having more parameters for 

the actual system is simply the lack of available 

measurement data for parameter estimation.

Table 1: Thermodynamic parameters.

4181 3993 1000 1025

Table 2: System parameters for simulation examples.

20 13.5 13.5 30 10

10 10 0.51 0.49

The LPV model represented by (21) and the 

corresponding nonlinear model, which we will not state 

here, are subjected to the same input and disturbances as 

well as changes in scheduling variables. The model 

outputs are then compared to illustrate how well the 

LPV model approximates the nonlinear model. The 

simulation scenario is constructed such that the system 

is in steady state with the chosen initial conditions. The 

division of the input into a time varying set point and a 

perturbation from the set point as given by (9), is 

implemented using a simple first order discrete low pass 

filter with a cut off frequency of 0.002 rad/s. Initial 

conditions for the simulation are illustrated in Table 3

and the responses for both the LPV and nonlinear model 

are shown in Figure 2. Figure 3 shows the input signals, 

, and , while Figure 4 illustrates 

the disturbances in terms of  , and

. Finally, Figure 5 shows the scheduling 

variables, and , where is the low pass 

filtered input, .

Table 3: Initial conditions for the simulation example.

24 45 0.21 36 4×10
6

6×10
6

for 

40 50 0.59 [45 50 36]
T

The purpose of the simulation example is not to 

illustrate a real world scenario, but rather to excite the 

models in a way that shows how well the LPV model 

approximates the original nonlinear model. It is 

expected that the model outputs will differ only when 

the approximated part of the LPV model is excited. As 

can be seen from Figure 2, deviations between the LPV 

model and the nonlinear model occurs in the transitions 

of the input , which is expected since all 

approximation in the LPV model has to do with .

Despite the deviations, the LPV model captures all 

important dynamics and is considered to be sufficiently 

accurate for control design.

Figure 2: Comparison between LPV and nonlinear 

model outputs. Index 'LPV' denotes LPV model output, 

while 'nlin' denotes nonlinear model output.

Figure 3: Plot of input signal for the LPV model 

and for the nonlinear model. The input is 

the same for both models.

Figure 4: Top plot illustrates disturbances and

, while the bottom plot shows the disturbance

.
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Figure 5: Top plot illustrates parameter which is 

the low pass filtered input , while the bottom plot 

shows the parameter which is the temperature 

difference .

5. CONCLUDING REMARKS

We have presented the conversion of a nonlinear model 

to an LPV model for a marine cooling system with 

transport delays. The choice of scheduling variables for 

the LPV model was based on an attempt to keep the 

number of scheduling variables as low as possible, 

while still capturing the important nonlinear dynamics 

of the system and preserving the flow dependency of 

the delays. To illustrate the performance of the LPV 

model compared to the original nonlinear model, a 

simulation example was constructed. The simulation 

showed that the LPV model output only differed from 

the original nonlinear model when the input was 

excited, which was expected since all approximations in 

the LPV model was related to this input. The 

simulations indicate that the LPV model is sufficiently 

accurate for control design, and future work involves 

design of energy optimizing control laws that ensures 

robustness with the presence of disturbances and 

transport delays.
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