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Abstract: This paper deals with hierarchical model predictive control (MPC) of smart grid systems.
The design consists of a high level MPC controller, a second level of so-called aggregators, which
reduces the computational and communication-related load on the high-level control, and a lower level
of autonomous consumers.
The control system is tasked with balancing electric power production and consumption within the
smart grid, and makes active use of the flexibility of a large number of power producing and/or power
consuming units. The objective is to accommodate the load variation on the grid, arising on one hand
from varying consumption, and on the other hand by natural variations in power production e.g. from
wind turbines.
The high-level MPC problem is solved using quadratic optimisation, while the aggregator level can either
involve quadratic optimisation or simple sorting-based min-max solutions.
In this paper we compare the performance and computational complexity of these two solutions and find
that the performance of the two algorithms are very similar, whereas the sorting-based algorithm is much
faster than the quadratic optimisation-based algorithm, thus allowing to handle vastly larger numbers of
consumers.
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1. INTRODUCTION

One of the greatest challenges in introducing large ratios of
renewable energy into existing electric power power systems,
is the fluctuating and unpredictable nature of power sources
that harvest energy from natural sources such as wind turbines,
solar plants etc. Essentially, since electric power is difficult
to store, it must be available where and when it is needed by
consumers supplied by the power system. Since the renewable
sources of energy are difficult to control, base load units (e.g.,
fossil fuel-fired co-generation plants) must be kept in reserve,
to compensate for temporary shortages. The higher the percent-
age of renewable sources, and the more fluctuating the power
demands, the harder the regulation task becomes for the base
load units (see e.g., Banakar et al. (2008)).

A so-called “smart grid” is an electric power system, where
both producers and consumers are equipped with control capa-
bilities that allow them to participate in these balancing efforts,
for instance by allowing local devices with large time constants
to store more or less energy at convenient times and thereby
adjusting the momentary consumption, see e.g., Moslehi and
Kumar (2010). The obvious method to do so is by exploiting
large thermal time constants in deep freezers, refrigerators,
local heat pumps etc.; extra energy can be stored during off-
peak hours, and the accumulated extra cooling can then be used
– slowly – by turning compressors and similar devices on less
frequently during peak hours.

Obviously, local control capabilities require local measurement
and feedback of current energy and power demand. Consumers
equipped with such measurement and feedback capabilities
are called intelligent consumers (IC). Considering the fact that
the consumers have local control capabilities, while a systems

operator or supplier at the same time has the responsibility
of maintaining balance between production and demand, the
control architecture naturally becomes hierarchical (see, e.g.,
Scattolini (2009) and the references therein).

Since power systems are multi-variable and subject to con-
straints, and future reference estimates are often known in ad-
vance, e.g., from 24-hour power consumption traces 1 , weather
forecasts, etc., a natural choice for the top-level controller will
in most case be some sort of model-predictive controller (MPC)
– see for instance Rossiter (2003), Maciejowski (2002), or Pi-
casso et al. (2010). Unfortunately, the computational complex-
ity of traditional MPC scales quite poorly with the number of
states in the problem (O(n3)), see e.g., Edlund et al. (2009)). In
the type of problems considered above, this complexity growth
places significant limits on how large systems a centralised
solution can handle, as also pointed out in e.g. Rao et al. (1992).

In an earlier paper (Trangbaek et al. (2010)), the authors pro-
posed a hierarchical control architecture for this type of prob-
lem, which

• is based on a standard MPC solution at the top level
• is able to accommodate new units without requiring mod-

ifications of the top-level controller
• remains stable for an increasing number of units

The design relies on injecting a second level of so-called aggre-
gators, which reduce the computational and communication-
related load on the high-level control, between the high-level
controller and the lower level of autonomous consumers. Such
an aggregator could for example act like a simple “Virtual

1 Such traces are typically traded on spot market sales, see for instance

http://www.nordpoolspot.com/



Fig. 1. A vision for smart grids: Virtual Power Plants which aggregate producing or consuming units

Power Plant”, see Figure 1, i.e. an entity that seen from the
cental control perspective behaves as a power plant in that it
can produce (e.g. by refraining from consuming) a requested
amount of power.

In Trangbaek et al. (2010) the aggregators solved a local
quadratic optimisation problem, which works well for moder-
ate numbers of intelligent consumers. However, as the number
of consumers assigned to each aggregator grows large, the
computational burden may grow restrictive. Therefore, in this
paper, we investigate an alternative scheme based on simple
min-max-based sorting algorithms in order to determine if the
computational burden can be kept low while still maintaining
good performance.

The outline of the rest of the chapter is as follows. Sections
2 and 3 briefly recount the simplified smart grid setting and
the previous algorithm, while Section 4 presents the alternative
algorithm proposed here and compares the two algorithms
in terms of performance and computational burden. Finally,
Section 5 offers some concluding remarks.

2. PROBLEM SETUP

The solutions described in this paper are based on a contract-
based approach to Smart Grids. The underlying assumption is
that an operator responsible for the balance has contracts with a
number of consumers, where the operator offers reduced rates
for electricity in return of direct access to consumer flexibility.
Often this flexibility will relate to the operation of e.g. thermal
systems (heat pumps, floor heating systems, supermarket re-
frigeration systems, cold stores, etc), where the significant time
constants mean that a significant proportion of the consumption
can easily be urged or postponed in a time range up to several
hours without compromising the functionality of the thermal

systems. Large-scale experiments of this type of Smart Grid
approach has been carried out several places in the world, e.g.
in Colorado in the United States and in Denmark in Europe.
In principle, the methods of this paper could also be applied
to Smart Grid approaches based on price-signalling, but due to
the stochastic nature of the consumers, the parameters needed
in the methods could be quite difficult to obtain in practice in a
price-signalling setup.

We consider a setup as depicted in Figure 2, where the chal-
lenge is to balance demand and supply by keeping the grid-level
energy balance governed by

dE(t)

dt
= Pext(t)−Pload(t)−Pa(t) (1)

at zero. Let I = {1,2, . . . ,N} denote an index set enumerating
all the consumers in the system. Pa = ∑i∈I Pi is the power
absorbed by the intelligent consumers Ci at time t. Pext is power
that will have to be regulated by other (virtual) power plants
under the portfolio controller’s jurisdiction; this is assumed to
be costly. Pload is the power produced by a number of external
suppliers, such as wind turbines etc., and is considered as an
uncontrollable disturbance here. It is assumed that the top level
controller can control Pext directly and is only restrained by a
rate limit, but since rapid changes in the production output are
not desirable due to extra stress on boiler units, mills etc., we
would also like to keep the time derivative small.

The top level control thus optimises the following performance
function over a prediction horizon Np:
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Fig. 2. Control architecture with grid-level control, aggregators
and intelligent consumers
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with Nc samples of Pext and Preq as decision variables. βp and βr

are tuning weights, while Ts is the sampling time. Preq and Pmid

are signals to and from the aggregator and will be explained
below.

The optimisation is subject to constraints on the decision vari-
ables. Limits on the available Preqs are provided by the aggre-
gators. The rate limit on the power from the power plants is
modelled as follows:

∆Pext ≤ Pext(t +Tsk)−Pext(t +Ts(k−1))≤ ∆Pext

Each intelligent consumer is characterised by its own energy
balance

dEi(t)

dt
= Pi(t) (2)

which must satisfy 0 ≤ Ei(t) ≤ E i at all times. Furthermore,
each intelligent consumer can only consume a limited amount
of power Pi ≤ Pi(t)≤ Pi at any given time.

In order to solve the optimisation problem, the high-level con-
troller in principle requires access to all states in the system,
including the internal states Ei. This may lead to a very heavy
communication load on distributed systems. Furthermore, the
computational complexity of the optimisation problem grows
rapidly with the number of consumers N. This means that
adding more consumers into the system may pose significant
problems in practice. Thus, a purely centralised solution to
the problem may be optimal in terms of maintaining the sup-

ply/demand balance, but is not desirable from a practical point
of view.

To alleviate this, we introduce a number of so-called aggrega-
tors A j,1 ≤ j ≤ NA, between the controller and NA ≤ N sub-
sets of the intelligent consumers. Together, these aggregators
serve as an interface between the top level and the intelligent
consumers. To each aggregator A j we assign a number of con-

sumers identified by an index set J j ⊂I , where for all k, j =

1, . . . ,NA we have J j ∩J k = /0,k 6= j, and ∪NA
j=1J

j = I .

The aggregators serve as an interface between the top level and
the ICs. Aggregator j attempts to maintain Pa, j(t) = Preq,j(t)
and provides the top level with simple parameters to specify
the constraints of the ICs. In particular, the top level is informed
of Preq, j and Preq, j, upper and lower limits on Pa, j that can be
guaranteed over the horizon Nl . These limits depend on both
power and energy storage limitations, and as such depend in
a complicated fashion on the horizon length. In addition to
the limits, the aggregator provides Pmid,j, a mid-ranging signal
which tells the top level which Preq,j would be most helpful in
bringing the ICs close to their reference energy levels Ere f ,i. In
periods where the load is relatively steady, the top level can then
prioritise keeping the energy levels at the reference, and thereby
increasing the short term reserves for future load changes.

How to choose these reference levels is again a complicated
question of the considered horizon. If we consider a long
horizon, then we might like to have the same energy reserve
in both directions, which would lead to Ere f ,i = E i/2. On

the other hand, some ICs may have a much higher P than
−P, and are therefore much better at providing a positive
than negative absorption, while others are better at providing
negative absorption. On a short horizon it would make sense to
keep the first kind at a low energy level, and vice versa. Here we
choose Ere f ,i = E iPi/(Pi −Pi), which corresponds to making
the time to fully charging the same as the time to fully empty
the energy reserve.

As mentioned, the aggregator provides limits on Pa, j that can
be sustained over a horizon Nl . These limits are conservative in
the sense that if Preq,j is for instance negative for the first part

of the horizon, then a positive Preq,j higher than Preq, j may be
feasible for the rest. However, in order to simplify the top level
computations, the constraint Preq, j(t)≤Preq,j(t+Tsi)≤Preq, j(t)
is imposed over the whole horizon.

3. QP AGGREGATORS

We now turn to the problem of how the aggregator A j dis-
tributes Preq, j among the ICs. In (Trangbaek et al. (2010)) a
quadratic programming (QP) approach was suggested. At each
sample, at time t, aggregator j solves the simple optimisation
problem

min
Pi

∑ (Ei(t +Ts)−Ei,ref)
2, i ∈ J j

s.t.

∑Pi = Preq,j,

Pi ≤ Pi(t)≤ Pi,

0 ≤ Ei(t +Ts)≤ E i
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Fig. 3. Simulation example with a QP aggregator. Note how the
imbalance E becomes noticeably smaller as the number of
ICs increase and more flexibility becomes available.

with Ei(t +Ts) = Ei(t)+TsPi, thereby distributing the power in
a way that brings the energy levels as close to the reference as
possible in a quadratic sense.

This approach has the advantage that a standard QP solver can
be used.

3.1 Simulation example

A simulation of the QP scheme with one aggregator is shown
in Figure 3. The controller parameters used are Ts = 1, Nl =
Nc = 4, Np = 5, βp = 0.1, βr = 0.1. The load is generated
by a first order auto-regressive process with a time constant
of 100 seconds. There are 20 ICs becoming available as time
passes, making it possible for the aggregator to provide wider
constraints on Preq. The ICs have Pis evenly distributed between

-0.2 and -0.02, Pis evenly distributed between 0.02 and 0.2,
and E is evenly distributed between 1 and 10. The result is that
the energy balance can be controlled much better while also
using a smoother Pext. The requested consumption Preq is shown

together with Pr(t) and Pr(t), computed by the aggregator. It is
noted how the constraints widen as more ICs become available,
but will shrink when the reserve is being used. Pmid is computed
as the Preq that would bring the energy levels to the reference in
Nl samples, ignoring power limits.

The computational complexity of the QP aggregator grows with
the square of number of consumers, and for large N the compu-
tational burden quickly becomes prohibitive. In the following,
we suggest a method with significantly lower computational
cost.

4. SORTING ALGORITHM

The sorting algorithm distributes the requested power according
to which IC is furthest from the reference energy. Thus if the
energy of an IC is far below the reference, and if Preq is positive,
then this IC will be given priority to absorb power. In the
following, we describe the algorithm for the case when Preq > 0.
We also assume Ts = 1 to simplify the notation.

We again consider Aggregator A j. First a sorted list of

Ebal,i = Ere f ,i −Ei, i ∈ J j (3)

is generated, highest first. Also it is computed how much power
can be absorbed and at the same time bring the ICs closer to the
eference,

W+ = ∑
i

min(Pi,max(0,Ebal,i)). (4)

If there is excess capacity, i.e. W+ > Preq, this can be used for
bringing down the Ei that are above Ere f ,i. Therefore, we also
compute

W− = ∑
i

max(Pi,min(0,Ebal,i)). (5)

We now initialise the power to be transferred in this way as

Pm := max(0,min(W+−Preq,−W−)). (6)

Thus, the total positive absorption to be found is initially

Pt := Preq +Pm. (7)

We now go through the sorted list of ICs, starting with the
highest Ebal,i.

If Ebal,i > 0 and W+ > Preq then we take

Pi = min(Ebal,i,Pi,Pt) and update Pt := Pt −Pi. (8)

If Ebal,i > 0 and W+ ≤ Preq then we take

Pi = min(E i −Ei,Pi,Pt) and update Pt := Pt −Pi. (9)

If Ebal,i < 0 then we take

Pi = max(Ebal,i,Pi,−Pm) and update Pm := Pm +Pi. (10)

When all ICs have been treated we will have Pt = Pm = 0.

The algorithm in (3)-(10) can be seen as approximately min-
imising the infinity norm of Ebal , although simplicity has been
preferred over optimality in some parts.

4.1 Simulation example

Figure 4 compares the behaviours of an aggregator using the
sorting algorithm with a QP aggregator. The parameters are the
same as in Section 3.1, except that there only four ICs, with

E1 = 0.1, E2 = E3 = 0.8, E4 = 0.2,

P1 = 0.1, P2 = P4 = 0.2, P3 = 0.02,

P1 =−0.1, P3 = P4 =−0.2, P2 =−0.02.

In the simulation, the load steps from 100 to 101. The resulting
Preq, shown in the second plot, contains requests for power
absorption that will help maintain a smooth Pext , but is also
influenced by the mid-ranging signal Pmid shown in the third
plot. The last four plots show the energy levels in the ICs. In
all the plots, solid lines are for the QP aggregator, dashed lines
are for the sorting algorithm. The dotted lines in the second
plot show the power limits provided by the aggregators to the
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Fig. 4. Simulation example with a QP aggregator (solid) and the
sorting algorithm (dashed). Note the slight difference in
how the power is distributed; the sorting algorithm focuses
on the extreme cases, while the QP algorithm distributes
power more smoothly.
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top level. It is almost impossible to distinguish these for the
two aggregator types. Indeed, the performance for the balance
is almost identical, even though there are noticeable differences
in how the power is distributed among the ICs.

4.2 Complexity and performance

In the following, we compare the performance and computa-
tional complexity for the two aggregation methods, by exam-
ining the effects of the number of aggregators, NA, through a
simulation example. We consider a situation with 800 ICs with
Eis evenly distributed between 0.01 and 0.13, and P̄is and −Pis
evenly distributed between 0.01 and 0.06. The other parameters
are Ts = 1, Nl = Nc = 4, Np = 5, βp = 1, βr = 0.01. The load

is generated by a discrete time process (1−0.99q−1)(Pload,k −

100) = ek, where q−1 is the delay operator and e is white
Gaussian noise with variance 16.

In all the simulations the same 400 sample load sequence
is used, only NA is changed. Figure 5 shows the result. The



top plot shows the (scaled) time consumption of the top level
controller. This grows with N3

A and is approximately the same
for the two aggregator types. The small differences are caused
by the power limits provided by the aggregator types being
slightly different.

The second plot uses the same scaling and shows the average
time consumption of each of the aggregators. As the number
of ICs handled by each aggregator is inversely proportional
to the number of aggregators, this consumption is inversely
proportional to N3

A for the QP, and for a small number of
aggregators becomes prohibitively large. On the other hand, for
the sorting algorithm, the time consumption is negligible. In
fact, it is possible to handle a million ICs on an ordinary PC.

The variance of the balance E and of the derivative of Pext are
shown in the next two plots. As expected, more aggregators
give better performance, but the difference is rather small. More
importantly, the performance for the two aggregator types is
almost identical. In other words, the QP aggregator can be
replaced by the sorting algorithm to gain considerable lower
computational burden without losing performance.

5. DISCUSSION

This paper presented a novel scheme for hierarchical model
predictive control (MPC) of smart grid systems. The design
consists of a high level MPC controller, a second level of so-
called aggregators, which facilitates scalability by reducing the
computational and communication-related load on the high-
level control, and a lower level of autonomous consumers.

The high-level MPC problem is solved using quadratic optimi-
sation, while the aggregator level can either involve quadratic
optimisation or simple sorting-based min-max solutions. We
compared the computational complexity of the two approaches
through simulation studies with randomised intelligent con-
sumers.

The aggregators serve as a simplifying interface to the relatively
complex top level control, and as such even a configuration with
one aggregator is computationally less complex than letting the
top level control work on a full model. However, for a large
number of ICs, we found that the QP aggregators themselves
can also become too complex. Allowing for more than one
aggregator alleviates some of the burden. This also provides
the top level with more detailed information and can therefore
be expected to yield better performance. On the other hand,
more aggregators will make the top level control more complex,
so there is a trade-off between complexity at the top and
aggregator levels and also with respect to performance.

The simple sorting algorithm, while very simple, yielded almost
as good performance as the QP-based approach, which may be
an indication of the fact that the top-level controller is solving
almost identical optimisation problems for the two approaches.
The computational burden of the sorting-based approach is
much lighter, however, and allows for vastly greater numbers
of intelligent consumers in the system. Our simulation studies
indicate that memory consumption is the limiting factor, not
computational complexity, which is of course interesting in
terms of actual implementation.

So far, the setup assumes very simple intelligent consumer
models. Future work involves replacing these simple models
with more detailed ones, as well as identifying the minimum

amount of information that needs to be transmitted from the
consumers in order for the aggregator level to function properly.
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