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Abstract— We consider a static wind model for a
three-bladed, horizontal-axis, pitch-controlled wind tur-
bine. When placed in a wind field, the turbine experiences
several mechanical loads, which generate power but also
create structural fatigue. We address the problem of find-
ing blade pitch profiles for maximizing power production
while simultaneously minimizing fatigue loads. In this pa-
per, we show how this problem can be approximately solved
using convex optimization. When there is full knowledge
of the wind field, numerical simulations show that force
and torque RMS variation can be reduced by over 96%
compared to any constant pitch profile while sacrificing at
most 7% of the maximum attainable output power. Using
iterative learning, we show that very similar performance
can be achieved by using only load measurements, with no
knowledge of the wind field or wind turbine model.

I. INTRODUCTION

Wind turbines are expensive to build and maintain.

The wind field from which they generate power is also

the source of large fatigue loads on the turbine, which

create structural wear and tear, increasing maintenance

costs and decreasing the operational lifetime of the

turbine. These costs are significant, and dramatically

impact the profitability of the turbine. Many studies [1],

[2], [3], [4], [5] have been performed which attempt

to reduce fatigue loads while also generating sufficient

power by dynamically controlling blade pitching. In this

paper, we present a general blade pitching approach for

fatigue load minimization based on convex optimization.

We focus on pitch controlled wind turbines, and

investigate the use of pitching to obtain the maximum

power output of a wind turbine. We then use this number

to bound how much power must be sacrificed to achieve

a given level of fatigue load reduction. We conclude

by showing how iterative learning, using only load

measurements, can achieve performance very close to

that of a controller with perfect knowledge of the wind

field and wind turbine model.
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II. WIND TURBINE PITCH OPTIMIZATION

A. Description

We consider a three-bladed, horizontal-axis, pitch-

controlled wind turbine, as illustrated in figure 1. We

assume that the wind turbine is affected by a wind

field that is constant over time, but varying over the

area swept by the blades. The blades of the rotor are

numbered 1, 2, 3 and the angle θ ∈ [0, 2π/3] defines

the position of the rotor.
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Fig. 1. Perspective view of a wind turbine.

The wind turbine is controlled via the pitch of the

three blades. As the wind is assumed constant over time,

the blade pitching is a periodic function of the angle θ.

We let

p(θ) = β = (β1, β2, β3) ∈ R3, 0 ≤ θ ≤
2π

3

denote the pitching angles of all three blades at angle

θ, where we suppress the explicit dependence of β on

the angle θ. These pitch angles affect the generation of

torques, τ = (τx, τy, τz) ∈ R3, around the three main

axes and a net force, f ∈ R, on the whole structure. The

coordinate system is defined such that the y- and z-axes



span the rotor plane while the x-axis is perpendicular

to the rotor plane, as in figure 1. The origin of our

coordinate system is located at the intersection of the

rotor plane with the axis of rotation.

During operation, τ and f depend on the angle of the

rotor, the pitch of the blades, the wind field present at the

swept area, and the angular velocity of the rotor itself.

We neglect the last dependency by assuming a constant

rotor angular velocity and we let the wind field at the

swept area be defined by the parameter vector η. Then

τ and f can be expressed by the functionals

τ = Ψ(p(θ), θ, η), f = Υ(p(θ), θ, η).

In this work we use an overline to denote the mean value

of a function of θ in the interval 0 ≤ θ ≤ 2π/3, e.g.

g =
3

2π

∫ 2π/3

0

g(θ) dθ,

and we overload this notation for vector valued functions

componentwise.

The mean values τ and f can be interpreted as DC-

terms around which the torques and force vary. We

define the AC-terms of the torques and force by

δτ = τ − τ , δf = f − f,

respectively. At a given angle θ, δτ and δf depend

not only on the pitch at this angle, but on the entire

pitch profile p(θ) in the interval 0 ≤ θ ≤ 2π
3 , through

the mean values τ and f . Using the root mean square

(RMS) values of the AC-terms, we define the variation

of the torques and force by J = (Jx, Jy, Jz, Jf ) ∈ R4
+,

where

Jx =
(

δτ2x

)1/2

, Jy =
(

δτ2y

)1/2

,

Jz =
(

δτ2z

)1/2

, Jf =
(

δf2
)1/2

.

B. Objectives

Wind turbine operation is a multiobjective optimiza-

tion problem. First, we desire a large, even power output.

As instantaneous power output is proportional to τx,

this corresponds to a large mean output torque, τx, with

only small variations as measured by Jx. In addition, we

want low mechanical fatigue on our structure in order to

lengthen its operational lifetime and reduce maintenance

costs. The torques τy and τz and force f describe various

mechanical loads experienced by the turbine structure.

Their DC-terms are regarded as specifications which the

wind turbine structure should be designed to handle and

are therefore not treated in this work. The AC-terms

of the mechanical loads cause structural fatigue. We

therefore also want small RMS values of δτy , δτz , and

δf , which are given by Jy , Jz , and Jf .

C. Constraints

The pitch profiles are controlled by mechanical pitch

actuators, which have limits in both range and pitch

speed. We also assume that the wind turbine is not

designed to operate in stall mode. These constraints can

be expressed as

βmin ≤ p(θ) ≤ βmax,
∣

∣

∣

dp(θ)
dt

∣

∣

∣
≤ βslew,

where βmin, βmax are, respectively, the minimum and

maximum pitch angles that are operationally possible

and at which the rotor will not stall, and βslew is the

maximum pitch speed. We use P to denote the entire

set of these constraints, which is a convex set.

III. MODEL DESCRIPTION

In this section we consider the torque and force

functionals, Ψ(p(θ), θ, η) and Υ(p(θ), θ, η). We show

how to find expressions for these functionals by forming

a static model of the wind field and the wind turbine.

A. Wind Model

Let the vector field Vin(y, z) ∈ R3 describe the

incoming wind field at the area A swept by the turbine

blades, where

A = {(x, y, z) ∈ R3 | x = 0, z2 + y2 ≤ R2}

and R is the length of each blade. We assume that the

wind field has no z-component, and that the direction of

the wind field is the same over the entire swept area. We

further assume that the magnitude of the wind field can

be described as a sum of wind phenomena contributions.

The wind field is then given by

Vin(y, z) = (vbl + vvs(z) + vhs(y) + vts(y, z)) ~Γ

where ~Γ = (cos γ, sin γ, 0), γ is the direction of the

wind, vbl is the baseline wind speed, vvs and vhs are

respectively the vertical and horizontal shear, and vts
is the tower shadow. In the following, we describe the

characteristics of the four wind phenomena.

a) Baseline Wind Speed: The baseline wind speed

parameter vbl ∈ R describes the wind speed at the

origin of our coordinate system. All other wind terms

are deviations from this value.

b) Vertical Wind Shear: The vertical wind shear

parameter ξvs ∈ R describes the variation of wind speed

as a function of altitude. This wind phenomena is known

as wind shear [6]

vvs(z) = vbl

[

ξvs

( z

H

)

+
ξvs(ξvs − 1)

2

( z

H

)2

+
ξvs(ξvs − 1)(ξvs − 2)

2

( z

H

)3
]

,



where H is the height of the turbine hub above the

ground.

c) Horizontal Wind Shear: The horizontal wind

shear parameter ξhs ∈ R describes how the wind speed

varies horizontally across the area swept by the blades.

We assume a linear dependency between horizontal

position and the horizontal wind shear, which is then

given by

vhs(y) = vblξhsy.

d) Tower Shadow: The tower shadow parameter

ts ∈ {0, 1} determines if the effect of the turbine tower

on the wind field is included in the wind field model.

The tower shadow is described by [1]

vts(y, z) =

{

−ts

(

rt
dt−y
dt+y

)2

z ≤ 0,

0 otherwise,

where rt ∈ R is the radius of the tower shaft, and dt ∈ R

is the distance of the rotor plane from the tower mid-

line.

Using the static wind model above, we define the

components of the wind parameter vector η by

η = (γ, vbl, ξvs, ξhs, ts),

which fully specifies the wind field Vin(y, z). Figure 2

illustrates an example wind field Vin(y, z) over the swept

area.
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Fig. 2. Example of a wind field with wind parameter vector η =
[γ, vbl, ξvs, ξhs, ts] = [0, 15, 0.2, 5 ·10−4, 1] for a wind turbine with
blade radius R = 40 m. The colors indicate the wind velocity in the
range 13 to 16 m/s.

B. Turbine Model

The wind velocity experienced by a wind turbine
blade is known as the effective wind velocity and is
defined as Veff = Vin + Vrot ∈ R3, where Vrot =
(0, ωrr sin θ, ωrr cos θ) ∈ R3 is the wind velocity due
to the rotation of the blade itself and ωr is the constant
angular velocity of the rotor. When pitching a blade to
an angle β, it is subjected to the forces [7]

dFt =
ρ

2
‖Veff‖

2

2b (Cl(α) sinψ − Cd(α) cosψ) dr,

dFa =
ρ

2
‖Veff‖

2

2b (Cl(α) cosψ + Cd(α) sinψ) dr,

where dFt, dFa ∈ R are the tangential and axial forces,

respectively, acting on an infinitesimal blade element

of length dr and width b. The functions Cl(α) and

Cd(α) are the lift and drag coefficients, respectively.

They depend on the shape of the blade, and are functions

of the wind angle of attack α. The parameter ρ is the

density of air, while ψ is the angle between Vrot and

Veff . The blade also has a static pitch along its length,

denoted βt. Figure 3 illustrates these relations.
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Fig. 3. Relations between the incoming wind and the the axial and
tangential forces generated.

Once the axial and tangential forces acting on the
blades are known, it is possible to form expressions for
Ψ(p(θ), θ, η) and Υ(p(θ), θ, η) for each blade [7]

τ
i
x(θ) =

∫ R

r=0

Ξir (Cl(αi) sinψi − Cd(αi) cosψi) dr (1)

τ
i
y(θ) =

∫ R

r=0

Ξir sin θ (Cl(αi) cosψi + Cd(αi) sinψi) dr

(2)

τ
i
z(θ) =

∫ R

r=0

Ξir cos θ (Cl(αi) cosψi + Cd(αi) sinψi) dr

(3)

f
i(θ) =

∫ R

r=0

Ξi (Cl(αi) sinψi − Cd(αi) cosψi) dr, (4)

where Ξi = ρ
2‖Veff,i‖

2
2b, and i ∈ {1, 2, 3} references

quantities associated with blade i. The net force expe-

rienced by the turbine is given by f(θ) =
∑3

i=1 f
i(θ),

with similar expressions for the net torques.



IV. PROBLEM FORMULATION

A. Power Maximization

We formulate the problem of maximizing mean output

torque subject to physical blade pitching constraints as a

convex optimization problem. Solutions to this problem

will be used to evaluate power output reduction when

reducing fatigue loads.

The power maximization problem can be formulated

as
maximize τx
subject to p ∈ P

(5)

with variables p(θ) ∈ R3 for θ ∈ [0, 2π3 ]. In the model

given by equations (1)-(4), τx only depends on p(θ)
through the lift and drag coefficients Cl(α) and Cd(α),
an example of which are illustrated in figure 4 [8].
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Fig. 4. Example lift and drag coefficient curves. The dotted lines
indicate the interval in which the coefficients have been approximated.

The allowed range for α is limited, as operation in

stall mode is prohibited. Using these limits, Cl(α) can be

approximated by a concave function in α, while Cd(α)
can be approximated by convex function in α. As τx is

the sum of a positive weighting of the concave function

Cl(α) and a negative weighting of the convex function

Cd(α), τx and its mean value τx are concave functions

of α, and thus also of p(θ). Since the constraint set P
is convex, problem 5 is a convex optimization problem

which can be solved globally and efficiently [9].

B. Fatigue Load Minimization

In this section we address the problem of maximizing

the mean output torque, while keeping it even and min-

imizing fatigue loads. This is a non-convex multiobjec-

tive optimization problem. We show how local solutions

to this problem can be found by using sequential convex

programming (SCP) [10].

Maximizing output power while minimizing fatigue

loads and output power variation corresponds to maxi-

mizing τx while simultaneously minimizing all compo-

nents of J . We formulate this as the scalarized problem

maximize Φ(p) = τx − λTJ
subject to p ∈ P,

(6)

with variables p(θ) ∈ R3 for θ ∈ [0, 2π3 ], and scalar-

ization parameters λ = (λx, λy, λz, λf ) ∈ R4
+. For

simplicity, and to reflect the equal importance of both

fatigue load minimization and even power output, we

will use the scalarization parameters λ = µ1, µ ∈ R+,

for the remainder of this paper. By varying µ, a trade-

off curve between τx and 1
TJ can be found. Unlike the

power maximization problem, the additional objective

term 1
TJ is non-convex and thus problem 6 is not a

convex optimization problem. We therefore choose to

solve it locally by using SCP.

The SCP method finds a local solution iteratively.

At iteration k, a convex approximation of problem 6

is formed about a point p(k). This problem is formed by

replacing the non-convex term J by a convex approx-

imation Ĵ (k), which leads to the convex optimization

problem

maximize Φ̂(p) = τx − µ1T Ĵ (k)

subject to p ∈ P,
p ∈ T (k),

(7)

with variables p(θ) ∈ R3 for θ ∈ [0, 2π3 ]. The con-

straint set T (k) is a (convex) trust region around the

approximation point p(k) in which Ĵ (k) is a sufficiently

accurate approximation of J . The initial approximation

point p(0) is typically chosen to be a point with rea-

sonable performance, such as a well chosen constant

pitch profile, and for subsequent values of k, p(k) is set

equal to the solution of problem 7 at iteration k− 1. By

running a sufficient number of iterations, p(k) converges

to a local optimum for problem 6 [11]. Although SCP

is not guaranteed to find a globally optimal solution, it

leverages the convex parts of the original non-convex

problem, which often leads to a good solution.

V. NUMERICAL EXAMPLES

We present two numerical examples which solve

discretized versions of the power maximization and

fatigue load minimization problems. Starting from the

model presented in equations (1)-(4), and using the wind

field depicted in figure 2, we break each blade into

n smaller blade elements, and divide the swept area

0 ≤ θ ≤ 2π
3 into m discrete values. We approximate



Cl(α) and Cd(α) by piecewise linear concave and

convex functions, respectively, with d distinct segments.

This allows all integrals to be replaced by finite sums

and reduces the number of optimization variables to a

finite and tractable number. For the specific examples

we present, the parameter values d = 40, m = 24, and

n = 2 were used, where the knot points of Cl(α) and

Cd(α) were given by the model from [8]. Both example

problems were solved using CVX [12].

We solved problem 5 to find the pitch profile p⋆(θ),
which maximizes the mean output torque among all fea-

sible pitch profiles. As problem 6 is only solved locally,

the trade-off curve between τx and 1
TJ depends on the

initial pitch profile p(0) used in the SCP algorithm. For

this reason, multiple initial pitch profiles were used as

inputs for the SCP algorithm, and their corresponding

trade-off curves are presented in figure 5. Good trade-

off performance is obtained at the knee of figure 5,

where very little power output is sacrificed to obtain

significantly lower fatigue loads. We denote this pitch

profile as pt.o.(θ). Note that for every initial pitch profile,

the SCP algorithm was able to find a final pitch profile

that was very close to pt.o.(θ). The pitch profiles p⋆(θ)
and pt.o.(θ) are shown in figure 6.
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Fig. 5. Trade-off curves with different starting constant pitch profiles
for the SCP algorithm. All initial starting points converged to pt.o.(θ)
for an appropriate choice of the tradeoff parameter µ.

A. Results

For the given wind field, we were able to find a con-

stant pitch profile, pc∗, that was Pareto optimal (largest

τx, smallest 1TJ) compared to all other constant pitch

profiles. The torques and force generated by the pitch

profiles p⋆(θ), pt.o.(θ), and pc∗ are shown in figure 7.

Applying the pitch profile p⋆(θ) results in a mean

output torque of τx = 1.42 · 106 Nm, while the

p
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Fig. 6. The optimized pitch profiles p⋆(θ) (solid) and pt.o.(θ)
(dashed). The colors reference the same three blades in both profiles.
The dip near 0.5 rad corresponds to the red blade passing through
the area of the wind field that is significantly affected by the tower
shadow.

unit-weighted RMS variation for all AC-terms becomes

1
TJ = 1.28 · 104. By comparison, using the constant

pitch profile pc∗ yields τx = 1.41 · 106 Nm, and unit-

weighted RMS variation of 1
TJ = 3.2 · 104. Thus,

while the mean output torque is only increased slightly

using the optimal pitch profile p⋆(θ) compared with

pc∗, the undesirable AC-components of the torques and

force are reduced by 60% using the torque-maximizing

pitch profile p⋆(θ). This occurs even though RMS load

minimization was not explicitly part of the objective

function used to find p⋆(θ).

Using the pitch profile pt.o.(θ) results in an average

output torque τx = 1.33 · 106 Nm with a corresponding

unit-weighted RMS variation 1
TJ = 1.10 · 103. Thus,

the pitch profile pt.o.(θ) reduces the unit-weighted RMS

variation by more than 96% when compared to any

constant pitch profile, while also having a mean output

torque that is only 7% less than what can be generated

by any pitch profile.

Looking at the pitch profiles in figure 6, and the

corresponding torques and force experienced by the

wind turbine in figure 7, we see that most of the

RMS variation occurs when a blade passes through

the area of the wind field significantly affected by the

tower shadow. By having all three blades coherently

adjust their pitches when one blade passes through the

tower shadow, pt.o.(θ) is able to achieve effectively zero

variation in all torques.
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Fig. 7. Torques and force resulting from the pitch profiles p⋆(θ) (solid), pt.o.(θ) (dashed), and pc∗ (dotted X’s).

VI. ITERATIVE LEARNING CONTROL

In the previous sections we assumed perfect knowl-

edge of the wind field and turbine model when calculat-

ing pitch profiles. In this section we show that pitch

profiles can be computed solely from load measure-

ments, with no prior knowledge of the wind field or

underlying turbine model. We do this through a simple

implementation of iterative learning control (ILC). For

a more thorough examination of ILC and extremum-

seeking control, refer to [13], [14], and [15].

A. Model

We consider the wind turbine positioned at a fixed

angle θ. There exists an unknown mapping φ from the

the pitch β ∈ R3 to the AC-terms e = (δτ, δf) ∈ R4,

such that

e = φ(β).

At each θ, the term e can be seen as an error. We want

to minimize this error e for all θ, thereby minimizing the

AC-load 1
TJ . We do this iteratively by using ILC. This

is a two step process: we first estimate the function φ,

and then find the pitch β that minimizes the estimated

φ.

B. Estimation

The mapping φ is unknown, but we approximate it by

an affine expression at an operating point βo such that

φ(β) ≈ φ(βo) +Dφ(βo)(β − βo),

where Dφ(βo) ∈ R4×3 is the Jacobian of φ at βo.

By taking a sequence of measurements of the error

e = φ(β) over a range of β, we can estimate this affine

approximation of φ(β) via least squares.

We assume that a desired power set-point is provided

for the mean output torque τx, which is predetermined

based on the wind conditions. Along with this set-

point, the mean values τy, τ z , and f are required in

order to determine the error, as e = (τ − τ , f − f).
These quantities are updated dynamically during turbine

operation after each full rotation. This allows the mean



values to change if, for example, the wind field changes.

The mean value updates are given by

τy := (1− q)τy + qτmeas
y ,

τz := (1− q)τz + qτmeas
z ,

f := (1− q)f + qf
meas

,

where τmeas
y , τmeas

z , f
meas

∈ R are the mean torque and

force values measured over the last full rotation, and

q ∈ [0, 1] is a smoothing parameter.

C. Optimization

We wish to find the pitch β that minimizes the
approximation of φ. In order to maintain the accuracy of
the approximation, we also want β to be located close to
the operating point βo. We can formulate this problem
as

minimize ‖φ(βo) +Dφ(βo)(β − βo)‖22 + ν‖β − βo‖22,

with variable β ∈ R3, where ν ∈ R is a trade-off
parameter, and φ(βo) ∈ R4, Dφ(βo) ∈ R4×3, βo ∈ R3

are the problem data. The solution to this problem, β⋆,
can be found analytically

β
⋆ = β

o − (Dφ(βo)TDφ(βo) + νI)−1
Dφ(βo)Tφ(βo).

This forms the basis for our ILC algorithm. We let

H(βo) = (Dφ(βo)TDφ(βo) + νI)−1
Dφ(βo)Tφ(βo)

and introduce a learning rate κ ∈ [0, 1] such that

β = βo − κH(βo)φ(βo). (8)

This expression exists for every θ ∈ [0, 2π3 ].

D. Algorithm

We implemented ILC on the same discretized turbine

model from the previous section, in which each dis-

cretized angular subinterval individually ran the control

method described in equation (8). Every time a blade

passed through an interval corresponded to an iteration

in the ILC algorithm running in that interval. At iteration

k we applied the pitch β(k) and measured the error

e(k). We then set β(k) as the operating point and used

equation (8) to find β(k+1).

For this example, we used the simplification H =
H(β(k)) = H(βo), i.e. we estimated H offline for

some pitch βo, and used this regardless of the current

operating point β(k). The ILC algorithm then became

β(k+1) := β(k) − κHe(k).

E. Results

We applied ILC under the same initial wind conditions

in our previous numerical examples. Figure 8 shows

how the AC-load and set-point tracking evolved over the

course of 50 rotations. After 20 rotations, the AC-load

quickly decreased from 2.94 · 104 Nm to 2.80 · 103 Nm

while the mean torque τx stabilized to within 1% of

its set-point value, 1.33 · 106 Nm. This corresponds to

a 91% reduction in RMS variation when compared to

pc∗, while having the same mean torque as pt.o.(θ).
After 22 rotations the baseline wind speed vbl was

increased. The AC-load increased briefly, after which

it quickly reduced due to adaption. Even though the

same matrix H was used through all iterations, good

performance was obtained, even for different wind fields.
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Fig. 8. (Top) The AC-load 1
T J evaluated after each full rotation

(solid) compared to the response of using constant pitch profile (dotted
dash) and using the optimized pitch profile pt.o.(θ) (dashed). (Bottom)
The output torque τx (solid), along with the set-points (dashed).

VII. CONCLUSION

We have presented methods for choosing pitch pro-

files that maximize power production and minimize



RMS load variations for a static wind turbine model. By

choosing an optimized pitch profile, force and torque

RMS variation can be reduced by over 96% percent

compared to any constant pitch profile, while only

forfeiting 7% of the maximum power output. Moreover,

we have shown that simple iterative learning, using only

load measurements, can achieve 91% RMS variation

reductions with the same mean output torque as that

of a profile optimized with full knowledge of the wind

field and wind turbine model. Lastly, the learning con-

troller quickly adapts to wind field changes, showing the

robustness of our method to dynamic wind conditions.
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