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Abstract— The introduction of large ratios of renewable
energy into the existing power system is complicated by the
inherent variability of production technologies, which harvest
energy from wind, sun and waves. Fluctuations of renewable
power production can be predicted to some extent, but the
assumption of perfect prediction is unrealistic. This paper
therefore introduces the Agile Virtual Power Plant. The Agile
Virtual Power Plant assumes that the base load production
planning based on best available knowledge is already given, so
imbalances cannot be predicted. Consequently the Agile Virtual
Power Plant attempts to preserve maneuverability (stay agile)
rather than optimize performance according to predictions.

In this paper the imbalance compensation problem for an
Agile Virtual Power Plant is formulated. It is proved formally,
that when local units are power and energy constrained inte-
grators a dispatch strategy exists, which is optimal regardless
of future load/imbalances. The optimal dispatch is obtained
at each sample by solving a quadratic program. Finally a
simulation example illustrates the optimal dispatch strategy and
compares the performance with a (non-optimal) MPC-strategy.

I. INTRODUCTION

Electricity is a so-called just-in-time product, which means
that it is instantly consumed at production. This means,
that electricity production and consumption must be closely
balanced at all times. Production technologies, which harvest
energy from natural sources such as wind, sun and waves,
are unpredictable and fluctuating by nature. This means that
the introduction of large ratios of renewable energy into the
existing power system poses a significant challenge in terms
of maintaining the real-time balance between production and
consumption.

In Smart Grid systems the flexibility of consumers, such
as electric vehicles, heat pumps and HVAC-systems, should
be mobilized and play an active part in solving the balancing
task. With this vision the discrepancies between supply and
demand should be evened out via (short-term) storage of
energy [5] or by voluntarily displacing consumption in time,
so-called demand-side management [6].

A Virtual Power Plant is a collection of flexible consumers,
which are grouped together and controlled centrally, see [3].
In this paper the flexible consumers are denoted local units
and are modeled simply as power and energy constrained
integrators.

The considered Virtual Power Plant is part of a larger
portfolio of production units, such as wind turbines, solar
panels, power plants etc. The entire portfolio is managed
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Fig. 1: The Virtual Power Plant is part of a larger portfolio of
production units, such as wind turbines, solar panels, power
plants etc. The portfolio is controlled centrally by a master
controller, which utilizes the capacity of the Virtual Power
Plant to compensate imbalances in production, such that the
portfolio as a whole is following an agreed schedule.

by a master controller, which trades the production capacity
on the energy markets, see Figure 1. Based on the market
trading a production schedule for the portfolio is obtained
(for more on energy markets see [7] and [8]).

Electricity production and consumption in the (near) fu-
ture can be estimated based on weather forecast and 24-
hour power consumption traces. However, the assumption
of perfect prediction is unrealistic, so this paper explores a
dispatch strategy for an Agile Virtual Power Plant. Because
base load production is already given the master controller
utilizes the Virtual Power Plant to compensate unforeseen
errors and imbalances, such that the portfolio as a whole
is following the agreed schedule, see Figure 2. The Agile
Virtual Power Plant therefore attempts to ”stay agile”, rather
than optimize performance according to predictions. The
Agile Virtual Power Plant thus plays a role similar to that of
traditional power plant reserves in a typical European power
system (see [9]).

A similar balancing setup is considered in [1], which
investigates energy storage in power system operations. In
this work the flexible units are denoted power nodes. These
power nodes are essentially energy and power constrained
integrators, but ramp constraints and storage loss are also
included in the modeling. A Model Predictive Control (MPC)
approach is taken, with the assumption of perfect prediction
of imbalances. Values for the dispatch parameters are ob-
tained by manual tuning in order to obtain the desired system
behavior.



patched to the VPP.

Actual production.
Imbalance, which is dis-

Production schedule
obtained by market trading.

12:00 12:15 12:30 12:45 13:00 13:15 13:30 13:45 14:00 14:15 14:30

Fig. 2: A production schedule for the production portfolio is ob-
tained by market trading. Any imbalance is then dispatched
to the Virtual Power Plant, such that the portfolio as a whole
is following the production schedule.

Also [2] considers the operation of storage devices in
power systems. In this paper the storage units are also
modeled as power and energy constrained integrators, but
individual charging and decharging costs are include for each
unit. Like [1] the paper [2] also takes an MPC approach
to the balancing problem and imbalances are modeled as
stochastic processes with diurnal components. It is not ex-
plained how values for the dispatch parameters are obtained,
but it is indicated that they reflect the monetary costs of
charging/decharging and the cost of load shedding.

In the work described above values for the dispatch
parameters are fixed based on heuristics or monetary costs.
This paper proposes that the dispatch parameters be chosen
based on the individual local units’ ability to compensate
imbalances. Dispatch parameters are therefore calculated
based on the state and characteristics (constraints) of each
local unit itself.

The contribution of this paper is to formulate the imbal-
ance compensation problem for an Agile Virtual Power Plant.
It is proved formally that when the local units have a specific,
simple form an optimal dispatch strategy can be obtained at
each sample by solving a quadratic optimization problem.
Finally, simulation studies show, that for the considered
optimization problem the assumption of perfect prediction
over a certain horizon does not guarantee optimality.

The remainder of this paper is structured as follows: In
Section II, we formulate the imbalance compensation prob-
lem for an Agile Virtual Power Plant. Section III presents the
main contribution of this paper, namely an optimal dispatch
strategy for the imbalance compensation problem. In Section
IV, a simulation example illustrates the optimal dispatch
strategy and compares the performance with a (non-optimal)
MPC-strategy. Finally, Section V gives concluding remarks
and suggestions for further work.

II. PROBLEM FORMULATION

A. General Form of the Agile Virtual Power Plant Imbalance
Compensation Problem

As explained earlier we consider a Virtual Power Plant,
which is part of a larger portfolio of production units. A
master controller has direct control of the entire portfolio

and trades the production capacity on the energy markets.
Based on the market trading, a base load schedule for the
production units is obtained. The Virtual Power Plant is then
utilized to compensate for unforeseen errors and imbalances
in production, such that the portfolio as a whole is following
the agreed schedule.

The Virtual Power Plant has control of a set of local
units {LUi}i=1,2,...,N , which are governed by individual
dynamics and constraints. The Virtual Power Plant offers the
capacity of the local units to the master controller and we
let PReserve,i(k) denote the capacity of local unit i, which
can be offered to the master controller at sample k. The
Virtual Power Plant must offer its full available capacity to
the master controller, so the offered capacity at sample k is

PReserve(k) =

N∑
i=1

PReserve,i(k).

At each sample some volume, PDispatch(k), is re-
ceived from the master controller. It is assumed that 0 ≤
PDispatch(k) ≤ PReserve(k), such that it is always possible
to dispatch PDispatch to the portfolio. The Virtual Power
Plant must dispatch the full volume PDispatch(k) to the local
units and we let Pi(k) denote the quantity dispatched to unit
i, so

N∑
i=1

Pi(k) = PDispatch(k).

The goal of the Virtual Power Plant is to service the
master controller as well as possible. The objective is there-
fore to dispatch PDispatch(k) to the local units such that
PReserve(k), k = 0, 1, . . . ,K, is maximized. This can be
formulated as

max
Pi(·)

K∑
k=0

N∑
i=1

PReserve,i(k)

s.t.

0 ≤ PDispatch(k) ≤
N∑
i=1

PReserve,i(k)

N∑
i=1

Pi(k) = PDispatch(k)

and also subject to the dynamics and constraints of
{LUi}i=1,2,...,N . This is the general form of the Agile
Virtual Power Plant imbalance compensation problem.

Remark 1: (Optimization Target)
In the formulation given above only the upper bound on the
available capacity is considered as an optimization target.
With this setup we obtain a clear objective, namely max-
imizing PReserve. If both the upper and lower bounds on
the available capacity are included, that is introducing both
PReserve and PReserve, then the objective becomes less
clear. This is because a gain in PReserve will introduce an
equivalent loss in PReserve. The problem could be handled
by considering a less intuitive objective function than the one



presented above, but the penalty for the trade off between
positive and negative reserve will invariably be based on
heuristics. For now we will therefore only consider the upper
bound on the available reserve and as a result it is assumed
that the imbalance, PDispatch, is also positive, though this is
obviously not a realistic assumption.

B. Agile Virtual Power Plant Imbalance Compensation
Problem for Power and Energy Constrained Local Units

In this paper the local units are modeled simply as power
and energy constrained integrators and we let Ei(k) denote
the energy level in local unit i at sample k.

Definition 1 (Power and Energy Constrained Local Unit):
The dynamics and constraints of a power and energy
constrained local unit are

LUi(k): Ei(k + 1) = Ei(k) + TsPi(k)

0 ≤ Pi(k) ≤ P i

0 ≤ Ei(k + 1) ≤ Ei

Ei(0) = Ei,0,

where k = 0, 1, . . . ,K, i ∈ N, 0 ≤ P i, 0 ≤ Ei and 0 ≤
Ei,0 ≤ Ei.
For ease of notation we assume that Ts = 1 in the following
and let LUN (k) denote a set of N ∈ N local units, that is
{LUi(k)}i=1,2,...,N .

With the choice of power and energy constrained local
units we obtain that

PReserve,i(k) = min(P i, Ei − Ei(k)),

so the Agile Virtual Power Plant imbalance compensation
problem for power and energy constrained local units is

max
Pi(·)

K∑
k=0

N∑
i=1

PReserve,i(k) (1)

s.t.

PReserve,i(k) = min(P i, Ei − Ei(k)) (2)

0 ≤ PDispatch(k) ≤
N∑
i=1

PReserve,i(k) (3)

N∑
i=1

Pi(k) = PDispatch(k) (4)

Ei(k + 1) = Ei(k) + Pi(k) (5)

0 ≤ Pi(k) ≤ Pi (6)

0 ≤ Ei(k + 1) ≤ Ei (7)
Ei(0) = Ei,0, (8)

where Ei,0 is the initial energy level of unit i.
To simplify the setup it has been assumed that the Virtual

Power Plant is offering PReserve to the master controller
at every sample. When power and energy constrained units
are considered, however, PReserve could be offered for more
than one sample without any loss of information using
Resource Polytopes as described in [4]. This would give
the master controller the benefit of knowledge of future
balancing capacity.

III. OPTIMAL DISPATCH STRATEGY

This section presents the main contribution of the article,
namely the result, that the optimal dispatch at each sample
is independent of future load/imbalances; And the optimal
dispatch can be obtained at each sample by solving a
quadratic program.

Definition 2 (Agility Factor):
Let LUi(k) denote a power and energy constrained local
unit. The Agility Factor of local unit i at sample k is defined
as

Ki(k) =
Ei − Ei(k)

P i

.

Lemma 1: At sample k let LUN (k) denote a finite set of
power and energy constrained local units. A dispatch strategy
for problem (1) - (8) can be obtained by solving the program

max
Pi(k)

N∑
i=1

(Ei − Ei(k)− Pi(k))
2

−2P i

(9)

s.t.

PReserve,i(k) = min(P i, Ei − Ei(k)) (10)

0 ≤ PDispatch(k) ≤
N∑
i=1

PReserve,i(k) (11)

N∑
i=1

Pi(k) = PDispatch(k) (12)

Ei(k + 1) = Ei(k) + Pi(k) (13)

0 ≤ Pi(k) ≤ Pi (14)

0 ≤ Ei(k + 1) ≤ Ei (15)
Ei(0) = Ei,0. (16)

and for this dispatch strategy the marginal cost/gain of
dispatching to local unit i is Ki(k + 1).

Proof: First observe that the constraints (2) - (8) are the same
as (10) - (16), so at sample k a feasible dispatch strategy for
problem (1) - (8) can be obtained by solving (9) - (16).

Next define

f(Pi(k)) =

N∑
i=1

(Ei − Ei(k)− Pi(k))
2

−2P i

,

so

∇f(Pi(k)) =

[
E1 − E1(k)− P1(k)

P 1

, ...,

E − EN (k)− PN (k)

PN

]
=

[
E1 − E1(k + 1)

P 1

, ...,
E − EN (k + 1)

PN

]
= [K1(k + 1), ...,KN (k + 1)].



Definition 3 (Feasible Dispatch Sequence):
Let LUN (k) denote a finite set of power and
energy constrained local units. The sequence
{PDispatch(k)}k=0,1,...,K is a Feasible Dispatch Sequence
associated with LUN (k) if problem (1) - (8) is feasible for
PDispatch(k) = PDispatch(k), k = 0, 1, . . . ,K.

Definition 4 (Set of Feasible Dispatch Sequences):
Let LUN (k) denote a finite set of power and energy con-
strained local units. The Set of Feasible Dispatch Sequences
over horizon K for LUN (k) is denoted ΩK

(
LUN (k)

)
.

Definition 5 (Integer Agility Factor System):
A set of KMax power and energy constrained local units, for
which

E1 = P1,E2 = 2 · P2, . . . ,EKMax
= KMax · PKMax

is denoted an Integer Agility Factor System. Observe that for
an Integer Agility Factor System the index number, i, equals
Ki.

The set {LUj(k)}j=1,2,...,KMax
is denoted LUKMax(k).

Lemma 2: For any finite set of power and energy con-
strained local units, LUN (k), there exists an integer KMax

and an Integer Agility Factor System, denoted LUKMax(k),
such that

ΩK

(
LUN (k)

)
= ΩK

(
LUKMax(k)

)
.

Proof: For each local unit in LUN (k) define LUdKi(k)e
by

P dKi(k)e = Ei − Ei(k)− bKi(k)c · P i,

EdKi(k)e =
(
Ei − Ei(k)− bKi(k)c · P i

)
· dKi(k)e

and LUbKi(k)c by

P bKi(k)c = P i − P dKi(k)e,

EbKi(k)c =
(
P i − P dKi(k)e

)
· bKi(k)c,

so ΩK

(
LUi(k)

)
= ΩK

(
{LUdKi(k)e, LUbKi(k)c}

)
, see Fig-

ure 3. Next group these units according to equal K-value to
obtain LUKMax(k), where KMax = maxi=1,2,...,NdKi(k)e.

Lemma 3: Let there be given an Integer
Agility Factor System, LUKMax(k), and a sequence
{PDispatch(k)}k=0,1,...,K and define

`n =
{
k = 0, 1, . . . ,K|PDispatch(k) >

KMax∑
j=n

Pj

}

k

Ei

P dKi(k)e

bKi(k)c

dKi(k)e

1 2 3 4 5

P i

0

Ei(k)

P bKi(k)cLUbKi(k)c

LUdKi(k)e

Fig. 3: Lemma 2: Any power and energy constrained local unit can
be expressed as two equivalent units, which have integer
Agility Factors.

for n = 1, 2, . . . ,KMax. Then

{PDispatch(k)}k=0,1,...,K ∈ ΩK

(
LUKMax(k)

)
,

if and only if

PDispatch(k) ≥ 0, k = 0, 1, . . . ,K (17)
K∑

k=0

PDispatch(k) ≤
KMax∑
j=1

Ej (18)

`1 = ∅ (19)

and ∑
k∈`n

(
PDispatch(k)−

KMax∑
j=n

Pj

)
≤

n−1∑
j=1

Ej (20)

for n = 2, 3, . . . ,KMax, see Figure 4.

Proof: Consider an Integer Agility Factor System con-
sisting of just one local unit {LU1(k)}, where

E1 = P1.

Then

{PDispatch(k)}k=0,1,...,K ∈ ΩK

(
{LU1(k)}

)
,

if and only if

PDispatch(k) ≥ 0, k = 0, 1, . . . ,K
K∑

k=0

PDispatch(k) ≤ E1

and

`1 = ∅.

Next consider an Integer Agility Factor System consisting of
two local units {LU1(k), LU2(k)}, where

E1 = P1,E2 = 2 · P2.

Then

{PDispatch(k)}k=0,1,...,K ∈ ΩK

(
{LU1(k), LU2(k)}

)
,



∑KMax

j=n Pj
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LUKMax

1 2 n KMax

PKMax−1

PKMax

Pn

n− 1 KMax − 2 KMax − 1

LU1P1

LU2P2

∑n−1
j=1 Ej

Fig. 4: Lemma 3: Samples where PDispatch(k) exceeds∑KMax
j=n Pj are denoted `n. For these samples any quantity

larger than
∑KMax

j=n Pj must be dispatched to units
{LUj(k)}j=1,2,...,n−1.

if and only if

PDispatch(k) ≥ 0, k = 0, 1, . . . ,K
K∑

k=0

PDispatch(k) ≤
2∑

j=1

Ej

`1 = ∅.

and ∑
k∈`2

(
PDispatch(k)− P2

)
≤ E1

Using equivalent reasoning, in the general case, that is when
considering LUKMax(k), we obtain (17) to (20).

Lemma 4: Let LUN (k) denote a finite set of power
and energy constrained local units and let some
quantity PDispatch,0 satisfying 0 ≤ PDispatch,0 ≤∑N

i=1 PReserve,i(k) be given.
Also let LUR

N(k + 1) be a set of local units obtained
by a feasible dispatch of PDispatch,0 to LUN (k) and let
LUQ

N(k+1) be the set of local units obtained by dispatching
according to the solution of problem (9) - (16). Then

ΩK

(
LUR

N(k + 1)
)
⊆ ΩK

(
LUQ

N(k + 1)
)
.

Proof: First let LUKMax(k) be the Integer Agility Factor
System associated with LUN (k) as given by Lemma 2. Then
by Lemma 3 the set of feasible dispatch sequences is given
by (17) to (20).

Next for each n = 2, 3, . . . ,KMax let αn denote the
ratio of PDispatch,0, which is dispatched to units j =
1, 2, . . . , n − 1. After dispatch of PDispatch,0 we have that
{PDispatch(k)}k=0,1,...,K is a feasible dispatch sequence

of the system if and only if

PDispatch(k) ≥ 0, k = 0, 1, . . . ,K

K∑
k=0

PDispatch(k) ≤
KMax∑
j=1

Ej − PDispatch,0

`1 = ∅

and ∑
k∈`n

(
PDispatch(k)−

KMax∑
j=n

Pj

)
≤

n−1∑
j=1

Ej − αn · PDispatch,0 (21)

for n = 2, 3, . . . ,KMax.
It follows from (21), that the maximum set of feasible

dispatch sequences after dispatch of PDispatch,0 is obtained
by minimizing αn for all n, that is

min
Pj(k)

αn, n = 2, 3, . . . ,KMax,

subject to (12) to (16). This also means for each n dispatch as
much as possible to the local units n+1, n+2, . . . ,KMax and
it follows by Lemma 1, that this is exactly what is obtained
by the dispatch strategy (9) to (16).

Finally ΩK

(
LUR

N(k + 1)
)
⊆ ΩK

(
LUQ

N(k + 1)
)
, since

no other dispatch can generate higher upper bounds on (21)
than what is obtained by (9) to (16).

Theorem 1: Dispatching according to the solution of (9)
to (16) at each sample, yields an optimal dispatch strategy
for (1) to (8).

Proof: Let LUN (k) denote a finite set of power and
energy constrained local units. Observe, that at any sample
n ≥ k

PReserve(n) =

max
PDispatch(·)∈ΩK

(
LUN (n)

)PDispatch(n). (22)

Next let {PDispatch(k)}k=0,1,...,K be any sequence in
ΩK

(
LUN (k)

)
. Also let {LUOpt

N (k)}k=0,1,...,K denote the
optimal sequence of sets of local units, that is the sequence
of sets of local units obtained by dispatching according to
the solution of (1) to (8). Finally let {LUQ

N(k)}k=0,1,...,K

denote the sequence of sets of local units obtained by
dispatching according to the solution of (9) to (16) at each
sample. By Lemma 4

ΩK

(
LUOpt

N (k)
)
⊆ ΩK

(
LUQ

N(k)
)
, k = 0, 1, . . . ,K.

It now follows from (22) that dispatching according to the
solution of (9) to (16) at each sample, yields an optimal
dispatch strategy for (1) to (8).



Remark 2: (Agile, Linear Dispatch Strategy)
By using the Agility Factors of the local units before dispatch
as weights in the objective function, we can formulate a
linear problem, which also generates a ”K-greedy” dispatch
strategy. This strategy is denoted the linear strategy and at
sample k it is obtained by

max
Pi(k)

N∑
i=1

Ki(k)Pi(k) (23)

subject to (2) - (8).

The linear strategy, however, is not optimal, which is
illustrated by the following example: Consider a system of
the two local units given in Table I and let PDispatch(k) =
10. The solution of problem (23) subject to (2) - (8) is then
P1(k) = 10 and P2(k) = 0. This means that PReserve(k +
1) = 15, since E1(k+1) = 15 and E2(k+1) = 6. A higher
value of PReserve(k + 1), however, is obtained by setting
P1(k) = 5.5 and P2(k) = 4.5, since this makes E1(k+1) =
10.5 and E2(k + 1) = 10.5, so PReserve(k + 1) = 19. This
shows that the linear strategy is not optimal.

The problem is that the linear strategy distributes accord-
ing to Ki(k), that is, the state before dispatch, and does not
consider the dynamic effects of the current dispatch. Since
the quadratic optimization problem has marginal costs/gain
of Ki(k + 1) it exactly considers the dynamic effects of the
current dispatch.

LU1 LU2

P 10 10
E 20 20

E(k) 5 6
Ki(k) 1.5 1.4

TABLE I: System of local units for which the agile, linear strategy
is not optimal for PDispatch(k) = 10.

IV. SIMULATION EXAMPLE

To illustrate the different dispatch strategies a simulation
example has been constructed and implemented. The per-
formance of the optimal and linear dispatch strategies are
compared to a predictive dispatch strategy in which perfect
prediction of PDispatch is assumed over a certain prediction
horizon.

At each sample k the optimal dispatch strategy solves the
optimization problem (9) - (16) and the linear strategy solves
problem (23) subject to (2) - (8). At each sample k the
predictive dispatch strategy solves the optimization problem
(1) - (8) by assuming perfect prediction of PDispatch over

the horizon NPredict:

max
Pi(·)

NPredict∑
n=0

N∑
i=1

PReserve,i(k + n) (24)

s.t.

PReserve,i(k + n) = min(P i, Ei − Ei(k + n)) (25)

0 ≤ PDispatch(k + n) ≤
N∑
i=1

PReserve,i(k + n) (26)

N∑
i=1

Pi(k + n) = PDispatch(k + n) (27)

Ei(k + 1 + n) = Ei(k + n) + Pi(k + n) (28)

− P i ≤ Pi(k + n) ≤ Pi (29)

0 ≤ Ei(k + 1 + n) ≤ Ei (30)
Ei(0) = Ei,0, (31)

where NPredict is less than K.
At each sample k in the simulations we choose

PDispatch(k) randomly from a uniform distribution subject
to the constraint

PDispatch(k) ≤ min
[
PReserve,Optimal(k),

PReserve,Linear(k),

PReserve,Predictive(k)
]
,

which insures that problem (9) - (16), problem (23) subject
to (2) - (8) and problem (24) - (31) are all feasible.

Nine local units are included in the simulations and param-
eters for these are given in Table II. Additional simulation
parameters are K = 90, Ts = 1, and NPredict = 3.

i P i Ei Ei,0 Ki(0)

1 1 40 0 40
2 2 50 0 25
3 3 45 0 15
4 4 120 0 30
5 5 175 0 35
6 6 270 0 45
7 7 35 0 5
8 8 160 0 20
9 9 90 0 10

TABLE II: Parameters for the local units.

The simulation results are depicted in Figure 5. In the first
part of the simulations the three methods perform equally
well. After sample 15, however, the optimal and linear
strategies are able to compensate for a larger imbalance than
the predictive strategy, even though the three methods have
the exact same local units at their disposal and have to
balance the exact same load. As expected, the linear non-
predictive strategy performs worse than the optimal strategy,
but still much better than the predictive strategy.

The explanation for why the optimal strategy outperforms
the predictive strategy can be found in Figure 6, which
depicts the energy levels in each of the nine local units.
The optimal strategy is able to get a better utilization of e.g.
LU7 and LU9 early in the simulations, which allows it to
stay clear of E for all local units until sample 70.



Fig. 5: Simulation Results: PReserve is an upper bound on the
amount of imbalance which could potentially be dispatched
to the Virtual Power Plant. A high value of PReserve thus
means a better utilization of the available flexibility. At
each sample the predictive dispatch strategy assumes perfect
prediction of PDispatch over the next three samples; An
assumption which is not made by the optimal and linear
strategies.
In the first part of the simulations the three methods perform
equally well. After sample 15, however, the optimal and
linear dispatch strategies are able to compensate for a
larger imbalance than the predictive dispatch strategy. This
happens even though the three methods have the exact same
local units at their disposal and have to balance the exact
same load.

Fig. 6: Simulation Results: Energy levels for each of the nine
energy and power constrained local units (LUs) considered
in the simulations (Parameters for the local units are given
in Table II). Blue depicts the predictive strategy and green
depicts the optimal strategy.
Notice that the optimal strategy has a better utilization of
e.g. LU7 and LU9 early in the simulations. This allows the
optimal strategy to stay clear of E for all local units until
sample 70.

V. DISCUSSION

This paper presented the imbalance compensation problem
for an Agile Virtual Power Plant and proved the optimality
of an associated dispatch strategy when the local units are
power and energy constrained integrators. Furthermore, sim-
ulation results indicated, that for the considered optimization
problem the assumption of perfect prediction is not enough
to insure optimality.

Further research will address an extension of the setup
by adding availability and minimum runtime constraints to
the local unit models. When such temporal constraints are
added it seems unlikely that an optimal strategy can be found
for any future trajectory of PDispatch. It might, however, be
possible to formulate general strategies or rules-of-thumb for
these models even without the assumption of prediction. This
would be highly advantageous for large scale problems where
computational demands become significant.
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