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Abstract— The standard wind turbine (WT) control law mod-
ifies the torque applied to the generator as a quadratic function
of the generator speed (Kω2) while blades are positioned at
some optimal pitch angle (β∗). The value of K and β∗ should
be properly selected such that energy capture is increased. In
practice, the complex and time-varying aerodynamics a WT
face due to turbulent winds make their determination a hard
task. The selected constant parameters may maximize energy
for a particular, but not all, wind regime conditions. Adaptivity
can modify the controller to increase power capture under
variable wind conditions.

This paper present new analysis tools and an adaptive control
law to increase the energy captured by a wind turbine. Due to its
simplicity, it can be easily added to existing industry-standard
controllers. The effectiveness of the proposed algorithm is
assessed by simulations on a high-fidelity aeroelastic code.

Index Terms— Wind Turbines, Adaptive Control, efficiency.

I. INTRODUCTION

Automatic control of wind turbines is one of the engineer-
ing areas that received attention from both academia and
industry during the last decade. A consensus from all the
work done so far is that the wind turbine controller plays an
important role on maximizing the energy generation while al-
leviating mechanical loads [1], [2], [3]. There are three main
steps to develop a wind turbine controller: control objectives,
control strategy and controller setup. The control objective is
a qualitative and quantitative description of the goals which
should be achieved by the controller such as energy capture,
reduced dynamic mechanical loads and power quality. The
other two subsequent steps are carried out to ensure that
the controller objectives are satisfied. The control strategy
is a selection of the operating points that the wind turbine
should be regulated around. In the controller setup, controller
structure is determined such as the controlled variables, the
performance measures, the reference signals, the switching
procedure between different controllers, as well as controller
tuning.

Much of the research effort lies in the controller setup.
Modern controllers of different structures - e.g. linear
quadratic [4], linear parameter-varying [5], repetitive model
predictive [6], to mention a few - were designed and their
performance compared against traditional controllers. De-
spite the fact that modern controllers have in general better
performance, the industry-standard controller for Region II
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remains the typical non-linear feedback law,

Tg = Kω2
g (1)

where Tg is the generator torque, ωg is the generator speed,
and K is a constant scalar. Blades are positioned at some
optimal pitch angle β∗. The value of K and β∗ should be
properly determined to maximize energy capture; its poor
selection can lead to significant energy loss. In practice, the
complex and time-varying aerodynamics a wind turbine faces
due to turbulent winds make the determination of these a hard
task.

Techniques for improving the control strategy of a wind
turbine are as important as the controller setup. In fact, to
choose the values of K and β∗ for increased energy capture
has close relation to the proper selection of operating points.
A maximum power strategy is the collection of operating
points that maximizes the power coefficient (CP ) in steady-
state. However, wind turbine operation does not move along
the maximum CP locus during transients. The aerodynamic
stall front, which is close to the maximum CP locus, is
likely to be reached especially in turbulent winds and for
rotors with ”peaked” CP surface. The operation on the stall
region brings low conversion efficiency and ineffectiveness
to rapidly restore operation to the desired operating locus due
to dynamic wake and stall effects. Regulation at operating
points with lower steady-state power capture is likely to
result in higher energy capture when the turbulence intensity
is considered [7], [8], [9], [10].

Adaptivity is interesting in this context because the con-
troller can be modified to cope with the actual wind regime.
Most adaptive algorithms to increase converted power are
based on a ”Hill-Climb” approach. Basically, the plant is
excited and power performance evaluated. Small changes of
the controller gain K is proposed in [9], [10]. Extremum
seeking control algorithms [11], [12] excite the plant with
sinusoidal signals, mainly rotational speed. Artificial intelli-
gence like fuzzy logic [13] is used to infer the benefit of the
excitation on power capture.

This paper presents a new analysis procedure and adaptive
control law to increase the energy captured by a wind turbine.
The result of the analysis is an alternative representation of
the CP surface, including the effects of the time-variability
of tip-speed ratio on conversion efficiency. Instead of a hill-
climb approach, the adaptive law utilizes the reformulated
CP information with online estimates of tip-speed ratio
standard deviation to change the optimal controller gain
and pitch angle accordingly. Simulations on a high-fidelity



aeroelastic code show the effectiveness of the proposed
approach.

II. ADAPTIVE CONTROLLER

A. Steady-State Power Conversion

In order to understand the proposed adaptive control law,
the conversion of wind power into mechanical power in
steady-state is explained here. The power that is captured
from the wind field by an aerodynamic rotor can be repre-
sented by the following non-linear expression,

Pa =
1

2
ρACP (λ, β)v3, (2)

where ρ is the air density, A is the rotor swept area, v is
the effective wind speed, and CP is the power coefficient of
the aerodynamic rotor. Notice that the non-linearity comes
from the dependence of CP on the pitch angle β and on the
tip-speed ratio λ,

λ =
ωR

v
. (3)

where R is the rotor radius and ω is the rotor angular speed.
CP (λ, β) is a three-dimensional surface often computed by
blade element momentum (BEM)-based aerodynamic codes.

The standard Region II controller (1) operates in the
maximum power strategy when K is chosen as,

K =
1

2
ρAR3C

∗
P

λ∗3
, (4)

where λ∗ is the optimal tip-speed ratio and β∗ the optimal
blade pitch angle that attains maximum power coefficient
C∗P . The NREL 5MW reference wind turbine [14] is used
as the study case. The cut-in, rated, and cut-out wind speeds
are 3 m/s, 11.4 m/s, 25 m/s, respectively. The CP surface for
this particular wind turbine is illustrated on Fig.1. Related
optimal values are C∗P = 0.462, λ∗ = 7.5, β∗ = −0.3o,
K = 25.13 kNm/rpm2.

Fig. 1. NREL 5MW Power Coefficient (CP ) Curve

The CP (λ, β) and consequently λ∗, β∗ are computed for
steady-state wind speeds. However, the wind is turbulent

and during transients the turbine does not move along the
maximum CP locus. A new method to analyze the energy
captured of a turbulent wind is proposed next.

B. Turbulence Dependent Power Conversion
Due to the time-varying nature of the effective wind, it

can be considered a normally distributed stochastic variable
sampled over a finite time interval. Its sample standard
deviation is given by,

σv =

√√√√ 1

N − 1

N∑
i=1

(vi − v̄)
2
, (5)

where vi are the observed values of the sample items, v̄ the
mean value of all observed values and N is the number of
observed values.

The finite time interval should be chosen in order to
appropriately capture wind turbulence behavior. The time
interval will also influence on how often the adaptive law
updates the controller. According to [15], for local winds,
wind turbulence spectrum has a peak at 50 cycles/h (1 min
cycles) and presents high energy between thirty seconds and
two minutes cycles. In this work, σv is computed with a time
window of one minute.

The tip-speed ratio can be defined as time-varying due to
its dependence on the wind speed,

λs(t) :=
ω̄R

v(t)
. (6)

Rotational speed is taken as a mean over a time window in
(6), although in reality it varies in time. This simplification
is convenient because the standard deviation of λs depends
uniquely on the standard deviation of the wind speed,

σλ = f(σv), (7)

and can be interpreted as how much the tip-speed varies due
to wind turbulency for a mean rotational speed, during a
time window. Thus, the probability density function of the
tip-speed-ratio for a time window is

f(λs, λ̄s, σλ) =
1√

2πσ2
λ

exp
(
− (λs − λ̄s)2

2σ2
λ

)
. (8)

It is worth to highlight that instead of a deterministic
variable like in the steady-state power conversion, λs is now
a stochastic variable with normal probability density func-
tion (8). As a consequence, CP (λs, β) is also a stochastic
variable. The CP surface represented as a grid of points
makes difficult its analytical representation as a stochastic
variable. However, the convolution can be utilized to derive
a modified version of the CP surface that takes the stochastic
variability into account. Recall that convolution is a math-
ematical operation on two functions g and h, producing a
third function that is typically viewed as a modified version
of one of the original functions. Taking g := CP (λs, β) and
h := f(λs, λ̄s, σλ),

CP (λs, β)∗f(λs, λ̄s, σλ) =

∫ ∞
−∞

CP (τ, β)f(λs−τ, λ̄s, σλ)dτ

(9)



can be interpreted as a weighted average of the function
CP (τ, β) at the value λ where the weighting is given by
f(−τ, λ̄, σλ) simply shifted by amount λ. As λ changes,
the weighting function emphasizes different parts of the
input function. Figure 2 visually illustrates the convolution
process.

Fig. 2. Illustration of the convolution process.

Notice that the convolution can be taken for each fixed
value of β. A three-dimensional modified CP (λ, β) surface
is obtained when β is considered as variable in (9). From
now on the modified surface is denoted stochastic power
coefficient surface,

CPs(λ, β) := CP (λ, β) ∗ f(λ, λ̄, σλ). (10)

Stochastic power coefficient surfaces for different standard
deviations can be seen in Fig. 3. From top-left to lower-
right, σλ = {0.0, 1.0, 2.0, 3.0, 4.0, 4.8}. Notice that C∗Ps
is moved to higher λ values as σλ increases. A physical
interpretation can be attributed to this behavior: when the
wind turbulence increases, it is better to move the turbine to a
”lightweight” mode. The generator torque should be reduced
to give more freedom to the rotational speed to move like the
wind speed does. This conclusion is in agreement with other
references [7], [9]. A relation between the standard deviation
σλ and the average λ that maximizes power capture is shown
in Fig. 4.

The controller gain K differs if the λ∗s and C∗Ps are
inserted in (11) instead of the steady-state ones. Notice that
the value of K decreases for higher wind turbulences. The
adapted controller gain is defined as

Ks :=
1

2
ρAR3C

∗
Ps

λ∗3s
. (11)

Another interesting observation is that C∗Ps is attained for
greater values of β as σλ increases. A relation can be found
between optimal pitch angle β∗s to maximize CPs and σλ as
illustrated on Fig. 5.

Figure 6 shows a comparison between power coefficient
values without any correction (green) and with correction
(blue) on the optimal λ∗ and β∗, for a turbulent wind speed

Fig. 3. Influence of TSR standard deviation on CP Surface.
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Fig. 4. Optimal λ∗s for different σλ values.

of standard deviation σλ. As expected, for increased wind
turbulence intensities, the difference is more prominent.

The before mentioned analysis is influenced by the shape
of the steady-state CP surface. Thus, resulting conclusions
are dependent on each particular wind turbine. For example,
peaked CP surfaces may benefit more than wide surfaces.

C. Controller Structure

The analysis presented in the previous subsection suggests
that both optimal λ∗s and optimal β∗s must be adapted
online according to the increase on σλ in order to attain
maximum conversion efficiency. It is not clear though how
such adaptation can be implemented.

Figure 7 illustrates the adaptive controller structure. The
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Fig. 5. Optimal β∗
s for different σλ values
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at different σλ.

plant G (wind turbine) is regulated by the standard region 2
controller. The anemometer on the top of the nacelle is not
a reliable indication of the wind speed. The effective wind
speed v̂ driving the aerodynamic rotor is estimated by a wind
speed estimator taking measurements of the generator torque
Tg and rotational speed w. The tip-speed standard deviation
σλ is computed from the estimated wind speed v̂ and the
mean rotational speed ω̄ with a moving time window. The σλ
is the input to look-up tables with optimal values of β∗s (σλ)
and Ks(σλ).

Fig. 7. Adaptive Controller Structure.
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D. Wind Speed Estimation

Here a simplified estimator is adopted because this work
focus on Region 2 where non-linearities are not as prominent
as in high wind speeds. A more elaborate wind speed
estimator that encompasses all wind speed ranges can be
found in [5].

The adopted wind estimator is a linear time-invariant
transfer function relating signals ω and Tg to the estimated
wind v̂,

v̂ =
[
Gv,ω Gv,Tg

] [ ω
Tg

]
(12)

Each transfer function was obtained by MATLAB Iden-
tification toolboxr [17] applied to the time-series data
generated by the aeroelastic code FAST r [16]. The signals
used in the identification process were the wind speed at hub
height, rotational speed and generator torque. A normalized
dataset was derived by removing the mean value of all
signals. An ARX model was obtained using the identification
toolbox with order selection facility. Time-series of the
estimated wind speed compared with nonlinear simulation
in FASTr is shown on Fig. 8. The comparison has a good
agreement; a fit of 79.75% between the estimated and real
wind values is achieved.

III. SIMULATION RESULTS

Simulations in the aeroelastic code FAST with and without
the adaptive controller shows the effectiveness of the pro-
posed adaptation law. The simulation time length is 600 sec
according to IEC61400 standard practices. Figure 9 brings
time-series data of wind speed, controller gain K and pitch
angle β for a wind speed with 40% turbulence intensity (TI).

Different wind conditions are simulated to evaluate con-
troller performance. The stochastic wind characteristic is
modeled by two distinct approaches, the first considering the
wind as a normally distributed random process, and another
as a Kaimal distribution, a more realistic wind model. A
particular nomenclature labels the specific wind condition,
for example:
• 8ND10: v̄ = 8m/s, σv = 10%, normally distributed.
• 8KS25: v̄ = 8m/s; σv = 25%, Kaimal distributed.
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Fig. 9. Time-series for 8m/s mean and 40% turbulent wind speed.

TABLE I
AVERAGE POWER FOR NON-ADAPTIVE AND POWER INCREASE FOR

ADAPTIVE CONTROLLERS

Pavg ∆Pavg ∆Pavg
Wind for v(t) for v̂(t)

[MW] [%] [%]
8-00 1.79 0.00% 0.00%

8ND05 1.80 0.00% 0.01%
8ND10 1.42 0.07% 0.06%
8ND25 1.86 0.84% 0.43%

8KD05 1.74 0.00% 0.00%
8KD10 1.76 0.03% 0.03%
8KD25 1.91 0.21% 0.10%
8KD40 2.22 0.79% 0.41%
7KD05 1.18 0.01% 0.00%
7KD10 1.19 0.03% 0.03%
7KD25 1.29 0.20% 0.10%
7KD40 1.49 0.83% 0.47%

In the simulation for normal and Kaimal distributions,
modified CP tables calculated for a normal distribution were
used.

The output power is averaged over the 600 sec to evaluate
the increase on captured power. Table I shows the average
power for the non-adaptive controller (Pavg) and the increase
on average power (∆Pavg) due to adaptivity, under different
wind speed conditions. Adaptive controller is evaluated using
the real wind speed signal on hub height v or the estimated
wind speed signal v̂ to verify if wind speed estimation
influences the results.

The adaptive controller increases the power captured for
all wind speed conditions, with larger increase in higher
turbulence intensities, as expected. Notice that the wind
estimator has a negative impact on the captured power, sug-

TABLE II
BLADES AND TOWER AVERAGE MOMENTS AT 8 M/S, 25% TI.

For v(t) For v̂(t)
Blade edgewise 0.04% 0.19%
Blade flapwise 0.29% -0.45%

Tower side-to-side -4.25% -5.84%
Tower fore-aft 0.09% 0.02%

Tower torsional 3.09% 2.58%

gesting that its low-pass filtering characteristic may influence
the performance of the adaptive law, although a definitive
conclusion cannot be drawn.

The increase in power capture could lead to undesirable
mechanical loads. Table II shows the percentage of average
moment on various wind turbine components when com-
pared to the standard controller.

Notice that mean tower and blade moments are slightly
reduced except for the tower torsion. By looking at the
averaged moments, the adaptive law does not have a negative
impact on loads, but a definitive conclusion may only be
drawn by comparing the equivalent damage of the compo-
nents, which is not done on this work.

IV. CONCLUSIONS

This paper presents a new analysis procedure and an
adaptive control law to increase the power captured by a
wind turbine in turbulent winds. The result of the analysis
procedure is a CP surface considering the tip-speed ratio as
a time-varying quantity. Such information is utilized in an
adaptive control law to update the standard nonlinear torque-
rotational speed relation and the optimal pitch angle accord-
ing to the current wind turbulence. Due to its simplicity, the
method can be easily augmented to a standard wind turbine
control algorithm.

Simulations in a high fidelity aeroelastic code showed that
wind turbine extracts more energy from the wind when the
proposed analysis/adaptive controller is adopted. Apparently,
the inclusion of adaptivity does not impact negatively the
mechanical loads, although a definitive conclusion can only
be drawn based on the equivalent damage of wind turbine
components, not done in the present paper. A closed-loop sta-
bility analysis with time-varying controller gain is a subject
of future work. Also planned for the future is a sensitivity
study to investigate the assumption of fixed rotor speed in
the time window that TSR is computed.
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