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Abstract— Many model based control methods exist in the
literature. Producing a sufficient system model can be cum-
bersome and a new non-model based method for control of
nonlinear systems with input/output maps exhibiting sigmoid
function properties is therefore proposed. The method utilizes
an excitation signal together with Fourier analysis to generate
a feedback signal and simulations have shown that different
system gains and time constants does not change the global
equilibrium/operating point. An evaporator in a refrigeration
system was used as example in the simulations, however, it is
anticipated that the method is applicable in a wide variety of
systems satisfying the sigmoid function properties.

[. INTRODUCTION

Most physical systems or processes are inherently nonlin-
ear in nature, which makes design and tuning of controllers
difficult, especially if the controller is expected to work
in a large operation area, thus experiencing the full effect
of the nonlinearity. Additionally, most systems are also
time varying to some degree and change with unpredictable
operating conditions and disturbances. This makes controller
design even more difficult and often result in poorly tuned
controllers. Possible ways to control these systems are with
gain scheduling for time varying systems, see e.g. [1], [2],
or adaptive backstepping control, see e.g. [3], [4].

Producing a sufficient nonlinear model for control pur-
poses can be cumbersome, especially for time varying sys-
tems. Furthermore, a suitable reference operating point is
often not known beforehand. A good alternative is therefore
to look at non-model based methods such as extremum-
seeking control, if it is desirable to drive the process output
towards an extremum. If the input/output map does not have
an extremum, but is instead ”S” shaped exhibiting sigmoid
function properties, then it is possible to use slope-seeking
control. This is just a generalization of extremum-seeking
control, where the reference slope is not zero. There are many
examples of extremum- and slope-seeking control applied to
practical control problems, see e.g. [5], [6], [7].

In this paper we look at a non-model based approach
for control of time varying nonlinear systems, where the
input/output map exhibits sigmoid function properties. A
problem with slope-seeking control is that it can be hard to
identify a reference slope, since the slope is often dependent
on systems parameters that change with operating conditions.
Another problem is that a badly chosen reference slope can
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make the system unstable, since a reference slope will be
mirrored around the middle of the ”S” shaped curve. If for
example one chooses the slope at the middle of the curve
as reference, then the slope will decrease in both directions
leading to instability. An example of a system where the
middle of the curve could be a desirable operating point is
given in Section II.

We instead propose a novel control method called har-
monic control for such types of systems. A Fourier analysis
is conducted in this method to identify the distortion of an
excitation signal as it passes the system nonlinearity. Taking
the cross product between the first and second harmonic of
the excitation signal gives an error signal which is negative
and positive depending on which side of the middle of the
”S” shaped curve the current operating point is located. In
other words, qualitative knowledge about the system nonlin-
earity is used together with Fourier analysis of an excitation
signal to generate an error signal for feedback purposes.
The amplitude of the excitation signal can furthermore be
adapted to better suite the current gain in the system, giving a
controllable amount of excitation in the output. The proposed
method has potential in any system having a nonlinear
”S” shaped input/output map and it does not require any
reference set point nor does it have the instability problem
experienced with slope-seeking control. Replacing sensors
with qualitative knowledge in the control loop also has the
potential of reducing the commissioning costs and in some
systems it might also be difficult or even impossible to
measure certain states.

The structure of this paper is as follows. An example of
a nonlinear system is first given in Section II, which will be
used for simulation purposes. Then, the concept of harmonic
control is given in Section III, which entails a presentation
of the control strategy, how the error and control signal is
generated, and adaption of the excitation signal amplitude.
The harmonic control is then applied to the nonlinear system
in simulation and compared with slope-seeking control and
the results are presented in Section IV. Finally, conclusions
are drawn in Section V.

II. SYSTEM NONLINEARITY

The nonlinear system given as example in this paper
is an evaporator in a refrigeration system. Refrigeration
systems normally operate by continuous vaporization and
compression of refrigerant. This process is maintained by
a valve, an evaporator, a compressor and a condenser, and
this setup remains to a considerable extent the same. The



details of the vapor compression type refrigeration process
are not given here, but can be found in e.g. [8].

Refrigeration systems are typically controlled by decen-
tralized control loops and evaporator superheat is controlled
in one of these loops by regulating the Opening Degree
(OD) of a valve, see e.g. [9], [10], [11]. Superheating the
refrigerant beyond the evaporation temperature is important,
since no superheat means that two-phase refrigerant will
enter the compressor and increase the power consumption
and wear. Therefore, the valve flow must be kept at a level,
where all refrigerant is evaporated before it reaches the
compressor. However, there should be as much two-phase
refrigerant in the evaporator as possible, to increase the heat
transfer and thus optimize the refrigeration process.

The level of superheat in the evaporator is traditionally de-
termined using at least a temperature sensor at the evaporator
outlet and a pressure sensor, which can be used to calculate
an evaporation temperature. The response from input to
output in the evaporator is in general very nonlinear, making
controller tuning difficult. However, it has been observed
that the nonlinear response from valve OD to evaporator
outlet temperature in some refrigeration systems follow an
”S” shaped curve, and it is believed that exploiting this
qualitative system knowledge not only has the potential of
saving a pressure sensor, since this behavior is observable
in the outlet temperature alone, but can also simplify the
controller design significantly.

A test was conducted on a refrigeration system with a
water tank and heater as load on the evaporator. The system
has an Electronic Expansion Valve (EEV) with controllable
OD and controllable compressor and condenser fans. Sen-
sors furthermore measure temperatures, pressures and flow
and the system is monitored and controlled using the XPC
toolbox for Simulink. In the test the OD of the EEV was
slowly increased while the evaporator outlet temperature was
measured (the compressor speed and condenser pressure was
kept constant during this test). The result of this test is
presented in Fig. 1. The evaporator outlet temperature 7,
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Fig. 1. The top graph shows the evaporation temperature 7, outlet
temperature 75, and ambient water temperature 7, for an evaporator during
a sweep in the OD of the EEV. The bottom graph is an approximation of
the nonlinearity seen in the outlet temperature.

for this refrigeration system follows an ”S” shaped curve,
and this system nonlinearity is then approximated using the
inverse trigonometric function atan shown in the bottom
graph in Fig. 1. The mathematical expression is

B 4w (u — 50) I
Y= <—atcm (50 ) + 2) 10, (D)

where y is the output (evaporator outlet temperature 73,)
and v is the input (OD). The OD is limited to a value
between 0-100% open, where OD = 50% is located in
the middle of the ”S” shaped curve. This point in the ”’S”
shaped curve also represents a close to optimal setpoint for
the outlet temperature, as the evaporator is nearly filled (low
superheat). A lower superheat is hard to maintain and does
not provide that much safety margin.

The approximation in Fig. 1 is shown again in Fig. 2 where
the system input has been overlayed with a sine excitation
signal in three different operating points. It is clear from
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Fig. 2. The top graph shows the nonlinear input/output map with three

operating points marked as (1), (2) and (3). The system is excited with a
sine wave in each of these points and the steady state output is shown in
the middle graphs along with a power spectrum density analysis in each
operating point (bottom graphs).

the output of the system that the sine excitation has been
distorted. This is due to the nonlinearity in the system. In
point (1) and (3) the sine is distorted more to one side than
the other and in point (2) the distortion is equally large in
both directions. Looking at the power spectrum density made
over 80 periods of the excitation signal, it is observable that
the output consist mainly of an offset and the first and second
harmonic of the excitation signal.

A system time constant T, and delay Ty is furthermore
added to the approximation of the output described in (1),



given in the Laplace domain as
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The value of Ty, and T;; can be chosen almost arbitrarily
and in this simulation example they are set to 25 and 10
seconds, respectively. Note that (1) and (2) combined gives
a Hammerstein model structure.

The system nonlinearity used in this paper is taken from
an test refrigeration system, with valve OD as input and
evaporator outlet temperature 7, as output. However, it is
important to remember that the method applies in general
for systems, with nonlinearities that can be approximated
with sigmoid functions.

III. HARMONIC CONTROL

This section introduces the concept of harmonic con-
trol. Various situations are analyzed through simulation and
indicative conclusions are drawn based on the observed
behavior of the excited system.

A. Control Strategy

The distortion seen in Fig. 2 can be used to generate an
error signal. This distortion is measurable through Fourier
analysis and requires a continuous excitation of the system,
e.g. using a sine wave. The error signal &, can then be
used to drive the nonlinear system to the state with the
highest gain (the middle of the ”’S” shaped nonlinearity),
e.g. using Proportional-Integral (PI) control. Additionally, the
Fourier analysis can give an estimate of the amplitude of the
excitation in the output, which provides a way to adapt the
amplitude of the excitation signal a. at the input, in order
not to disturb the system more than what is necessary. The
proposed control strategy called harmonic control is depicted
in Fig. 3. In case there is saturation on the input it can help
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Block diagram of proposed closed loop harmonic control.

Fig. 3.

to add anti-windup to the integral part of the PI control.
Furthermore, using the harmonics to generate the error
signal acts as a powerful way of filtering the measurement.
However, an adequate time scale separation between the
system dynamics, the excitation frequency (Fourier analysis),
and the PI controller is required, which is also the case with
extremum- and slope-seeking control, see [5]. The next two

subsections will address error signal generation and adaption
of the excitation signal amplitude.

B. Error Signal Generation

The discrete Fourier series F'(t) of a periodic function
f(¢t), sampled at time t,, with sampling time T,,/N (N is
the number of samples in one period T,), is given as

M
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where a, and b, are the Fourier coefficients for each of
the M harmonics denoted by p. If taking N samples it is
possible to determine M = N/2 harmonics. Mathematical
study of the overlapping waves is called harmonic analysis
and the Fourier coefficients of the first and second harmonic
can be used to generate a scalar error signal £ using the cross
product of vectors in R? given as

[ [a
=171 % |}2| = aiby — asbs. €]
| b1 | b2
The cross product between the first and second harmonic is
also defined as
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where |H;| and |Hz| are the amplitudes of the first and
second harmonic respectively and ¢ is the angle from the
first harmonic to the second harmonic. The cross product is
a normal vector and it is positive if the operating point is
located to the right of the middle of the ’S” shaped nonlin-
earity and negative to the other side. If there is enough time
separation between system dynamics and excitation, then the
two vectors in the cross product will be almost perpendicular.
Equation (4) therefore provides a usable error signal for
feedback. However, the error signal is still nonlinear, which
can be corrected by making a normalization with respect to
the cubed amplitude of the first harmonic.
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The normalized error signal &, is calculated at different OD
values in Fig. 4, 5, 6 and 7 under different situations to
visualize the effects on the error signal. Note that the Fourier
coefficients aq, by, as, and by are determined online in the
implementation using time invariant linear FIR filters with
the same sample time as the rest of the system and a ring
buffer of size N in accordance with (3).




Fig. 4 shows the error signal using three different system
time constants. The normalized error remains linear in all
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Fig. 4. Error signal and normalized error signal at different OD values.
Same system nonlinearity as in Fig. 2 with dynamics and different system
time constants.

cases. A change in the system delay 7}; has the same effect,
however, an increase gives a decrease in the slope of the
normalized error. Fig. 4 also indicates that the generated
error can give a globally stable controller with only one
equilibrium at the point of zero mean curvature. This is under
the assumption that the nonlinearity fulfill the properties
of a sigmoid function and that the succeeding controller is
sufficiently slow compared to the excitation of the system.
Fig. 5 shows the error signal with three different system
gains (the total gain in the system is changed +25%). Again
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Fig. 5. Top graph shows the system with three different gains and the

bottom graph shows the corresponding normalized error signal at different
OD values.

the normalized error signal remains linear in all cases and the
closed loop system will converge to the same point. This is
not achievable with slope-seeking control, since the reference
slope will have to be changed.

Fig. 4 and 5 also indicates that the slope of the normalized
error signal increases when the time constants increases and
decreases when the delay and gain in the system increases.
Therefore, the controller gain should be chosen based on the
worst case values of the system time constant, delay and
gain, assuming that the system can be approximated with

the dynamics described in (2) including a parameter varying
nonlinear gain.

The system time constant and delay also determines the
period of the excitation signal as this period should be slow
enough to make the excitation visible in the output and at
the same time as fast as possible to speed up the controller.
Fig. 6 shows the error signal using three different excitation
signal periods T,. Using T,, = 45 makes the closed loop
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Fig. 6. Normalized error signal at different OD values. Same system

nonlinearity as in Fig. 2 with dynamics and different excitation periods.

system loose global stability at low OD values. Simulations
have shown that the excitation signal period should at least
be twice the combined system time constant and delay. Any
higher period time gives approximately the same normalized
error, which means that it does not affect the controller gain.

Fig. 7 finally shows the error signal using three different
excitation signal amplitudes a.. Changing the amplitude
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Fig. 7. Normalized error signal at different OD values. Same system

nonlinearity as in Fig. 2 with dynamics and different excitation amplitudes.

between 2% to 4% in OD does not change the normalized
error signal and the amplitude can therefore be adapted
without compromising the controller. However, the amplitude
should still be within reasonable bounds and large enough to
overcome any noise and quantizations in the measurement.
One problem with Fourier analysis is that the Fourier
series defined in (3) only converge to the output if the system
is periodic. This is not the case when the system is operated
in closed loop, especially during startup, unless the controller
is tuned so slow that the output looks periodic. Fig. 8 shows
an open loop simulation, where the OD is kept constant
and then slowly increased giving a periodic and an aperiodic
part. The power spectrum density is calculated for each
part and the aperiodic part has more low frequency content.
However, reconstructing the signal using a Fourier series is
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Fig. 8. Power spectrum density analysis of periodic steady state operation
and aperiodic operation. The OD was slowly increased in the simulation
between 8000 to 16000 seconds, giving the aperiodic output.

not required, since we only use the two first harmonics to
calculate an error signal and these harmonics are still present.

C. Adaption of Excitation Signal Amplitude

The gain in the nonlinear system is largest at the equilib-
rium point. In order to be able to generate enough excitation
of the output at low gains, while still maintaining an accept-
able level of excitation when the gain is highest, it is often
necessary to adapt the excitation amplitude. The harmonic
analysis used to calculate the error signal can also be used
for adaption. The amplitude of the first harmonic |H;|, cal-
culated as in (5), is a good approximation of the amplitude of
the excitation at the output. Keeping this amplitude close to
a reference can be achieved by changing the input excitation
signal amplitude. However, it is undesirable to change the
amplitude instantly in closed loop, since this will result in
unstable behavior. The MIT rule is therefore used to adapt
the amplitude slowly and it is defined as (see e.g. [12]);

J :%eQ (7)
db oJ Oe
- Ta8 T o (8)

where J is an objective function to be minimized, e is the
error, 6 is the adjustable parameter to be adapted and +y is the
adaption gain. The MIT rule can be interpreted as a gradient
method for minimizing the error and in the case of adapting
the amplitude |H;| we have

0 =|H| 9)

e, = [Hil,op — [Hil (10)
de

7 e (1T)

since the partial derivative of ez, is equal to —1. The
amplitude |H 1\T€f is the desired reference amplitude of the
first harmonic. Only the adaption gain «y has to be chosen.
In general a small v means slow convergence and a large
~ means fast convergence and possibly instability. However,
it is hard to say in general how  influences time variant

systems, but a general rule is that the adaption must be slower
than the control loop. Another possibility would be to use the
normalized MIT rule, which would lead to less sensitivity
towards signal levels or one could use Lyapunov stability
theory to adapt the amplitude |H;|, and most likely obtain
faster adaption and stability guarantees.

IV. SIMULATION RESULTS

The performance of harmonic and slope-seeking control
is compared in this section. The reference slope in slope-
seeking was set manually to a value giving a reference
operating point just above point (2) and below (1), see Fig.
2. Note that (2) is an unstable point in slope-seeking control.

The proportional gain K, ;, the integral time 7; and
integral reset time 7} were tuned manually for the harmonic
controller and set to 0.2, 2 and 2 respectively. This gives
a good compromise between convergence speed and robust-
ness. The system can maintain a stable limit cycle at a critical
controller gain, which can be found approximatively using
the describing function method. Due to space limitations this
analysis will not be part of this paper, but will be considered
in future publications. The slope-seeking control gain K,
was also tuned manually and set to 0.04, which is small
enough to give acceptable oscillations in the control signal.
The oscillations appear after the demodulator and a low pass
filter can help filter this out [5].

The OD signal has a saturation limit of 0 to 100%, and
this was lowered in the controller to between 5 to 95% to
allow the excitation signal to get through uncut. The adaption
gain v in the harmonic controller should be slower than
the PI control and was set to 0.00003, with a reference
amplitude |Hi|..; of 2. Furthermore, the excitation signal
amplitude was set to 2 in the slope-seeking controller. Fig. 9
shows the performance of the two controllers in a simulation
without measurement noise and disturbances. The slope-
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Fig. 9. Harmonic and slope-seeking control performance. Both controllers
are started at a control signal value of 25 and the desired value is 50. Right
plot shows the simulation response of the harmonic control in an I/O map.

seeking controller reaches a settling boundary of 5% of the
step size about twice as fast as the harmonic controller,
however, the harmonic controller can go to 50 in control
signal without becoming unstable. If the reference slope was
changes just slightly up or if the gain in the slope-seeking
controller was raised giving more pronounced oscillations,
it would make the controller go to the saturation limit of
95. The excitation signal amplitude was adapted during the



simulation shown in Fig. 9 and the results are presented in
Fig. 10. The excitation signal amplitude is slowly adapted
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Fig. 10.  Adaption of the excitation signal amplitude a. during the

simulation shown in Fig. 9. The amplitude of the first harmonic |H1| is
used as feedback signal.

from 5 to approximately 1.7, which makes the amplitude of
the first harmonic |H;| converge to the reference of 2. The
upper limit is 5 due to the saturation limits.

Fig. 11 shows the performance of the two controllers in
a simulation with measurement noise (20 = 0.14°C') and
a disturbance in the system nonlinearity. The performance
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Fig. 11. Same simulation as in Fig. 9, but with added measurement

noise, measurement quantization and actuator quantization. The system
nonlinearity is changed slightly at 15000 seconds.

is similar to the performance without noise, however, the
harmonic controller experiences small oscillations in the
control signal when the gain in the system is low (u. between
25 to 37), but it does converge to the correct operating point.
Quantization on the measurement of 0.1°C and on the valve
of 0.2% was also added in the simulation shown in Fig. 11
to simulate realistic conditions. This quantization does not
disturb the controllers noticeably.

The disturbance was made as an increase in the total gain
in the system of 25%, see Fig. 5, introduced with a time
constant of 10 seconds, 15000 seconds into the simulation.
This corresponds to a decrease in the flow in the refrigeration
system and causes the control signal in the slope-seeking
controller to decrease as the reference slope now corresponds
to a different operating point. If the disturbance was made
as a decrease in the gain, then the slope-seeking controller
would have become unstable. In comparison the harmonic
controller does not deviate from the operating point.

The promising simulation results have lead to the im-
plementation of the control method on two different test
refrigeration system in our laboratory and the results are
presented in [13].

V. CONCLUSION

A new non-model based method for control of nonlinear
systems with input/output map exhibiting sigmoid function
properties have been proposed. The method is called har-
monic control and utilize an excitation signal together with
Fourier analysis to obtain qualitative knowledge about where
on the nonlinearity the closed loop system is located.

It was discovered that the excitation signal amplitude and
period has little to no effect on the linear error signal as
long as the period is about twice as large as the system time
constant and delay. The amplitude of the signal can therefore
be adapted to limit the unavoidable oscillations in the output
due to the excitation. The control method was also simulated
using different system gains and time constants, which did
not change the global equilibrium/operating point. This was
not the case with slope-seeking control. Furthermore, slope-
seeking has stability problems if the reference slope is not
chosen carefully and in general it can be difficult to obtain
a suitable reference slope.

An evaporator in a refrigeration system was used as
example in the simulations. However, it is anticipated that
the method in general is applicable when the point of zero
mean curvature of the system nonlinearity is close to the
desired operating point and when the system input/output
map satisfies the sigmoid function properties.
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