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Abstract: A complete methodology to design robust Fault Detection and Isolation (FDI)
filters and Fault Tolerant Control (FTC) schemes for Linear Time-Varying (LTV) systems
is proposed. The paper takes advantage of the recent advances in model invalidation using
Set-Valued Observers (SVOs) that led to the development of FDI methods for uncertain linear
time-varying systems, with promising results in terms of the time required to diagnose faults. An
integration of such SVO-based FDI methods with robust control synthesis is described, in order
to deploy new FTC algorithms that are able to stabilize the plant under faulty environments.
The FDI algorithm is assessed within a wind turbine benchmark model, using Monte-Carlo

simulation runs.
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1. INTRODUCTION

The field of Fault Detection and Isolation (FDI) has been
studied since the early 70’s Willsky [1976], and several
techniques have, since then, been applied to different types
of systems. An FDI device is key in several applications
and, in particular, in those that are safety critical. Com-
mon examples of systems equipped with FDI devices in-
clude aircrafts and a wide range of industrial processes
such as the ones described in the following references —
Blanke et al. [2001], Patton and Chen [1997], Frank and
Ding [1997], Esteban [2004], Collins and Tinglun [2001],
Longhi and Moteritt [2009]. An FDI system must be able
to bear with different types of faults in sensors and/or
actuators, which can occur abruptly or slowly in time.
Moreover, model uncertainty (such as unmodeled dynam-
ics) and disturbances must never be interpreted as faults.

A deterministic model-based Fault Detection (FD) system
is usually composed of two parts: a filter — see Fig. 1
— that generates residuals, which should be large under
faulty environments; and a decision threshold, which is
used to decide whether a fault is present or not — see
Willsky [1976], Patton and Chen [1997], Esteban [2004],
Frank and Ding [1994], Massoumnia [1986], Bokor and
Balas [2004], Meskin and Khorasani [2009], Wang et al.
[2009], Narasimhan et al. [2008] and references therein.
The isolation of the fault can, in some cases, be done using
a similar approach, i.e., by designing filters for families
of faults, and identifying the most likely fault as that
associated to the filter with the smallest residuals.

The main idea in such architectures stems from the de-
sign of filters that are more sensitive to faults than to
disturbances and model uncertainty. This can be achieved,
for instance, by using geometric considerations regarding
the plant, as in Massoumnia [1986], Longhi and Moteriu

[2009], Bokor and Balas [2004], or by optimizing a par-
ticular norm minimization objective, such as the H,.- or
l-norm — see Edelmayer et al. [1994], Frank and Ding
[1997], Niemann and Stoustrup [2001], Marcos et al. [2005],
Collins and Tinglun [2001]. The latter approach provides,
in general, important robustness properties, as stressed in
Edelmayer et al. [1994], Mangoubi et al. [1995], Patton and
Chen [1997], Esteban [2004], by explicitly accounting for
model uncertainty. In Savkin and Petersen [1996], integral
quadratic constraints for uncertain systems are used for
model validation.
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Fig. 1. Residual generation in a classical fault detection
(FD) architecture.

As a caveat, these methodologies are, in general, con-
servative or can only be applied to a restrict class of
systems. Moreover, the thresholds used to declare a fault
are typically time-varying and highly dependent on the
model uncertainty and on the amplitude of the exogenous
disturbances and measurement noise.

The FDI strategy proposed in this paper uses a differ-
ent philosophy. Rather than identifying the most likely
model of the faulty plant, models that are not compatible
with the current input/output data are invalidated, thus
avoiding the computation of decision thresholds. To this
end, this paper adopts the model falsification technique
using Set-Valued Observers (SVOs), described in what
follows. In addition, another advantage of the SVO-based



methodology presented herein stems from the fact that it
is able to deal with linear time-varying uncertain plants.
Alternative set-membership approaches to FDI can be
found in Combastel and Raka [2009], Ingimundarson et al.
[2009] and references therein, and will be briefly discussed
in Section 4.

The use of FDI strategies, however, may not completely
void the possibility of having severe failures that, due to
delay in the corresponding isolation process, lead to the
damage of the diagnosed system beyond repair. Indeed,
the time required to detect and isolate certain types of
faults is sufficient to lead to the accelerated deterioration
of these systems. Therefore, control design methodologies
have been developed in the recent years, that take into
account these considerations, by deliberately increasing
the effects of certain faults, so that they are detected faster.
As an example, nested controller and FDI design strategies
Marcos et al. [2005], Stoustrup and Niemann [2010] have
been proposed that allow faster detection of the faults
due to a poorer rejection of the controller with respect to
disturbances aligned with these faults. As a shortcoming,
the lack of attenuation of the effects of the faults can put
into jeopardy the entire controlled system. Once a fault
is isolated, the controller can be reconfigured in order to
minimize its impact on the performance of the closed-
loop system. Such architectures are typically referred to
as Fault Tolerant Control (FTC) schemes.

The remainder of this paper is organized as follows.
Section 2 introduces the main notation used throughout
the article, while Section 3 describes the main concepts
regarding model falsification. SVOs for LTV systems are
presented in Section 4. These SVOs are used in Section 5
for FDI and FTC, while in Section 6 a brief description
of the application of this methodology to a wind turbine
is shown. Finally, Section 7 is devoted to the discussion of
the proposed approach.

2. PRELIMINARIES AND NOTATION

We assume that the available input/output dataset can

be obtained through a Linear Parameter-Varying (LPV)
system, described by

{x(k-I— 1) = AEp(k) (k) + B(p(k))u(k) + L(p(k))d(k), W

y(k) = C(p(k))a(k) + N (p(k))n(k),

with bounded exogenous disturbances, d(-), uncertain ini-
tial state, z(0) € X(0), control input, u(-), and measure-
ment output, y(-), corrupted by additive noise, n(-). The
system is assumed observable and controllable from the
exogenous disturbances and control inputs, for all admis-
sible p(-). The matrices of the system may be uncertain
and are assumed to depend upon a (partially uncertain)
time—varying vector of parameters, p(-). It is also assumed
that

|d(k)] := max |d; (K)| <1,

and |n(k)| < ni. At each time, k, let 2(k) denote the states
vector and
X(O) = Set(Mo, mo),

where

Set(M, m) :={g € R"™ : Mg < m} (2)
represents a convex polytope, with M € R"m*" m ¢ R"m
and with the inequality taken element-wise. Moreover, let
z(k) € R", d(k) € R™, u(k) € R™, and y(k) € R™,
for £ > 0. For the sake of simplicity of notation, we
redefine A(k) := A(p(k)),B(k) = B(p(k)),L(k) =

L(p(k)),C(k) := C(p(k)), N (k) := N(p(k)).

3. MODEL FALSIFICATION

The problem of model falsification appears in several
areas where we are interested in distinguishing among
an eligible set of dynamic systems. The simplest model
falsification problem one can think of is that of stating
whether or not a given dynamic model is compatible with
the current observed input/output data. However, it is
important to notice that a model can never be validated
in practice. Indeed, if the model is compatible with the
input/output data up to time ¢, it need not be compatible
at time t + 9§, where § > 0. Therefore, one can only say
that a given model is not falsified (or invalidated) by the
current input/output data. On the other hand, a model is
obviously invalidated or falsified once it is not compatible
with the observations. Hence, we usually refer to model
falsification rather than model validation, since the latter
is not achievable in practice.

As an example, suppose that there are four possible
models, My, My, M3, and My, for a given plant. We
are interested in deciding which model (if any) is able
to explain the input/output data sequence that we are
obtaining from the sensors and actuators’ commands.
Therefore, assume that, at a given initial time, t,, all
the four models are plausible, as depicted in Fig. 2.
Further suppose that, at time t1, model M, is invalidated,
i.e., the sensors readings cannot be explained by model
M. Moreover, consider that, at time 5, model Ms is
invalidated and that, finally, model M; is invalidated at
time t3. Then, at time t3, we conclude that the only
model capable of explaining the input/output time-series
generated by the plant is model Ms.
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Fig. 2. Example of the time-evolution of a set of models
that are able to describe the input/output behavior
of a given plant.
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3.1 Model Falsification in the Literature

Unmodeled dynamics (present in virtually every physical
system) and adverse exogenous disturbances, can result
in erroneous model falsification. Therefore, worst-case ap-
proaches, rather than stochastic approaches, are more suit-
able to address this type of problems. In fact, the solution
proposed in Poolla et al. [1994] for uncertain LTT systems,
and later on extended to LTV systems in Bianchi and
Sénchez-Petia [2010], assumes that the system is described
by an LTI nominal model interconnected with an LTI
or LTV unknown system, denoted by A. This uncertain
system A can be used, for instance, to describe unmodeled
dynamics and parametric uncertainty. However, the meth-
ods provided in Poolla et al. [1994], Bianchi and Sanchez-
Penia [2010] are not recursive, which means that, after a
given amount of input/output data is obtained, we check
whether or not the data is compatible with our model of
the system. Hence, the complexity of the algorithms grows
with the number of iterations.

The model falsification strategy presented in this paper
uses a philosophy similar to that of Poolla et al. [1994],
Bianchi and Sanchez-Pena [2010], but proposes a recursive
algorithm which can be used to run in real-time. As shown
in the sequel, this method guarantees that valid models
of the plant are never falsified. Moreover, under certain
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Fig. 3. Structure of an active fault diagnoser.

distinguishability conditions discussed herein, it is also
shown that the correct model of the plant is selected.

3.2 The (In)Distinguishability Problem

Due to noise and uncertainty on the model of the system,
it is possible that an input/output data is consistent with
more than one model and, therefore, we cannot distinguish
the correct one among a set of valid models of the dynamic
system. A remedy to this is to use active diagnosis methods
to improve the distinguishability between valid models
by exciting the system using an auxiliary input signal.
In active diagnosis, the diagnoser generates an input
that excites the system, to decide whether the output
represents a normal or a faulty behavior and, if possible,
decide which fault has occurred. The generated input must
perturb the system from the operation point but, at the
same time, not lead the system to instability or to an
unacceptable performance. The area of active diagnosis
has attracted a considerable attentions in recent years
— see Nikoukhah et al. [2002], Nikoukhah and Campbell
[2006], Niemann and Poulsen [2005], Niemann [2006],

Tabatabaeipour [2010] and references therein.

The structure of an active diagnoser in depicted in Fig. 3.
It consists of a generator and a diagnoser. The generator
generates an input sequence U = [u(0),...,u(Ty — 1)]

which is applied to the system and then occurrence of

fault f is determined by the diagnoser by observing the
applied input sequence and the output sequence Y =

[y(0),...,y(Ta)]-

The active diagnosis problem can be stated as follows:

Problem 1. Active diagnosis problem: Given the set
M = {My,...,M,} describing behaviors of the system
with no fault and subject to faults {f1,..., fn}, respec-
tively, find a sequence of inputs U such that (U,Y) can
only be described by a unique M;.

In other words, the set M must be distinguishable — see
Rosa and Silvestre [2011]. If such an input sequence exists,
i.e. if the system is diagnosable, then we can look for
the optimal solution, where optimality can be interpreted
in different senses. The problem can be formulated as a
feasibility test problem as follows:

Find Tdvqu s.t. (3)
z;(k) € X;(0)
zi(k +1) = A;(p(k))zi (k) + Bi(p(k))u(k) + Li(p(k))d(k)
yz_(k()) = Ci(p(k))zi(k) + Ni(p(k))n(k)

yrrt M
yi(Tg) —y;(Ta) #0, 4,5 €{0,...,n},i #j
[n(k)| < n
ld(k)| < d

This problem is in general nonconvex. In this work, we
assume that the general form of the auxiliary input signal
is given as a periodic signal of the form u(k) = Asin(wk),
with parameters A and w — the companion paper Casau

et al. [2011] illustrates the applicability of this tool. The
problem is to find the appropriate amplitude A and the
frequency w of the input signal that guarantees distin-
guishability of the corresponding outputs despite noise and
disturbance. For a given Ay and wo, Ty,, if there exist a
noise and disturbance sequences and a initial condition
such that the following problem is feasible, then we can
not guarantee that the models are distinguishable:

Cl?z(k‘) € X; (0)

u(k) = Agsin(wok)

zi(k +1) = Ai(p(k))wi(k) + Bi(p(k))u(k) + Li(p(k))d(k)
yi(k) = Ci(p(k))xi(k) + Ni(p(k))n(k)

i=0,---,n 4)
Yi(Tay) — i (Tay) =0, 4,5 €{0,...,n},i #j

n(k)| <n

ld(k)| < d

Now, to solve (3) we look for Ay, wo, Ty, that render
(4) infeasible. Therefore, we parameterize (4) over Ay, wo,
and Ty, and use an appropriate gridding of the parameter
range and check feasibility of (4) at each grid point. The
optimal signal can be found by choosing the optimal value
of the parameter vector that makes (4) infeasible. The
proposed method yields solving a finite number of linear
programming problems that, for a reasonable grid density,
is computationally efficient.

4. SET-VALUED OBSERVERS
4.1 Introduction

If a dynamic model is not able to explain the output of the
actual system, given the applied control inputs and bounds
on the exogenous disturbances, it is straightforward to
conclude that such a model is not compatible with the
actual dynamics of the plant. Hence, this section is devoted
to the description of a technique that allows one to
systematically design filters, which, in turn, are going to
be used for model falsification. These filters are referred
to as Set-Valued Observers (SVOs) — see Witsenhausen
[1968], Schweppe [1968, 1973], Milanese and Vicino [1991]
and references therein for an overview on SVOs —, as they
are able to provide set-valued estimates of the state of the
plant, based upon a) the dynamic model of the system
(which may be uncertain); b) the output measurements;
¢) the control inputs; d) and the bounds on the exogenous
disturbances and measurement noise.

This type of observers, jointly with the model falsifica-
tion paradigm described in the previous section, naturally
arises as a solution to distinguish among models of dy-
namic systems.

The problem of designing SVOs — also referred to as
set-membership filtering design — has been extensively
studied in the literature. One of the first algorithms
developed to compute (ellipsoidal) set-valued estimates of
the state of a system was introduced in Schweppe [1968]
and Schweppe [1973]. In Yang and Yongmin [2009], an
approach to the synthesis problem of SVOs for LTV plants
with nonlinear equality constraints is described. A method
for active mode observation of switching systems, based
on SVOs, has been recently proposed in Baglietto et al.
[2009]. Zonotope-based approaches to fault detection were
also recently proposed in Combastel and Raka [2009],
Ingimundarson et al. [2009].

The SVO-based methodology adopted in this paper is an
extension of the work in Shamma and Tu [1999]. In fact,
the results in Rosa et al. [2010] are a generalization of the
set-valued state estimation for LTV systems, which is able
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Fig. 4. Prediction and update cycles.

to handle model uncertainty. Indeed, this section briefly
describes how to design SVOs which are able to provide
set-valued estimates of the state, under different scenarios,
namely parametric uncertainty in the input, output or
matrices of the dynamics of the state-space representation
of the plant. The proposed method is, in general, less
computationally demanding when compared to zonotope-
based approaches.

As illustrated in Fig. 4, the SVOs prediction cycle consists

in estimating the set of possible states, X (k + 1), at time
k + 1, based upon the model of the system and the set-
valued estimate of the state at time k. The update cycle
comprises the computation of the states, Y (k + 1), which
are compatible with the measured output of the plant, and

the intersection of this set with X (k 4 1).
4.2 SVOs for LTV Dynamic Models

Let X (k + 1) represent the set of possible states at time
k+1, i.e., the state x(k + 1) verifies (1) with x(k) € X (k)
if and only if z(k + 1) € X(k + 1). The goal of an SVO is
to find X (k 4+ 1), based upon (1) and with the additional
knowledge that (k) € X (k),z(k—1) € X (k—1),--- ,x(k—
N) € X(k— N) for some finite N. We further require that
for all x € X(k + 1), there exists z* € X (k) such that,
for z(k) = x*, the observations are compatible with (1).
In other words, we want X (k + 1) to be the smallest set
containing all the solutions to (1).

The computation of X (k+1) based upon X (k) for systems
with no model uncertainty can be performed using the
technique described in Shamma and Tu [1999]. Indeed,

let the system be described by (1), and assume that the
matrices of the dynamics are exactly known. For the sake

of simplicity, assume that N (p(k)) = I for all p(k),k > 0.
Then, as shown in Shamma and Tu [1999], z(k + 1) €
X(k+1) if and only there exist z(k), n(k) and d(k), such
that, for the current measurement, y(k + 1), we have

B(k)u(k)
—B(k)u(k)

PR | k) | <| 1 | =pk) )
m(k —1)
where
I —A(k) —L(k)
PR R C(k +1)
P(R):=1| ¢ 0 s M (k)= C(k + 1)}’
M(k) 0
0 M(k—1)
(k) = n + y(k + 1

y(k + )

and where M (k — 1) and m(k — 1) are defined such that
X(k) = Set (M(k—1),m(k —1)). The inequality in (5)
provides a description of a set in R?"1"4 denoted by

i
| FDsignal

No Fault
Detected

Fig. 5. Fault detection using SVOs.
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Fig. 6. Fault Detection and Isolation using Set-Valued
Observers (FDI-SVO) architecture.

I'(k+ 1) = Set (P(k),p(k)) .
Therefore, it is straightforward to conclude that

z
teXk+1l) < 3 Z[$‘|€F(k+1)
z€R" dER™ |4
Hence, the set X(k + 1) can be obtained by projecting
I'(k + 1) onto the subspace of the first n coordinates,
which, in turn, can be done resorting to the Fourier-
Motzkin elimination method (see Shamma and Tu [1999],
Keerthi and Gilbert [1987]). Therefore, one ends up with
a description of all the admissible x(k+ 1), which does not

depend upon specific z(k) nor d(k).
4.8 SVOs for Uncertain Dynamic Models

For plants with uncertainties, the set X(k + 1) is, in
general, non-convex, even if X (k) is convex. Thus, it
cannot be represented by a linear inequality as in (2). The
generalization of the previous results to uncertain dynamic
systems is omitted here due to space limitations, and can
be found in Rosa [2011].

5. FDI AND FTC USING SVOS

In this section, the applicability of the SVOs to Fault
Detection and Isolation (FDI) and Fault Tolerant Control
(FTC) is going to be discussed. In both cases, we take
advantage of the model falsification technique described in
Section 3 to identify the model of the plant. In particular,
the logic depicted in Fig. 5 is used, in order to detect
faults, i.e., a lack of consistency between the measurements
obtained from the sensors, and the model of the plant in
nominal (non-faulty) operation.

5.1 FDI using SVOs

The FDI-SVO methodology adopted in this paper was
introduced in Rosa et al. [2010], and the corresponding
general architecture is illustrated in Fig. 6.

This architecture requires two additional SVOs, besides
the faults isolation SVOs, namely a) one SVO for the



non-faulty (probably uncertain and time-varying) plant —
referred to as Nominal SVO; b) another SVO — referred
to as Global SVO — providing set-valued estimates of the
state, which are valid not only for the non-faulty plant,
but also for the faulty plant.

The Nominal SVO is used for fault detection only. If the
state estimate of this SVO is the empty set, a fault has
occurred. Hence, the fault isolation SVOs are initialized
with the state estimate of the Global SVO. A fault is
completely isolated whenever a single fault isolation SVO
has a non-empty set-valued state estimation. It should
be stressed that the FD filters that are designed for
specific faults, are only initialized with the set-valued state
estimate of the Global SVO when they are signaled by the
Nominal FD filter that a fault has occurred.

5.2 Passive Fault Tolerant Control

After the occurrence of a given fault, the FDI system
may require several measurements before such an event
is detected and isolated. Thus, in this article, we propose
the use of robust controllers that, at the cost of a possible
slight decrease in terms of performance under non-faulty
scenarios, guarantees stability of the system even under
faulty environments. These controllers are designed to take
into account only certain types of faults that are typically
harder to detect. Hence, such robust controllers provide
the FDI system with further time to determine the exact
location of the fault and, then, to select a controller which
is more adequate to handle the failure, as described in
the following subsection. The synthesis of controllers that
are robust against different types of uncertainties and
time-variations on the dynamics of the plant has, indeed,
deserved considerable attention over the last decades. The
interested reader is referred, for instance, to Skogestad and
Postlethwaite [2005], Zhou et al. [1996].

5.8 FTC using SVOs

The Fault Tolerant Control using Set-Valued Observers
(FTC-SVO) architecture is depicted in Fig. 7. The
Decision-block is responsible for selecting the appropriate
controller, based upon the set-valued estimates provided
by the bank of SVOs. Each controller is designed as in the
previous subsection, so that robust-stability is guaranteed
while a given fault is not detected and isolated. The FTC-
SVO method uses a mixed solution, between an active
FDI algorithm and a passive FTC. Therefore, on the one
hand, the FDI system applies a persistence of excitation
on the plant, whenever the measured signals hinder the
distinguishability of the faults — see Section 3.2. On the
other hand, the controller synthesized for the nominal
system is also robust to mild variations on the dynamics of
the plant, so that faults can be accommodated while the
FDI subsystem is not able to reconfigure the controller.

If the system is operating normally, the Nominal SVO
provides non-empty set-valued state estimates for the
plant, and thus the Nominal Controller is connected to the
loop. This controller must also be able to accommodate a
fault, should it occur, until the FDI algorithm (see Section
5.1) detects and isolates this fault. After that, if fault #i
is isolated, then controller #¢ is connected to the loop,
substituting the nominal one.

6. SIMULATION RESULTS

The applicability of the technique presented in this paper
to a wind turbine is fully described in the companion paper
Casau et al. [2011]. However, for the sake of completeness,
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Fig. 7. Fault Tolerant Control using Set-Valued Observers
(FTC-SVO) architecture.

some of the main results are also shown here. For details
on the dynamic model of the wind turbine and related
faulty scenarios, the reader is referred to Odgaard et al.
[2009]. The simulation results presented in this section are
summarized in Table 1.

Fault Detections False Median Min Max.
no. Detec- Time Time Time
tions [s] [s] [s]
1 12 0 0.01 0.01 0.01
2 12 0.07 0.03 0.09
3 12 0 0.01 0.01 0.01
4 12 0 0.01 0.01 0.01
5 12 0 0.01 0.01 0.01
6 12 0 0.27 0.13 0.28
7 12 0 0.09 0.07 0.11
8 9 3 0.01 0.01 0.01

Table 1. Fault detection simulations results

7. CONCLUSIONS

This paper described Fault Detection and Isolation (FDI)
and Fault Tolerant Control (FTC) methodologies, appli-
cable to Linear Time-Varying (LTV) systems, that take
advantage of recent advances in the Set-Valued Observers
(SVOs) theory to invalidate dynamic models. Contrary to
residual-based approaches, the suggested method need not
the computation of decision thresholds, which are highly
dependent on the exogenous disturbances, measurement
noise, and model uncertainty. Some of the computational
issues that arise in the implementation of such methods
are also briefly discussed. In terms of FTC, a mixed active-
passive approach was adopted. In particular, robust con-
trollers were used to accommodate faults during the period
the FDI system is trying to isolate them. Once a fault is
isolated, the controller is reconfigured so as to minimize the
impact on the closed-loop plant. Monte-Carlo simulations
were performed on a faulty wind turbine, showing that
only a few measurements are necessary, in general, to
detect and isolate faults.
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