
Chapter 15
Hierarchical Model Predictive Control for
Plug-and-Play Resource Distribution

Jan Bendtsen and Klaus Trangbaek and Jakob Stoustrup

Abstract This chapter deals with hierarchical model predictive control (MPC) of
distributed systems. A three level hierarchical approach is proposed, consisting of a
high level MPC controller, a second level of so-calledaggregators, controlled by an
online MPC-like algorithm, and a lower level of autonomous units.

The approach is inspired by smart-grid electric power production and consump-
tion systems, where the flexibility of a large number of powerproducing and/or
power consuming units can be exploited in a smart-grid solution. The objective is
to accommodate the load variation on the grid, arising on onehand from varying
consumption, on the other hand by natural variations in power production e.g. from
wind turbines.

The proposed method can also be applied to supply chain management systems,
where the challenge is to balance demand and supply, using a number of storages
each with a maximal capacity. The algorithm will then try to balance the risk of
individual storages running empty or full with the risk of having overproduction or
unsatisfied demand.

The approach presented is based on quadratic optimization and possesses the
properties of low algorithmic complexity and of scalability. In particular, the pro-
posed design methodology facilitates plug-and-play addition of subsystems without
redesign of any controllers.

The method is verified by a number of simulations featuring a three-level smart-
grid power control system for a small isolated power grid.1
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15.1 Introduction

We discuss a hierarchical setup, where an optimization-based high-level controller is
given the task of following a specific externally generated trajectory of consumption
and/or production of a certain resource. The high-level controller has a number of
units under its jurisdiction, which consume a certain amount of the resource. The
flow of resources allocated to each of these units can be controlled, but each unit
must at all times be given at least a certain amount of the resource; vice versa, each
unit can only consume a certain (larger) amount of the resource.

One can think of various practical examples of systems that fit with this setup; for
instance a supply chain management system [2], where the challenge is to balance
demand and supply, using a number of storages each with a maximal capacity. The
algorithm will then try to balance the risk of individual storages running empty or
full with the risk of having over-production or unsatisfied demand. Other examples
include large-scale refrigeration systems (e.g., in supermarkets), where the resource
is refrigerant and the consuming units are individual display cases [14]; irrigation
systems, where the shared resource is water and the consuming units are adjustable
field sprinklers [13]; chemical processes requiring process steam from a common
source [5]; or even digital wireless communication systems, where the resource is
bandwidth and the consuming units are hand-held terminals,e.g. connected to a
building-wide intranet [1]. See also [6] and [3] for an example of a district heating
system that shares some of the physical characteristics outlined here, although the
cited papers pursued a decentralized control scheme ratherthan a centralized one.

Such large-scale hierarchical systems are often subject tofrequent modifications
in terms of subsystems that are added (or removed). This addsan important side
constraint to design methodologies for controlling such systems: They should ac-
commodate incremental growth of the hierarchical system ina way that is flexible
and scalable. In essence, the design methodology should support aplug-and-play
controlarchitecture, see e.g. [12].

In many cases, a natural choice for the top-level controlleris some sort of model-
predictive controller (MPC) [11], [7], since systems of thekinds referred to above
are multi-variable, subject to constraints and often involve considerable delays. Fur-
thermore, some sort of reference estimate is often known in advance, e.g., from
24-hour electric power consumption traces, weather forecasts, purchase orders, etc.
Unfortunately, the computational complexity of traditional MPC scales quite poorly
with the number of states in the problem (O(n3)), see e.g., [4]). Refer also to [9]
for a recent contribution on MPC control for two-layer hierarchical control systems.
In the type of problems considered above, this complexity growth places significant
limits on how large systems a centralized solution can handle, as also pointed out in
e.g. [10].
In this chapter, we propose a hierarchical control architecture that

• is based on a standard MPC solution at the top level;
• is able to accommodate new units without requiring modifications of the top-

level controller;
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• remains stable for an increasing number of units;
• facilitates plug-and-play addition of units at the bottomlevel, i.e., new units can

be incorporated at the bottom level simply by registering with the unit at the level
just above it.

Furthermore, the worst-case complexity is lower than for conventional centralised
solutions, which means that the proposed scheme scales more‘reasonably’ than the
centralized solution. As will be illustrated, the involvedoptimization techniques give
rise to quite sparse structures; this sparsity can be exploited to reduce complexity.
By a distributed resource control system we shall understand a system with the
following characteristics:

• The system has a number of decentralized storages that can store a certain amount
of some resource;

• Each storage can be filled or emptied at some maximal rate(s);
• A central controller has the responsibility of balancing supply and demand by

use of the storages.

We illustrate the approach by a specific example, a so-called“smart grid” electric
power system, where consumers can vary their power consumption within certain
bounds by allowing devices to store more or less energy at convenient times [8]. The
obvious method to do so physically is by exploiting large thermal time constants in
deep freezers, refrigerators, local heat pumps, etc.; extra energy can be stored during
off-peak hours, and the accumulated extra cooling can then be used—slowly—by
turning compressors and similar devices on less frequentlyduring peak hours. Im-
plementing such schemes is considered a necessity for the adoption of large amounts
of unpredictable renewable energy sources in the European power grid, and requires
local measurement and feedback of current energy and power demand. Consumers
equipped with such measurement and feedback capabilities are calledintelligent
consumers.

Structural flexibility of large-scale systems is important, since subsystems and
components may be added, removed or replaced during the system’s lifetime. In our
example, it is easy to imagine customers wanting to sign up for a contract with a
power company, such that the customer is assigned the necessary equipment to be-
come an intelligent consumer. Thus, the top level system should be flexible enough
to accommodate new consumers under its jurisdiction without it being necessary to
perform significant re-tuning and/or restructuring every time new consumers appear.
Furthermore, it is a basic requirement that the system is stable and provides good
performance at all times.

The outline of the rest of the chapter is as follows: Section 15.2 explains the
problem in a general setting, while Sec. 15.3 presents the proposed algorithm for
resource sharing. Section 15.4 shows that the resulting architecture remains stable
for increasing numbers of units. Section 15.5 shows a simulation example of the
algorithm applied to an electric ’smart grid’ with a small number of consumers and,
finally, Sec. 15.6 offers some concluding remarks. Note that, unless otherwise stated,
all time-varying quantities (signals) are assumed to be real scalars. Vectors and ma-
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Fig. 15.1 Problem setup

trices are indicated with bold-face symbols, while sets arewritten in calligraphic
font.

15.2 Problem Formulation

We consider a setup as depicted in Fig. 15.1. The high-level controller is given the
task of following a specific externally generated trajectory of consumption and/or
production of a certain resource. The objective is to maintain a certain system-level
balance(between demand and production); the error in the balance isrepresented by
the scalar signalW(t), which must be driven to 0 as the timet tends to infinity. The
demand and production must match over time, however, and thedisturbancew(t)
is hence treated as short-time changes in the balance, whereasW(t) is an integrated
error signal. The high-level controller can compensate directly for the disturbance
w(t) by assigning some of the resource flowwext(t) to this task, but at a signifi-
cant cost. However, the high-level controller also has a number of units, which we
will in general refer to asconsumers, Ci , i = 1, . . . ,N, under its jurisdiction. Each
one of these consumers consumes the resource at a certain, controllable ratewi(t).
The high-level controller is able to direct time-varying resources to the consumers,
but must ensure that each consumeron averagereceives a specific amount of the
resource, and certain upper and lower bounds on the consumption rate,wi andwi ,
may not be exceeded. By doing so, the consumption compensates for some of the
disturbancew(t), at alower costthan the direct compensation signalwext(t). That
is, it is advantageous to utilise the consumers as much as possible, subject to the
aforementioned constraints.



15 Hierarchical MPC for PnP Resource Distribution 341

This setup could for instance be interpreted as a supply chain management sys-
tem, where the challenge is to balance demand and supply by minimizing the excess
supplyW(t). The demand and supply should in this interpretation be associated with
the ’disturbance’ signalw(t), which can be thought of as short-term market fluctu-
ations, supply irregularities etc. The system has a number of storagesCi available,
each currently being filled at the ratewi(t). The maximal capacities and maximal
filling/emptying rates of each storage should be exploited in such a way that the
need for ’external compensation’wext(t) is minimized. In this interpretation,wext

corresponds, depending on the sign, either to having to rentexternal storages or to
have to buy components from more expensive suppliers. Thus,the goal of the algo-
rithm is to try to balance the risk of individual storages running empty against the
risk of having over-production or unsatisfied demand.

In the following, letI = {1,2, . . . ,N} denote an index set enumerating the con-
sumers. The high-level controller must solve the followingoptimization problem at
any given timet:

min
wi ,wext

∫ t+Th

t
φ(W(τ),wext(τ),

dwext

dt
)dτ (15.1)

s.t. W≤W(τ)≤W

wi ≤ wi(τ)≤ wi , ∀i ∈ I

whereW andW are constraints on the balance andφ : R×R×R→R+ is a smooth,
convex cost function of the balance error, the external resources that need to be
acquired, and the changes in these resources (motivated by the fact that it is often
more costly to acquire extra resources on a very short notice); φ is typically chosen
as a linear or quadratic cost function.Th is the prediction horizon of the controller.
For simplicity, and without loss of generality, the consumption by the consumers is
assumed cost-free.

Let Wi(t) denote the amount of resource accumulated inCi , andη i ≥ 0 denote a
drain rate, respectively;η i is assumed to be constant for simplicity. Each consumer
is characterized by its own linear state equation:

dWi(t)
dt

= wi(t)−η i (15.2)

which must satisfy 0≤Wi(t)≤Wi at all times. Note that this model implies that the
consumers are mutually independent. The goal that each consumer receives a spe-
cific amount of the resource on average, may be expressed as the integral constraint

1
Tres

∫ Tres

0
|wi(τ)−η i |dτ = Wi,ref (15.3)

whereTres is some appropriate time span. Obviously, we must require that 0≤
Wi,ref ≤Wi .

Note that, since the dynamics contain only pure integrators, (15.1) can easily be
approximated by a discrete time problem of the form
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min
wi ,wext

(t+Th)/Ts

∑
k=t/Ts+1

φ(W(kTs),wext(kTs),wext((k−1)Ts)) (15.4)

s.t. W≤W(kTs)≤W

wi ≤ wi(kTs)≤ wi , ∀i ∈ I

whereTs is the sampling time. For simplicity, we will often dropTs from the notation
in the sequel, writing e.g.,w(k) as shorthand forw(kTs).

In order to solve the optimization problem, the high-level controller in principle
requires access to all states in the system, including the internal statesWi(t). This
may lead to a very heavy communication load on distributed systems if the number
of consumers is significant. Furthermore, the computational complexity of the opti-
mization problem grows rapidly with the number of consumersas well. This means
that adding more consumers into the system may pose significant problems in prac-
tice. Thus, a purely centralized solution to the problem maybe optimal in terms of
maintaining the supply/demand balance, but is not desirable from a practical point
of view.

15.3 Proposed Architecture

In the following we propose a new architecture for achievingthe control objective
that requires significantly less system-wide communication, while at the same time
being more flexible with respect to changes in the number of consumers. We now
consider the modified setup in Figure 15.2, wherew(t) is an external disturbance
and wa(t) = ∑N

i=1wi(t) is the cumulative rate of resource absorbed by allCi . As
mentioned in the previous section, the main objective of thehigh-level control is to
keep the resource balance governed by

dW(t)
dt

= w(t)−wext(t)−wa(t) (15.5)

at zero. It is assumed that the top level controller can control wext(t) directly and is
constrained only by a rate limit, but we would like to keep thevariations, i.e., the
time derivative ofwext(t), small as well.

Between the controller andNA≤N subsets of the intelligent consumers, we intro-
duce a number of so-calledaggregators Aj ,1≤ j ≤NA. Together, these aggregators
serve as an interface between the top level and the intelligent consumers. To each
aggregatorA j we assign a number of consumers identified by an index setJ j ⊂ I,
where for allk, j = 1, . . . ,NA we haveJ j ∩J l = ∅, l 6= j, and∪NA

j=1J j = I. Let n j

denote the cardinality ofJ j , i.e., the number of consumers assigned to aggregator
A j . The objective of each aggregator is to make sure that:

• The maximum capacity is available for the upper level at anytime instance;
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• The resources allocated to consumers are distributed roughly uniformly over the
number of consumers;

• The deviation from the nominal consumption is minimized for each consumer;
• The capacity constraint for each consumer is not violated;
• The rate constraint for each consumer is not violated

As in the previous section, we approximate the continuous-time system with a
discrete-time version.

The communication between the high-level controller is indicated on Fig. 15.2;
each aggregatorA j provides the top level with a small number of simple parameters
to specify the constraints of the consumers. In particular,the top level is informed
of w(k) andw(k), which are current bounds on the cumulative resource that can be
consumed by the consumers assigned toA j , that is, bounds on

wj
a(k) = ∑

i∈J j

wi(k)

that can be guaranteed over a specified horizon from timet. These limits neces-
sarily depend on both resource storage rate and limitationsamong the individual
consumers, and as such depend in a complicated fashion on thehorizon length. Sev-
eral choices can be made with respect to the length of this horizon. A simple choice
is to provide the limits for one sample ahead. Various choices could be made here,
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for instance providing a time-varying profile of limits overthe control horizon, or
the aggregators could simply provide fixed limits that can besustained over the en-
tire control horizon, although the latter would tend to be conservative. In addition to
these limits,A j provideswj

mid(k), a mid-ranging signal that informs the high-level
controller of the total resource rate would currently be most helpful in bringing the
intelligent consumers under its jurisdiction close to their reference resource levels
Wi,ref(k).

The aggregator level, as a whole, thus attempts to maintainwa(k) = ∑NA
j=1wj

req(k)
while the high-level controller, in turn, needs to solve theoptimization problem

min
w j

req,wext

Nh

∑
k=1

φ (W(k),wext(k),wext(k−1))+ β
NA

∑
j=1

Nh

∑
k=1

(wj
req(k)−wj

mid(k))
2 (15.6)

s.t. W ≤W(k)≤W

wj(k) ≤ wj
req(k)≤ wj(k), 1≤ j ≤ NA

which is of significantly lower dimension than (15.1) because the number of deci-
sion variables is smaller (sinceNA < N). The term

β
NA

∑
k=1

Nh

∑
k=1

(wj
req(k)−wj

mid(k))
2

is introduced to ensure that the high-level controller willassign resources to the
aggregators such that the intelligent consumers can approach their desired levels of
storage, away from their individual limits;β is a constant to be specified later.

That is, in periods where the load is relatively steady, the high-level controller
will make wj

req approachwj
mid, thereby increasing the short term resource reserves

for future load changes (positive or negative).
At each sample, the aggregatorA j solves the simple optimization problem

min
wi

∑
i∈J j

(Wi(k+1)−Wi,ref)
2 (15.7)

s.t. ∑
i∈J j

wi(k) = wj
req(k)

wi ≤ wi(k)≤ wi

0≤Wi(k+1)≤Wi

with Wi(k+1) = Wi(k)+Tswi(k), whereTs is the sampling time.

15.4 Stability, Complexity and Performance Analysis

In this section, we shall discuss stability, complexity andperformance of the archi-
tecture proposed above.
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15.4.1 Stability

First, in order to assess stability, it is of course necessary to establish a sensible def-
inition, especially as the main obstruction to the standarddefinition is the presence
of constraints.
Intuitively, stability for a system of the type described above will mean that

• For constant inputs, all trajectories will tend to constant values;
• In steady state, a minimal number of constraints will be invoked;
• Wind-up behavior of system states is avoided for any bounded input set

In the following, we will give an outline of a procedure for constructing controllers
that stabilize the system in such a way that it satisfies theseproperties. For ease of
the presentation we will only consider one aggregator.

Suppose the system satisfies the following assumptions.

1. The external load is constant;
2. The number of intelligent consumers is non-decreasing;
3. Any new ICs that appear in the system start with an initial amount of resource

in storage equal toWi,ref;
4. As long as the sum of all deviations fromWi,ref does not increase, the constraints

w andw do not become narrower (i.e.,w does not increase, andw does not
decrease).

The last assumption is technical; we aim to choose the reference levels exactly such
that the constraints are as wide as possible, thus making sure that this assumption is
satisfied by design. Indeed, in order to accommodate the stability notions introduced
above, we will modify the performance objective sligthly, so that we may be able
to follow a standard dual mode approach to stability analysis of model predictive
control with terminal constraints [7].

First of all, we note that the overall system is a linear, constrained system. There-
fore, at the top level we consider the state vector

x(k) =




W(k)

wext(k)−w(k)

WΣ (k)




whereWΣ (k) = ∑i∈I(Wi(k)−Wi,ref) denotes the total amount of surplus resources
in the ICs. Next, we define the function

l(k) = x(k)TQx(k)+R∆wext(k)
2

whereQ ∈ R3×3 andR∈ R+ are constant weight factors, and∆wext(k) = wext(k+
1)−wext(k). If Q is chosen as a symmetric, positive definite matrix, it is easily seen
thatl is a positive definite, smooth, unbounded function ofx with minimum inx = 0.
Based on this function, we define the function



346 Jan Bendtsen and Klaus Trangbaek and Jakob Stoustrup

V(k0) =
∞
∑

k=k0+1

l(k) (15.8)

along with the control optimization

min
wext,wreq

V(k0)

s.t. WΣ (k0 +Nh) = 0 (15.9)

w(k)≤ wreq(k)≤ w(k)

where (15.9) is a terminal constraint.
Given the properties ofl(k), we see thatV can be used as a Lyapunov function,

i.e., if we can ensure that it decreases every sample, the closed loop will be stable.
Assuming that the constraints are not active afterk0 +Nh, the optimal trajectory

will be described by the dynamicsx(k+ 1) = Ãx(k), whereÃ can be found as the
closed loop matrix resulting from a standard LQR problem. Byconstruction, all
eigenvalues of̃A have modulus less than one, so we can find a symmetric positive
definite matrixQ̄ that solves the discrete Lyapunov equation

ÃTQ̄Ã = Q̄−Q

We can then write

V(k0) =
k0+Nh

∑
k=k0+1

l(k)+
∞
∑

k=k0+Nh+1

l(k) =
k0+Nh

∑
k=k0+1

l(k)+x(k0 +Nh)
TQ̄x(k0 +Nh)

(15.10)
which means that we perform the optimization on a finite horizon with an extra
weight on the terminal state. In order to realize thatV is decreasing, it is enough
to note that as the horizon recedes, more flexibility is addedto the optimization,
meaning that minV(k0 +1)≤minV(k0)− l(k).

The reason that we can assume that constraints are not activeat the end of the
control horizon follows from Assumption 4 and the terminal constraint (15.9).
Thus, under the assumptions above, we can say the following:

• Each aggregator drives the amount of resource stored in theICs under its juris-
diction towards their reference values.

• In steady state, the minimal number of constraints are active. This follows from
the properties of quadratic optimization; if the number of active constraints is
non-minimal, the quadratic cost will always become smallerby shifting load
from one of the subsystems with an active constraint to one ormore subsystems
with inactive constraints.

• Wind-up behavior of system states is avoided for any bounded input set, since all
the individual subsystems are open loop (marginally) stable.

It should finally be noted that the terminal constraint (15.9) was only included in
the above to make the argumentation easier; it does not appear to be necessary in
practical implementations and has not been included in the examples in Sec. 15.5.
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15.4.2 Complexity

In terms of complexity, the proposed design methodology scales in the same way as
quadratic optimization, which isO(N3), whereN is the number of consumers.

It should be noted, however, that the optimization problem has a high degree
of sparsity. This has not been exploited in the implementation applied in the sim-
ulations below, but it should be expected that the complexity could be further re-
duced by implementing a dedicated quadratic programming solver, which exploits
the mentioned sparsity. Further considerations on complexity can be found in Sec.
15.5.2.

15.4.3 Performance

In terms of performance, the following five parameters are decisive:

• The prediction horizon;
• The total installed flexible capacity;
• The instantaneous flexible capacity;
• The total cumulative rate limitation of flexible units;
• The instantaneous cumulative rate limitation of flexible units

The prediction horizonis a crucial parameter, since the overall balanceW is the
result of an integration. This means that for longer horizons the potential of using
flexible units becomes much larger, since the slack variables relative to the saturation
limits needed for guaranteed stabilization of the integrator becomes much smaller
for a longer time horizon.

The total installed flexible capacityis the sum of maximal resource storages for
all units, i.e.Ctot = ∑N

i=1Wi . This capacity clearly scales with the number of units.
The instantaneous flexible capacityis the present unexploited part ofCtot. Since

flexibility is exploited bidirectionally in reaction to either increasing or decreasing
load,Ctot has to be divided between upwards and downwards movement. The dy-
namics of this quantity depends on the control algorithm andof the control horizon.
Due to the additive nature of the quadratic programming costfunction, the instanta-
neous capacity for the proposed algorithm scales linearly with the number of units,
which is clearly optimal.

The total cumulative rate limitation of flexible unitsis the rate limitation experi-
enced by the high level controller and equals∑N

i=1wi for positive load gradients and
∑N

i=1wi for negative load gradients. This parameter scales linearly with the number
of installed units.

The instantaneous cumulative rate limitation of flexible units is current rate limi-
tation experienced by the high level controller and is equalto the sum of individual
rate limits for those units, which are not in saturation. Again, due to the additive
nature of quadratic programming costs, the instantaneous rate limitation scales lin-
early with the number of installed units. The average ratio (for a given load pat-
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tern) between instantaneous and total cumulative rate limitations is controlled by
the weighting factorρ , which constitutes the trade-off between capacity limitation
and rate limitation. For a given load pattern, more average capacity can be obtained
at the cost of rate limitation and vice versa, but the quadratic optimization guaran-
tees Pareto optimality.

The sampling times used at aggregator and top levels also influences perfor-
mance. Since the dynamics consist entirely of pure integrators, there is no approx-
imation in the discretization itself, but of course the flexibility in the optimisation
will be smaller for a larger sampling time.

15.5 Simulation Example

The example described in this section is inspired by a visionfor future Smart Grid
technologies called Virtual Power Plants, which is depicted in Figure 15.3.

The main objective of the top level control is to keep the energy balance governed
by

dE(t)
dt

= Pext(t)−Pload(t)−Pa(t) (15.11)

at zero.Pa = ∑i Pi is the power absorbed by the intelligent consumers (ICs).Pload

is the power absorbed by other consumers, and is considered as a disturbance here.
Pext is the power produced by a number of suppliers such as power plants etc.. It is
assumed that the top level controller can controlPext directly and restrained only by
a rate limit, but we would also like to keep the time derivative small.

Each intelligent consumer is characterized by its own energy balance

dEi(t)
dt

= Pi(t) (15.12)

which must satisfy 0≤ Ei(t) ≤ Ei at all times. Furthermore, each intelligent con-
sumer can only consume a limited amount of powerPi ≤Pi(t)≤Pi . The aggregator
serves as an interface between the top level and the ICs. It attempts to maintain
Pa(t) = Preq(t) and provides the top level with simple parameters to specifythe con-
straints of the ICs. In particular, the top level is informedof P andP, upper and
lower limits onPa that can be guaranteed over the horizonNl . These limits depend
on both power and energy storage limitations, and as such depend in a complicated
fashion on the horizon length. In addition to the limits, theaggregators providePmid,
a mid-ranging signal which tells the top level whichPreq would be most helpful in
bringing the ICs close to their reference energy levelsEre f ,i . In periods where the
load is relatively steady, the top level can then prioritizekeeping the energy levels at
the reference, and thereby increasing the short term reserves for future load changes.

How to choose these reference levels is again a complicated question of the con-
sidered horizon. If we consider a long horizon, then we mightlike to have the same
energy reserve in both directions, which would lead toEre f ,i = Ei/2. On the other
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Fig. 15.3 A vision for Smart Grids: Virtual Power Plants which aggregate producing or consuming
units.

hand, some ICs have a much higherP than−P, and are therefore much better at
providing a positive than negative absorption, while others are better at providing
negative absorption. With a short horizon it would make sense to keep the first kind
at a low energy level, and vice versa. Here, we choose

Ere f ,i = Ei
Pi

Pi−Pi

which corresponds to making the time to fill the energy reserves equal to the time to
fully empty it.

At each sample, at timet, the aggregator solves the simple optimization problem

min
Pi

∑ (Ei(t +Ts)−Ei,ref)
2,

s.t.

∑Pi = Preq,

Pi ≤ Pi(t)≤ Pi ,

0 ≤ Ei(t +Ts)≤ Ei

with Ei(t + Ts) = Ei(t)+ TsPi, thereby distributing the power in a way that brings
the energy levels as close to the reference as possible in a quadratic sense.
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The top-level control optimises over a prediction horizonNp. It minimizes the
performance function

Jt =
Np

∑
k=1

E(t +Tsk)
2 + β p

Nc

∑
k=1

(Pext(t +Tsk)−Pext(t +Ts(k−1)))2

+ β r

Nc

∑
k=1

(Preq(t +Tsk)−Pmid(t))
2

with Nc samples ofPext andPreq as decision variables.
The optimization is subject to constraints on the decision variables. There is a

rate limit on the power from the power plants:

Pext≤ Pext(t +Tsk)−Pext(t +Ts(k−1))≤ Pext

As mentioned, the aggregator provides limits onPa that can be sustained over a
horizonNl . These limits are conservative in the sense that ifPreq is for instance
negative for the first part of the horizon, then a positivePreq higher thanP may
be feasible for the rest. However, in order to simplify the top level computations,
the constraintP(t) ≤ Preq(t + kTs) ≤ P(t) is imposed over the whole horizon. A
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Fig. 15.4 Simulation example.
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simulation of this scheme is shown in Fig. 15.4. The controller parameters used are
Ts = 1, Nl = Nc = 4, Np = 5, β p = 0.1, β r = 10−4. The load is generated by a first
order auto-regressive process with a time constant of 100 seconds, driven by zero-
mean Gaussian white noise with unit variance. There are 20 ICs with parameters
shown in Table 15.1 becoming available as time passes, making it possible for the
aggregator to provide increasingly wider constraints onPreq. The result is that the
energy balance can be controlled much better while also using a smootherPext. The
requested consumptionPreq is shown together withP(t) andP(t), computed by the
aggregator. It is noted how the constraints widen as more ICsbecome available, but
will shrink when the reserve is being used.Pmid is computed as thePreq that would
bring the energy levels to the reference inNl samples, ignoring power limits.

Table 15.1 Parameters for 20
consumers in simulation

i 1 2 3 4 5 6 7 8 9 10

Ei 1.0 4.0 4.0 3.0 6.0 10.0 1.0 4.0 9.0 10.0

Pi -1.7 -1.4 -0.2 -1.3 -1.6 -1.3 -0.7 -1.9 -1.1 -1.1

Pi 1.4 0.8 1.8 0.3 0.9 1.1 1.2 0.2 0.2 0.2

i 11 12 13 14 15 16 17 18 19 20

Ei 9.0 1.0 2.0 10.0 6.0 1.0 9.0 8.0 2.0 9.0

Pi -0.2 -1.0 -1.6 -1.3 -0.3 -1.1 -1.9 -0.2 -0.9 -1.6

Pi 1.1 1.2 1.6 1.9 0.4 0.9 1.8 0.8 0.6 0.5

The energy balance of the ICs is shown in Fig. 15.5. The energyconstraints and
reference are shown by dashed lines. It can be seen that additional consumers are
“plugged in”, the system automatically incorporates thesenew consumers and these
new resources are exploited throughout the control hierarchy in order to improve
the power balance at the top level.

15.5.1 Performance Study

The aggregators perform two functions, approximation and aggregation. The main
purpose is the aggregation of several consumers into a simple virtual big consumer,
thereby simplifying the task at the top level. The approximation, simplifying the
power limits into an average over the horizon, is only necessary in order to facilitate
the aggregation. In fact, if each aggregator has only one consumer, then the com-
putation at the top level is not simplified at all. In the next section, the effects of
aggregation on the performance will be studied, but before that the question arises
of how much the conservative approximation affects performance compared to a
centralised scheme as in Fig. 15.1, where the high-level controller directly controls
the consumers. We compare two control schemes:

Centralized controller:The top level controller optimises a standard MPC objec-
tive
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Fig. 15.5 Simulation with aggregators.

min
Pi

t+Np

∑
k=t+1

(E(k)2 + β p(Pext(k)−Pext(k−1))2+ βe∑(Ei(k)−Ere f ,i)
2)

for i = 1, . . . ,N over the consumption rates of all consumers over a horizonNp. The
control is not fully optimal, since the horizon is finite. Therefore, the last term is
used for keeping the energy levels close to the references ifthe reserves are not
needed immediately.

Approximating control:The scheme described in the previous section, but each
aggregator handles only one consumer. In this way, the comparison will reflect the
effects of the approximation.

We perform simulations on a system with a small number of consumers,N. The
consumer power limits are evenly distributed between±0.4/N and±2.4/N, the
maximum energy levels between 0.8 and 4.8. Pext = −0.5, Pext = 0.5. The load
follows the same behavior as in the above example.

The approximating control has the same parameters as in the above example. The
centralized controller has the same control horizon and performance weights, and
β e = 10−4.

For each particularN, 100 simulations of 200 samples are performed. For each
simulation the ratio of variances is computed. Figure 15.6 shows the mean of these
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Fig. 15.6 Performance comparison with a centralised control for increasing number of aggrega-
tors. Solid: ratio of variances of balance. Dashed: ratio ofvariances of derivative of external power.

ratios asN grows. The solid line shows the ratio between the variance ofE when
using the approximating control and when using the centralized control. The dashed
line shows the same but for the variance ofPext(k)−Pext(k− 1). It is noted that
the ratios are quite close to 1, meaning that the performanceof the approximating
control is almost as good as for the centralized control. Importantly, the ratios seem
to decrease towards 1 asN grows. It was not feasible to perform the simulations
for higherN, as the computational complexity grew too high. The result leads us to
conjecture that the approximation only has a small effect onthe performance, and
that this effect is unimportant for a large number of consumers.

15.5.2 Complexity Study

The aggregators serve as a simplifying interface to the relatively complex top level
control, and as such even a configuration with one aggregatoris computationally
less complex than letting the top level control work on a fullmodel. However, for
a large number of ICs, the aggregator can also itself become too complex. It is
therefore necessary to allow for more than one aggregator. This also provides the top
level with more detailed information and can therefore be expected to yield better
performance. On the other hand, more aggregators will make the top level control
more complex, so there is a trade-off between complexity at the top and aggregator
levels and also with respect to performance.

Here, we examine the effects of the number of aggregators,NA, through a sim-
ulation example. We consider a situation with 800 ICs withEis evenly distributed
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Fig. 15.7 CPU times for simulation with varying numbers of aggregators.

between 0.01 and 0.14, and̄Pis and−Pis evenly distributed between 0.01 and 0.06.
The other parameters areTs = 1,Nl = Nc = 4,Np = 5, β p = 1, β r = 10−4. The load

is generated by a discrete time process(1−0.99q−1)(Pload(k)−100) = e(k), where
q−1 is the delay operator ande is white Gaussian noise with variance 16.

In all the simulations the same 400 sample load sequence was used, onlyNA

was changed (Fig. 15.7) shows the result. The top plot shows the (scaled) time con-
sumption of the top level controller. This grows withN3

A. The second plot uses the
same scaling and shows the average time consumption of each of the aggregators.
As the number of ICs handled by each aggregator is inversely proportional to the
number of aggregators, this consumption is inversely proportional toN3

A. It is noted
that the computational complexity of the top level and of each of the aggregators is
approximately equal with around 6 aggregators, so this may be a sensible choice.

The variance of the balanceE and of the derivative ofPext are shown in the next
two plots. As expected, more aggregators give better performance, but the difference
is rather small.

15.6 Discussion

In this chapter a design methodology for a three level hierarchical control archi-
tecture is proposed. The emphasis is on systems that accumulate the production
and/or consumption of resources through the levels, exemplified by irrigation sys-
tems, sewer systems, or power production and consumption systems.

The presented solution is based on MPC-like algorithms, based on online quad-
ratic programming solvers. The algorithmic complexity is very low and approxi-
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mately scales with the number of units in the system to the power of 1.5, even
without exploiting a significant sparsity of the optimization problems involved.

The approach has the specific feature that it facilitates online modifications of
the topography of the controlled system. In particular, units at the lower level can
be added or removed without any retuning of any controllers.This plug-and-play
control property is enabled by the modular structure of the involved cost functions
of the optimizations.

The proposed methodology is exemplified by a simulation of a control system
for a small electrical power production and consumption system, where the power
flexibility of a number of consumers is exploited. For this example, a significant
improvement of flexibility at the grid level is obtained.
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