Chapter 15

Hierarchical Model Predictive Control for
Plug-and-Play Resource Distribution

Jan Bendtsen and Klaus Trangbaek and Jakob Stoustrup

Abstract This chapter deals with hierarchical model predictive oantMPC) of
distributed systems. A three level hierarchical approagitoposed, consisting of a
high level MPC controller, a second level of so-caléegijregatorscontrolled by an
online MPC-like algorithm, and a lower level of autonomou#s

The approach is inspired by smart-grid electric power potidn and consump-
tion systems, where the flexibility of a large number of powesducing and/or
power consuming units can be exploited in a smart-grid BmiufThe objective is
to accommodate the load variation on the grid, arising onhare from varying
consumption, on the other hand by natural variations in p@seduction e.g. from
wind turbines.

The proposed method can also be applied to supply chain reareayg systems,
where the challenge is to balance demand and supply, usinghaer of storages
each with a maximal capacity. The algorithm will then try taldnce the risk of
individual storages running empty or full with the risk ofirag overproduction or
unsatisfied demand.

The approach presented is based on quadratic optimizatidrpassesses the
properties of low algorithmic complexity and of scalalyilith particular, the pro-
posed design methodology facilitates plug-and-play &fdif subsystems without
redesign of any controllers.

The method is verified by a number of simulations featurinigrad-level smart-
grid power control system for a small isolated power drid.
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15.1 Introduction

We discuss a hierarchical setup, where an optimizatioe¢blaigjh-level controller is
given the task of following a specific externally generatagectory of consumption
and/or production of a certain resource. The high-levetrodier has a number of
units under its jurisdiction, which consume a certain antairthe resource. The
flow of resources allocated to each of these units can beattsuy but each unit
must at all times be given at least a certain amount of thaurespvice versa, each
unit can only consume a certain (larger) amount of the resour

One can think of various practical examples of systems thaitfi this setup; for
instance a supply chain management system [2], where tlikecpea is to balance
demand and supply, using a number of storages each with amabsapacity. The
algorithm will then try to balance the risk of individual sages running empty or
full with the risk of having over-production or unsatisfiedndand. Other examples
include large-scale refrigeration systems (e.g., in Supekets), where the resource
is refrigerant and the consuming units are individual digpiases [14]; irrigation
systems, where the shared resource is water and the corgsuniia are adjustable
field sprinklers [13]; chemical processes requiring precgeam from a common
source [5]; or even digital wireless communication systentsere the resource is
bandwidth and the consuming units are hand-held termieals,connected to a
building-wide intranet [1]. See also [6] and [3] for an exdenpf a district heating
system that shares some of the physical characteristiisedihere, although the
cited papers pursued a decentralized control scheme thdren centralized one.

Such large-scale hierarchical systems are often subjéaidaent modifications
in terms of subsystems that are added (or removed). This add®portant side
constraint to design methodologies for controlling sucttems: They should ac-
commodate incremental growth of the hierarchical systeamway that is flexible
and scalable. In essence, the design methodology shoutugplug-and-play
controlarchitecture, see e.g. [12].

In many cases, a natural choice for the top-level contralsome sort of model-
predictive controller (MPC) [11], [7], since systems of tkiads referred to above
are multi-variable, subject to constraints and often imea@onsiderable delays. Fur-
thermore, some sort of reference estimate is often knowrduarzce, e.g., from
24-hour electric power consumption traces, weather fetecpurchase orders, etc.
Unfortunately, the computational complexity of traditedMPC scales quite poorly
with the number of states in the proble@((®)), see e.g., [4]). Refer also to [9]
for a recent contribution on MPC control for two-layer hietaical control systems.
In the type of problems considered above, this complexibywjn places significant
limits on how large systems a centralized solution can heggrad also pointed outin
e.g. [10].

In this chapter, we propose a hierarchical control archirecthat
* is based on a standard MPC solution at the top level;

* is able to accommodate new units without requiring modifices of the top-
level controller;
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e remains stable for an increasing number of units;

« facilitates plug-and-play addition of units at the botttawel, i.e., new units can
be incorporated at the bottom level simply by registerintphe unit at the level
just above it.

Furthermore, the worst-case complexity is lower than favemtional centralised
solutions, which means that the proposed scheme scalesmaasenably’ than the
centralized solution. As will be illustrated, the involveptimization techniques give
rise to quite sparse structures; this sparsity can be drglto reduce complexity.
By a distributed resource control system we shall undedstasystem with the
following characteristics:

* The system has a number of decentralized storages thatcamsertain amount
of some resource;

e Each storage can be filled or emptied at some maximal rate(s)

< A central controller has the responsibility of balancingpgly and demand by
use of the storages.

We illustrate the approach by a specific example, a so-cadiedrt grid” electric
power system, where consumers can vary their power congumpithin certain
bounds by allowing devices to store more or less energy aero@nt times [8]. The
obvious method to do so physically is by exploiting largethal time constants in
deep freezers, refrigerators, local heat pumps, etca exiergy can be stored during
off-peak hours, and the accumulated extra cooling can tleemsbd—slowly—by
turning compressors and similar devices on less frequelntiyng peak hours. Im-
plementing such schemes is considered a necessity fortipdiad of large amounts
of unpredictable renewable energy sources in the Europmaergrid, and requires
local measurement and feedback of current energy and pameand. Consumers
equipped with such measurement and feedback capabilitesadledintelligent
consumers

Structural flexibility of large-scale systems is importasihce subsystems and
components may be added, removed or replaced during trensgsifetime. In our
example, it is easy to imagine customers wanting to sign u focontract with a
power company, such that the customer is assigned the megesglipment to be-
come an intelligent consumer. Thus, the top level systernldhze flexible enough
to accommodate new consumers under its jurisdiction withdneing necessary to
perform significant re-tuning and/or restructuring evémetnew consumers appeatr.
Furthermore, it is a basic requirement that the system estand provides good
performance at all times.

The outline of the rest of the chapter is as follows: Sectibr? lexplains the
problem in a general setting, while Sec. 15.3 presents thposed algorithm for
resource sharing. Section 15.4 shows that the resultirgtacture remains stable
for increasing numbers of units. Section 15.5 shows a sitionl@xample of the
algorithm applied to an electric 'smart grid’ with a smallmber of consumers and,
finally, Sec. 15.6 offers some concluding remarks. Note thdéess otherwise stated,
all time-varying quantities (signals) are assumed to bkesesdars. Vectors and ma-
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Fig. 15.1 Problem setup

trices are indicated with bold-face symbols, while setsvarigten in calligraphic
font.

15.2 Problem Formulation

We consider a setup as depicted in Fig. 15.1. The high-levdtaller is given the
task of following a specific externally generated trajegtof consumption and/or
production of a certain resource. The objective is to mairdacertain system-level
balance(between demand and production); the error in the balarepissented by
the scalar signal/(t), which must be driven to 0 as the timéends to infinity. The
demand and production must match over time, however, andisierbancen(t)

is hence treated as short-time changes in the balance, agVé(g) is an integrated
error signal. The high-level controller can compensateatly for the disturbance
w(t) by assigning some of the resource flow(t) to this task, but at a signifi-
cant cost. However, the high-level controller also has almemof units, which we
will in general refer to agonsumersCi, i = 1,...,N, under its jurisdiction. Each
one of these consumers consumes the resource at a certatiro/ledle ratew; (t).
The high-level controller is able to direct time-varyingoerces to the consumers,
but must ensure that each consurorraveragereceives a specific amount of the
resource, and certain upper and lower bounds on the congmrpte,w; andw;,
may not be exceeded. By doing so, the consumption compeanfeaitsome of the
disturbancen(t), at alower costthan the direct compensation signal:(t). That
is, it is advantageous to utilise the consumers as much asbpmssubject to the
aforementioned constraints.
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This setup could for instance be interpreted as a supplynahanagement sys-
tem, where the challenge is to balance demand and supplyrbgniring the excess
supplyW(t). The demand and supply should in this interpretation becéestsal with
the 'disturbance’ signak(t), which can be thought of as short-term market fluctu-
ations, supply irregularities etc. The system has a numbstiocage<C; available,
each currently being filled at the rate(t). The maximal capacities and maximal
filling/emptying rates of each storage should be exploiteduch a way that the
need for 'external compensatiowey(t) is minimized. In this interpretatiomyex:
corresponds, depending on the sign, either to having toepdrtnal storages or to
have to buy components from more expensive suppliers. Thegoal of the algo-
rithm is to try to balance the risk of individual storagesming empty against the
risk of having over-production or unsatisfied demand.

In the following, letZ = {1,2,...,N} denote an index set enumerating the con-
sumers. The high-level controller must solve the followamgimization problem at
any given time:

. t+Th dWext
e /t PW(T), Wet(T), === )dT (15.1)
s.t. W <W(T) < W
w <wi(T)<W, VieZ

whereW andW are constraints on the balance andR x R x R — R is a smooth,
convex cost function of the balance error, the externaluess that need to be
acquired, and the changes in these resources (motivatdteligdt that it is often
more costly to acquire extra resources on a very short notgis typically chosen
as a linear or quadratic cost functioh. is the prediction horizon of the controller.
For simplicity, and without loss of generality, the consuiop by the consumers is
assumed cost-free.

LetW(t) denote the amount of resource accumulated jrmndn; > 0 denote a

drain rate, respectively}; is assumed to be constant for simplicity. Each consumer
is characterized by its own linear state equation:

dW(t

d—t() =w(t)—n, (15.2)
which must satisfy G< W (t) < W; at all times. Note that this model implies that the
consumers are mutually independent. The goal that eaclucwigeceives a spe-
cific amount of the resource on average, may be expressed agegral constraint

1

TFES
— [ wi(r) = it =W (15.3)
res /0

where Tres is some appropriate time span. Obviously, we must requiae @h<
Vvl,ref <W;.

Note that, since the dynamics contain only pure integra{@ts1) can easily be
approximated by a discrete time problem of the form
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(t+Th)/Ts
ernv\llgxt z O(W (KTs), Wext(KTs), Wext((k— 1) Ts)) (15.4)
’ k=t/Ts+1
st W<W(kTs) <W
w <wi(kTs) <W;, VieZl

whereTs is the sampling time. For simplicity, we will often dr@pfrom the notation
in the sequel, writing e.gw(k) as shorthand fow(kTs).

In order to solve the optimization problem, the high-levahtoller in principle
requires access to all states in the system, including tieenal state¥\{(t). This
may lead to a very heavy communication load on distributestiesys if the number
of consumers is significant. Furthermore, the computatiooaplexity of the opti-
mization problem grows rapidly with the number of consunasrsvell. This means
that adding more consumers into the system may pose sigrtificablems in prac-
tice. Thus, a purely centralized solution to the problem imayptimal in terms of
maintaining the supply/demand balance, but is not desiribim a practical point
of view.

15.3 Proposed Architecture

In the following we propose a new architecture for achiewimg control objective
that requires significantly less system-wide communicatichile at the same time
being more flexible with respect to changes in the number nfemers. We now
consider the modified setup in Figure 15.2, whexe) is an external disturbance
andw,(t) = SN wi(t) is the cumulative rate of resource absorbed byCallAs
mentioned in the previous section, the main objective ohilgd-level control is to
keep the resource balance governed by

dW(t)

g = W) — Wext(t) — Wal(t) (15.5)

at zero. It is assumed that the top level controller can cbagg(t) directly and is
constrained only by a rate limit, but we would like to keep tagiations, i.e., the
time derivative ofwex(t), small as well.

Between the controller aridy < N subsets of the intelligent consumers, we intro-
duce a number of so-callegjgregators A 1 < j < Na. Together, these aggregators
serve as an interface between the top level and the intetligensumers. To each
aggregatoA; we assign a number of consumers identified by an indegset Z,
where for allk, j = 1,...,Na we have7 I nJ' = 0,1 # |, andU'J-\':Aljj =7. Letnl
denote the cardinality of/1, i.e., the number of consumers assigned to aggregator
Aj. The objective of each aggregator is to make sure that:

* The maximum capacity is available for the upper level attamg instance;
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Fig. 15.2 Modified architecture

* The resources allocated to consumers are distributedhipugiformly over the
number of consumers;

e The deviation from the nominal consumption is minimizeddach consumer;

e The capacity constraint for each consumer is not violated;

» The rate constraint for each consumer is not violated

As in the previous section, we approximate the continudus-system with a
discrete-time version.

The communication between the high-level controller isdgated on Fig. 15.2;
each aggregatd; provides the top level with a small number of simple paransete
to specify the constraints of the consumers. In partictiter,top level is informed
of w(k) andw(k), which are current bounds on the cumulative resource thrabea
consumed by the consumers assignedjtdhat is, bounds on

wik) =y wi(k)
ieJ!
that can be guaranteed over a specified horizon from tinfdese limits neces-
sarily depend on both resource storage rate and limitaomsng the individual
consumers, and as such depend in a complicated fashion baorizen length. Sev-
eral choices can be made with respect to the length of thigdmrA simple choice
is to provide the limits for one sample ahead. Various ctoamild be made here,
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for instance providing a time-varying profile of limits ovéere control horizon, or
the aggregators could simply provide fixed limits that carslgtained over the en-
tire control horizon, although the latter would tend to baservative. In addition to
these limits A; provideswﬁmd(k), a mid-ranging signal that informs the high-level
controller of the total resource rate would currently be tiedpful in bringing the
intelligent consumers under its jurisdiction close to theference resource levels
W,ref(k)- )

The aggregator level, as a whole, thus attempts to maintgi) = z?‘ilwﬁeq(k)
while the high-level controller, in turn, needs to solve dpgimization problem

N Na N ) )
min 3 G Wer( ok~ 1)+ B3 S (Whelk) —Whig(K)2(15.6)
Wreg, Wext k=1 j=1k=1

st. W<W(k)<W
W (K) < Weq(k) S W (K), 1< ] <Na

which is of significantly lower dimension than (15.1) beaatise number of deci-
sion variables is smaller (sinéé < N). The term

Na Ny

BY S (Wegk) —Whig(K))?
k=1k=1

is introduced to ensure that the high-level controller &akign resources to the
aggregators such that the intelligent consumers can agiptbeir desired levels of
storage, away from their individual limit§, is a constant to be specified later.
That is, in periods where the load is relatively steady, tigeafevel controller
will make Wleq approachNﬁnid, thereby increasing the short term resource reserves
for future load changes (positive or negative).
At each sample, the aggregafgrsolves the simple optimization problem

min - 3 (W(k+1) — W ref) (15.7)
' i€}
sty Wi(k) = Weg(k)
ieJg)

w; < wi(k) < W
0<W(k+1) <W,

with Wi (k+ 1) = W (K) + Tew; (K), whereTs is the sampling time.

15.4 Stability, Complexity and Performance Analysis

In this section, we shall discuss stability, complexity geaformance of the archi-
tecture proposed above.
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15.4.1 Stability

First, in order to assess stability, it is of course necegdsaestablish a sensible def-
inition, especially as the main obstruction to the standifihition is the presence
of constraints.

Intuitively, stability for a system of the type describedab will mean that

e For constant inputs, all trajectories will tend to constalues;
e In steady state, a minimal number of constraints will bekad:;
* Wind-up behavior of system states is avoided for any bodmueut set

In the following, we will give an outline of a procedure forregiructing controllers
that stabilize the system in such a way that it satisfies thesgerties. For ease of
the presentation we will only consider one aggregator.

Suppose the system satisfies the following assumptions.

1. The external load is constant;

2. The number of intelligent consumers is non-decreasing;

3. Any new ICs that appear in the system start with an initiabant of resource
in storage equal t\ ref;

4. Aslong as the sum of all deviations frofer does notincrease, the constraints
w andw do not become narrower (i.ey does not increase, and does not
decrease).

The last assumption is technical; we aim to choose the mferievels exactly such
that the constraints are as wide as possible, thus makieglsairthis assumption is
satisfied by design. Indeed, in order to accommodate thaitaintions introduced
above, we will modify the performance objective sligthly, that we may be able
to follow a standard dual mode approach to stability analg§imodel predictive
control with terminal constraints [7].

First of all, we note that the overall system is a linear, t@ised system. There-
fore, at the top level we consider the state vector

W(k)
X(K) = | Wext(k) —w(K)
W (k)

whereWs (k) = 5ic7(W (k) — W ref) denotes the total amount of surplus resources
in the ICs. Next, we define the function

[(K) = x(k) T Qx(K) + RAWexi(k)?

whereQ € R332 andR < R, are constant weight factors, afVext(K) = Wext(K+
1) — wext(K). If Q is chosen as a symmetric, positive definite matrix, it islgasien
thatl is a positive definite, smooth, unbounded functior @fith minimuminx = 0.
Based on this function, we define the function
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V (ko) = % (k) (15.8)
k=ko+1
along with the control optimization
WerR\I/\Teq V(kO)
s.t. Ws(ko+Nh) =0 (15.9)

W(K) < Wreq(k) <W(K)

where (15.9) is a terminal constraint.
Given the properties df k), we see tha¥/ can be used as a Lyapunov function,
i.e., if we can ensure that it decreases every sample, teedloop will be stable.
Assuming that the constraints are not active afger Ny, the optimal trajectory
will be described by the dynamiogk + 1) = Ax(k), whereA can be found as the
closed loop matrix resulting from a standard LQR problem.ddystruction, all
eigenvalues oA have modulus less than one, so we can find a symmetric positive
definite matrixQ that solves the discrete Lyapunov equation

ATQA=Q-Q
We can then write
ko+Np oo ko+Npq _
Vi(ko) = % (k) + ZV I(k) = % (K) + X (ko + Nn) T Qx (ko + Nn)
k=ko+1 k=Kko+Np+1 k=ko+1

(15.10)
which means that we perform the optimization on a finite f@rizvith an extra
weight on the terminal state. In order to realize tais decreasing, it is enough
to note that as the horizon recedes, more flexibility is addetthe optimization,
meaning that mil (ko + 1) < minV (ko) — I (k).

The reason that we can assume that constraints are not attive end of the
control horizon follows from Assumption 4 and the terminahstraint (15.9).
Thus, under the assumptions above, we can say the following:

< Each aggregator drives the amount of resource stored ilCshender its juris-
diction towards their reference values.

« In steady state, the minimal number of constraints ar@@ctihis follows from
the properties of quadratic optimization; if the number ofive constraints is
non-minimal, the quadratic cost will always become smatgrshifting load
from one of the subsystems with an active constraint to omaare subsystems
with inactive constraints.

* Wind-up behavior of system states is avoided for any bodingjeut set, since all
the individual subsystems are open loop (marginally) stabl

It should finally be noted that the terminal constraint (}®@s only included in
the above to make the argumentation easier; it does not afipba necessary in
practical implementations and has not been included inxaeples in Sec. 15.5.
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15.4.2 Complexity

In terms of complexity, the proposed design methodologlesda the same way as
quadratic optimization, which ©(N2), whereN is the number of consumers.

It should be noted, however, that the optimization probleas A high degree
of sparsity. This has not been exploited in the implemeoragipplied in the sim-
ulations below, but it should be expected that the complecauld be further re-
duced by implementing a dedicated quadratic programmihgsavhich exploits
the mentioned sparsity. Further considerations on coritplean be found in Sec.
15.5.2.

15.4.3 Performance

In terms of performance, the following five parameters a@siee:

e The prediction horizon;

e The total installed flexible capacity;

e The instantaneous flexible capacity;

¢ The total cumulative rate limitation of flexible units;

¢ The instantaneous cumulative rate limitation of flexibigts

The prediction horizorns a crucial parameter, since the overall balatés the
result of an integration. This means that for longer horizthre potential of using
flexible units becomes much larger, since the slack vasaklative to the saturation
limits needed for guaranteed stabilization of the integrdecomes much smaller
for a longer time horizon.

The total installed flexible capacity the sum of maximal resource storages for
all units, i.e.Ciot = ziN:lV_Vi. This capacity clearly scales with the number of units.
The instantaneous flexible capadiythe present unexploited partGf;. Since
flexibility is exploited bidirectionally in reaction to &ier increasing or decreasing
load, Ciot has to be divided between upwards and downwards movemeatdy-h
namics of this quantity depends on the control algorithmafriie control horizon.
Due to the additive nature of the quadratic programmingftogttion, the instanta-
neous capacity for the proposed algorithm scales lineaitly the number of units,

which is clearly optimal.

The total cumulative rate limitation of flexible unigsthe rate limitation experi-
enced by the high level controller and equg[?élv_vi for positive load gradients and
ziNzlv_vi for negative load gradients. This parameter scales lipedth the number
of installed units.

The instantaneous cumulative rate limitation of flexiblé@sis current rate limi-
tation experienced by the high level controller and is etuéhe sum of individual
rate limits for those units, which are not in saturation. isxgaue to the additive
nature of quadratic programming costs, the instantanedadimitation scales lin-
early with the number of installed units. The average rdto & given load pat-
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tern) between instantaneous and total cumulative rateaions is controlled by

the weighting factop, which constitutes the trade-off between capacity linotat

and rate limitation. For a given load pattern, more averageacity can be obtained
at the cost of rate limitation and vice versa, but the quédlogttimization guaran-

tees Pareto optimality.

The sampling times used at aggregator and top levels alageirdes perfor-
mance. Since the dynamics consist entirely of pure integsathere is no approx-
imation in the discretization itself, but of course the fiahiy in the optimisation
will be smaller for a larger sampling time.

15.5 Simulation Example

The example described in this section is inspired by a vigoifuture Smart Grid
technologies called Virtual Power Plants, which is depidgteFigure 15.3.

The main objective of the top level control is to keep the gndialance governed
by

dlj—it) = Pext(t) — Road(t) — Pa(t) (15.112)

at zero.P, = 3 B is the power absorbed by the intelligent consumers (1883«
is the power absorbed by other consumers, and is considsrediaturbance here.
Paxt is the power produced by a number of suppliers such as poastgpétc.. It is
assumed that the top level controller can congl directly and restrained only by

a rate limit, but we would also like to keep the time derivatsmall.
Each intelligent consumer is characterized by its own gneajance

d&(t) =R(t) (15.12)
dt
which must satisfy < Ej(t) < E; at all times. Furthermore, each intelligent con-
sumer can only consume a limited amount of pofex. B (t) < P;. The aggregator
serves as an interface between the top level and the ICgethpts to maintain
Pa(t) = Peq(t) and provides the top level with simple parameters to spéeéycon-
straints of the ICs. In particular, the top level is informafdP andP, upper and
lower limits onP, that can be guaranteed over the horidpnThese limits depend
on both power and energy storage limitations, and as suatndep a complicated
fashion on the horizon length. In addition to the limits, #ggregators provid@yq,
a mid-ranging signal which tells the top level whiBlag would be most helpful in
bringing the ICs close to their reference energy lewgls;. In periods where the
load is relatively steady, the top level can then priorikeeping the energy levels at
the reference, and thereby increasing the short term reséwfuture load changes.
How to choose these reference levels is again a complicatestign of the con-
sidered horizon. If we consider a long horizon, then we miigbtto have the same
energy reserve in both directions, which would leadtg ; = E; /2. On the other
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hand, some ICs have a much higfiethan —P, and are therefore much better at
providing a positive than negative absorption, while oghere better at providing
negative absorption. With a short horizon it would make sdaskeep the first kind
at a low energy level, and vice versa. Here, we choose
_ P
Erefi =Ej=——
ref,i i P — Ei
which corresponds to making the time to fill the energy resenaqual to the time to
fully empty it.
At each sample, at tine the aggregator solves the simple optimization problem

ng’in S (Ei(t"’TS)_Ei,I‘Ef)Zv

s.t.
Z PR = F>reqa
P < R() <P,
0 < E(t+Ty)<E

with Ej(t+ Ts) = Ei(t) 4+ TsP, thereby distributing the power in a way that brings
the energy levels as close to the reference as possible iacaafic sense.
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The top-level control optimises over a prediction horizgn It minimizes the
performance function

Np Ne
d="3 E+TR?+ By > (Pext(t+ Tek) — Pexi(t + Ts(k— 1)))?
k=1 k=1

Ne
+B, Z (Preq(t + Tek) — Pria(t))?
k=1

with Ne samples oPey: andPreq as decision variables.
The optimization is subject to constraints on the decisianables. There is a
rate limit on the power from the power plants:

Pyt < Pext(t + Tsk) — Pexe(t + Ts(k— 1)) < Pext

As mentioned, the aggregator provides limits Bnthat can be sustained over a
horizonN,. These limits are conservative in the sense th&.i is for instance
negative for the first part of the horizon, then a posit®g higher thanP may
be feasible for the rest. However, in order to simplify thp tevel computations,
the constrainP(t) < Peq(t +kTs) < P(t) is imposed over the whole horizon. A

Pmld
o
%

0 100 200 300 400 500 600 700 800 900 1000
Time [s]

Fig. 15.4 Simulation example.
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simulation of this scheme is shown in Fig. 15.4. The corgrgilarameters used are
Ts=1,N=Ne=4,Np=56,=010 = 10~%. The load is generated by a first
order auto-regressive process with a time constant of 16@nsks, driven by zero-
mean Gaussian white noise with unit variance. There are 20nith parameters
shown in Table 15.1 becoming available as time passes, gé#kpossible for the
aggregator to provide increasingly wider constraint®Peg The result is that the
energy balance can be controlled much better while als@@ssmoothePey:. The
requested consumptidieq is shown together witl(t) andP(t), computed by the
aggregator. It is noted how the constraints widen as moré&Ceme available, but
will shrink when the reserve is being usé#hq is computed as thBq that would
bring the energy levels to the referencéNinsamples, ignoring power limits.

Ei|1.0/4.0]4.0] 3.0]6.0[10.0 1.0{ 4.0] 9.0]10.0
P,|-1.7]-1.4]-0.2[-1.3]-1.6{-1.3]-0.7|-1.9]-1.1]-1.1
p|1.4/0.8[1.8[0.3]09[1.1]1.2[0.2][0.2]0.2
i[11]12]13] 14 15] 16 [17[ 18] 19] 20
Ei|9.0]1.0]2.0]10.0 6.0] 1.0{9.0{8.0{ 2.0] 9.0
P.|-0.2|-1.0[-1.6[-1.3]-0.3|-1.1]-1.9]-0.2]-0.9]-1.6
p|1.1]1.2[1.6]1.9]04]009]1.8[0.8[0.6]05

Table 15.1 Parameters for 20
consumers in simulation

The energy balance of the ICs is shown in Fig. 15.5. The ensrggtraints and
reference are shown by dashed lines. It can be seen thaioaddlitonsumers are
“plugged in”, the system automatically incorporates theme consumers and these
new resources are exploited throughout the control hikyairc order to improve
the power balance at the top level.

15.5.1 Performance Study

The aggregators perform two functions, approximation aggtegation. The main
purpose is the aggregation of several consumers into aswmplial big consumer,
thereby simplifying the task at the top level. The approxiorg simplifying the
power limits into an average over the horizon, is only nemgsis order to facilitate
the aggregation. In fact, if each aggregator has only onswuoer, then the com-
putation at the top level is not simplified at all. In the nesttion, the effects of
aggregation on the performance will be studied, but befoaéthe question arises
of how much the conservative approximation affects pertoroe compared to a
centralised scheme as in Fig. 15.1, where the high-levetaiber directly controls
the consumers. We compare two control schemes:

Centralized controllerThe top level controller optimises a standard MPC objec-
tive
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Fig. 15.5 Simulation with aggregators.
t+Np
min 5 (E(K)?+Bp(Pea(k) — Pexi(k—1))*+ Be Yy (Ei(K) — Ereri)?)
bok=t+1

fori=1,...,N over the consumption rates of all consumers over a hoigoiThe
control is not fully optimal, since the horizon is finite. Teére, the last term is
used for keeping the energy levels close to the referendie ifeserves are not
needed immediately.

Approximating controlThe scheme described in the previous section, but each
aggregator handles only one consumer. In this way, the cosgpewill reflect the
effects of the approximation.

We perform simulations on a system with a small number of goressN. The
consumer power limits are evenly distributed betweeh4/N and +2.4/N, the
maximum energy levels between80and 48. P,,; = —0.5, Pext = 0.5. The load
follows the same behavior as in the above example.

The approximating control has the same parameters as ibtve @axample. The
centralized controller has the same control horizon antbpaance weights, and
B.=10"%

For each particulaN, 100 simulations of 200 samples are performed. For each
simulation the ratio of variances is computed. Figure 15ds the mean of these
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Fig. 15.6 Performance comparison with a centralised control foréasing number of aggrega-
tors. Solid: ratio of variances of balance. Dashed: ratieaofances of derivative of external power.

ratios asN grows. The solid line shows the ratio between the variande when
using the approximating control and when using the ceatdlcontrol. The dashed
line shows the same but for the varianceRafi(k) — Paxi(k — 1). It is noted that
the ratios are quite close to 1, meaning that the performahttee approximating
control is almost as good as for the centralized control drigmtly, the ratios seem
to decrease towards 1 dsgrows. It was not feasible to perform the simulations
for higherN, as the computational complexity grew too high. The resaltls us to
conjecture that the approximation only has a small effedhenperformance, and
that this effect is unimportant for a large number of constane

15.5.2 Complexity Study

The aggregators serve as a simplifying interface to théivelsg complex top level
control, and as such even a configuration with one aggregatmmputationally
less complex than letting the top level control work on a fmtdel. However, for
a large number of ICs, the aggregator can also itself becomeamplex. It is
therefore necessary to allow for more than one aggregdiralso provides the top
level with more detailed information and can therefore bgegeted to yield better
performance. On the other hand, more aggregators will ntakéop level control
more complex, so there is a trade-off between complexithi@tap and aggregator
levels and also with respect to performance.

Here, we examine the effects of the number of aggregatarshrough a sim-
ulation example. We consider a situation with 800 ICs vtk evenly distributed
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Fig. 15.7 CPU times for simulation with varying numbers of aggregstor

between 0.01 and 0.14, af$ and—P;s evenly distributed between 0.01 and 0.06.
The other parameters afe=1,N, =Nc =4,Np, =5,3,=1,83, = 10~4. The load

is generated by a discrete time procgiss 0.999 1) (Roaq(k) — 100) = e(k), where
q~1is the delay operator areis white Gaussian noise with variance 16.

In all the simulations the same 400 sample load sequence seas onlyNa
was changed (Fig. 15.7) shows the result. The top plot shiesvéstaled) time con-
sumption of the top level controller. This grows wlﬂi. The second plot uses the
same scaling and shows the average time consumption of édlch aggregators.
As the number of ICs handled by each aggregator is inverselyagptional to the
number of aggregators, this consumption is inversely pitapmal to Ng. Itis noted
that the computational complexity of the top level and ofteafcthe aggregators is
approximately equal with around 6 aggregators, so this neagy $ensible choice.

The variance of the balan&and of the derivative oy are shown in the next
two plots. As expected, more aggregators give better pmeoce, but the difference
is rather small.

15.6 Discussion

In this chapter a design methodology for a three level hidiaal control archi-
tecture is proposed. The emphasis is on systems that acatentbe production
and/or consumption of resources through the levels, exéatpby irrigation sys-
tems, sewer systems, or power production and consumptsterag.

The presented solution is based on MPC-like algorithmsdbas online quad-
ratic programming solvers. The algorithmic complexity erywlow and approxi-
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mately scales with the number of units in the system to theepat 1.5, even
without exploiting a significant sparsity of the optimizatiproblems involved.

The approach has the specific feature that it facilitateBxemhodifications of
the topography of the controlled system. In particulartsuat the lower level can
be added or removed without any retuning of any controll€hés plug-and-play
control property is enabled by the modular structure of tivelved cost functions
of the optimizations.

The proposed methodology is exemplified by a simulation odrtrol system
for a small electrical power production and consumptioriesyis where the power
flexibility of a number of consumers is exploited. For thisaeple, a significant
improvement of flexibility at the grid level is obtained.
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