
Chapter 12
Structured Linear Parameter Varying Control
of Wind Turbines

Fabiano Daher Adegas, Christoffer Sloth, and Jakob Stoustrup

Abstract High performance and reliability are required for wind turbines to be
competitive within the energy market. To capture their nonlinear behavior, wind
turbines are often modeled using parameter-varying models. In this chapter, a
framework for modelling and controller design of wind turbines is presented. We
specifically consider variable-speed, variable-pitch wind turbines with faults on
actuators and sensors. Linear parameter-varying (LPV) controllers can be designed
by a proposed method that allows the inclusion of faults in the LPV controller
design. Moreover, the controller structure can be arbitrarily chosen: static output
feedback, dynamic (reduced order) output feedback, decentralized, among others.
The controllers are scheduled on an estimated wind speed to manage the parameter-
varying nature of the model and on information from a fault diagnosis system. The
optimization problems involved in the controller synthesis are solved by an iterative
LMI-based algorithm. The resulting controllers can also be easily implemented in
practice due to low data storage and simple math operations. The performance of
the LPV controllers is assessed by nonlinear simulations results.

12.1 Introduction

Motivated by environmental concerns and the depletion of fossil fuels, as well its
mature technological status, wind energy consolidate as a viable sustainable energy
source for the decades to come. Over the past 20 years, the global installed capacity
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of wind power increased at an average annual growth of more than 25% from
around 2.5 GW in 1992 to just under 200 GW at the end of 2010 [14]. Due to
ongoing improvements in the wind turbine efficiency and reliability, and higher fuel
prices, the cost of electricity produced (COE), which, roughly speaking, takes into
account the annual energy production, lifetime of wind turbines, and Operation and
Maintenance costs, is becoming economically competitive with conventional power
production.

Automatic control is one of the engineering areas that significantly contributed
to reduce the cost of wind-generated electricity. In order to reduce COE, a modern
wind turbine is not only controlled to maximize energy production but also to
minimize mechanical loads. The controlled system also has to comply with external
requirements, such as acoustic noise emissions and power quality grid codes. Since
many wind turbines are installed at remote locations, the introduction of fault-
tolerant control is considered a suitable way of improving reliability/availability and
lowering costs of repairs. Finally, the lack of accurate models must be alleviated by
robust control strategies capable of securing stability and satisfactory performance
despite model uncertainties [19].

From a control point of view, a wind turbine is a challenging system since the
wind, which is the energy source driving the machine, is a poorly known stochastic
disturbance. Add to that wind turbines inherently exhibit time-varying nonlinear
dynamics along their nominal operating trajectory, motivating the use of advanced
control techniques such as gain-scheduling, to counteract performance degradation
or even instability problems by continuously adapting to the dynamics of the plant.
Wind turbine controllers typically consist of multiple gain-scheduled controllers,
which are designed to operate in the proximity of a certain operating point. The
gain-scheduling approach for industry-standard classical controllers can be either
based on switching or interpolation of controller gains [7, 8]. Controller structure
may also change by either switching [7] or bumpless transfer [17, 25] according to
the wind speed experienced by the wind turbine. The underlying assumption for
such control schemes is that parameters only change slowly compared to the system
dynamics, which is generally not satisfied in turbulent winds. Additionally, classical
gain-scheduling controllers only ensure performance guarantees and stability at the
operating points where the linear controllers are designed [22].

A systematic way of designing controllers for systems with linearized dynamics
that vary significantly with the operating point is within the framework of linear
parameter-varying (LPV) control. An LPV controller can be synthesized after solv-
ing an optimization problem subject to linear matrix inequality (LMI) constraints.
In control systems for wind turbines, robustness and fault-tolerance capabilities are
important properties, which should be considered in the design process, calling for a
generic and powerful tool to manage parameter variations and model uncertainties.
In this chapter, design procedures for nominal controllers for parameter-varying
models as well as active/passive fault-tolerance, are provided. The framework can be
trivially extended to design controllers robust to uncertainties in the model [1], e.g.,
aerodynamic uncertainties [26]. Indeed, handling known parameter dependencies,
unknown parameter variations, and faults, constitute the main challenges for the
application of wind turbine control.
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An overview of the proposed control structure is illustrated by the block diagram
depicted in Fig. 12.1, where u(k) is the control signal and w(k) is the disturbance.
The LPV controllers depend on the measurements y(k) and an estimate of the
current operating point, θ̂op(k), which is used as scheduling parameter. Additionally,
a fault diagnosis system provides the scheduling parameter θ̂f(k) for the active fault-
tolerant controller (AFTC). The extra degree of freedom added by allowing the
AFTC to adapt in case of a fault may introduce less conservatism than for the passive
fault-tolerant controller. The AFTC is a conventional LPV controller scheduled on
θop(t) and θf(t); the reason for denoting it an active fault-tolerant controller arises
from the origin of the scheduling parameters.

The list of faults occurring in wind turbines is extensive, reflecting the complexity
of the machines. On a system level, faults occur in sensors, actuators, and system
components, ranging from slow gradual faults to abrupt component failures. The
occurrence of faults may change the system behavior dramatically. This motivates
us to develop methods for fault diagnosis and fault-tolerant control, offering several
benefits:

• Prevent catastrophic failures and faults from deteriorating other parts of the wind
turbine, by early fault detection and accommodation.

• Reduce maintenance costs by providing remote diagnostic details and avoiding
replacement of functional parts, by applying condition-based maintenance in-
stead of time-based maintenance.

• Increase energy production when a fault has occurred by means of fault-tolerant
control.

This chapter gives an overview of the most common faults that can be modelled
as varying parameters. For a clear exposure, the fault-tolerant controller is designed
to cope with the simple case of a single fault: altered dynamics of the hydraulic
pitch system due to low hydraulic pressure. The fault is a gradual fault affecting
the control actions of the turbine. The method used also applies to fast parameter
variations, i.e., abrupt faults in the extreme case [12].

Realizing advanced gain-scheduled controllers can in practice be difficult and
may lead to numerical challenges [19, 21]. Several plant and controller matrices
must be stored on the controller memory. Moreover, matrix factorizations and
inversions are among the operations that must be done online by the controller at
each sampling time [4, 5].
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The synthesis procedures presented in this chapter are serious candidates for
solving a majority of practical wind turbine control problems, provided a sufficiently
good model of the wind turbine is available. We believe that the resulting controller
can also be easily implemented in practice due to the following reasons:

(A.1) Structured controller: the controller structure can be chosen arbitrarily.
Decentralized of any order, dynamic (full or reduced-order) output feedback,
static output, and full state feedback are among the possible structures. This
is in line with the current control philosophy within wind industry.

(A.2) Low data storage: the required data to be stored in the control computer
memory is only the controller matrices, and scalar functions of the scheduling
variables representing plant nonlinearities (basis functions).

(A.3) Simple math operations: the mathematical operations needed to compute the
controller gains at each sampling time are look-up tables with interpolation,
products between a scalar and a matrix, and sums of matrices.

The versatile controller structure and facilitated implementation comes with a
price. Due to the (possible) nonconvex characteristics of the synthesis problem, the
controller design is solved by an iterative LMI optimization algorithm that may be
demanding from a computational point of view. However, the authors consider that
it is worth to transfer the computational burden from the controller implementation
to the controller design.

The chapter is organized as follows. Section 12.2 describes the LPV wind
turbine plant modeling including typical faults and uncertainties. The LPV con-
troller design procedure, based on an iterative LMI optimization algorithm, is
presented in Sect. 12.3. Section 12.4 contains a design example on how state of
the art industrial controllers can be designed within the LPV framework. A fault-
tolerant gain-scheduled PI pitch controller for the full load region is designed and
compared to a gain-scheduled controller without fault accommodation capabilities.
Simulation results presented in the same section compares the performance of both
LPV controllers to show that pitch actuator faults due to low pressure can be
accommodated by the fault-tolerant LPV controller, avoiding the shutdown of the
wind turbine. Section 12.5 concludes the paper.

12.2 Wind Turbine LPV model

In this section, an LPV model is derived from a nonlinear time-varying wind turbine
model. The nonlinear model consists of several subsystems, namely aerodynamics,
the tower, the drive train, the generator, the pitch system, and the converter actuator.
The interconnection of the wind turbine submodels is illustrated in Fig. 12.2. For
simulation purposes, the wind disturbance input, V (t), is provided by a wind
model which includes both tower shadow and wind shear [11] together with a
turbulence model [13]. The detailed description of the model is provided in [12].
The submodels are individually described in the sequel.
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Fig. 12.2 Sub-model-level block diagram of a variable-speed variable-pitch WT

12.2.1 Wind Model

The driving force of a wind turbine is generated by the wind. Therefore, a model of
this external input to the wind turbine, Vw(t), has to be provided.

Generally, the wind speed is influenced by several components, which depend
on the environment where the wind turbine is located; however, we restrict our
model to include only three effects: wind shear, tower shadow, and turbulence.
A more thorough wind model can be found in [12]. We will not provide a detailed
description of the wind model, but only explain its three components briefly.

Wind shear is caused by the ground and other obstacles in the path of the wind,
which cause frictional forces to act on the wind. The frictional forces imply that the
mean wind speed becomes dependent on the height above ground level. Therefore,
the mean wind speed depends on the location of the three blades. When a blade
is located in front of the tower, the lift on that blade decreases because the tower
reduces the effective wind speed. This phenomenon is called tower shadow and
implies that the force acting on each blade decreases every time a blade is located in
front of the tower. Finally, the variations in the wind speed, which are not included
in the mean wind speed, are called turbulence and are caused by multiple factors.
The utilized turbulence model is based on the Kaimal spectrum that describes the
turbulence of a point wind. Since the wind model describes the wind speed averaged
over the entire rotor plane, a low-pass filter is applied to smooth the wind speed
signal. Figure 12.3 shows an output of the wind model Vw(t). Note that a detailed
description of the wind model can be found in [12].
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Fig. 12.3 Output of the wind model at a constant rotor speed. The periodic decrease of the wind
speed is caused by tower shadow
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12.2.2 Nonlinear Model

The rotor of a wind turbine converts kinetic energy of the wind into rotational energy
of the rotor blades and shaft. Aerodynamic forces over the rotor blades are often
determined with the assumptions of blade element momentum (BEM) theory [15].
Figure 12.4 illustrates the forces and velocity vectors on a blade element.

Assuming a symmetric aerodynamic rotor driven by a uniform inflow, and
neglecting unsteady aerodynamic effects, the local tangential fQ and axial fT forces
along the local blade radius r are given by

fQ =
1
2

ρc(r)W 2(r,t)

(
CL(r,α(r,t))sin ϕ(r,t)−CD(r,α(r, t))cosϕ(r, t)

)
[N],

fT =
1
2

ρc(r)W 2(r,t)

(
CL(r,α(r,t))sin ϕ(r,t)+CD(r,α(r, t))cosϕ(r, t)

)
[N]
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with the squared local inflow velocity W 2(r,t), local angle of attack α(r, t) and local
inflow angle ϕ(r, t) described as

W 2(r, t) = (V (t)(1− a(r)))2 +
(
rΩr(t)(1 + a′(r))

)2
[m2/s2],

α(r, t) = ϕ(r,t)−φ(r)−β (t) [◦],

ϕ(r, t) = tan−1
(

V (t)(1− a(r))
(
rΩr(t)(1 + a′(r))

)−1
)

[◦].

In the above expressions, ρ is the air density, c(r) is the local chord length, CL(r,α)
and CD(r,α) are the local steady-state lift and drag coefficients, V (t) is a mean wind
speed over the rotor disk, Ωr(t) is the rotor speed, a(r) and a′(r) are the axial and
tangential flow induction factors, respectively, φ(r) is the local chord twist angle
along the blade, and β (t) is the blade pitch angle.

In the aerodynamic model, we assume that a yawing system exists, which always
keeps the rotor plane perpendicular to the direction of the wind; hence, V (t) is
always perpendicular to the rotor plane. However, as the rotor rotates the resulting
wind speed at a blade, called the inflow velocity W (r, t), has an angle ϕ with respect
to the rotor plane. The drag force given by 1/2ρcW2CD is defined to point in the
opposite direction as W (r,t) and the lift force given by 1/2ρcW2CL is perpendicular
to drag force. Via projections of these forces, we obtain fQ and fT.

The aerodynamic torque Qa and thrust force Ta produced by the rotor can be
expressed as the summation of the forces over the B number of rotor blades

Qa(V,Ωr,β ,a,a′) = B
∫ R

0
fQ(r,V,Ωr,β ,a(r),a′(r)) r dr [Nm], (12.1a)

Ta(V,Ωr,β ,a,a′) = B
∫ R

0
fT(r,V,Ωr,β ,a(r),a′(r))dr [N]. (12.1b)

After integration, the aerodynamic torque and thrust are represented as

Qa(t) =
1

2Ωr(t)
ρAV 3(t)CP(λ (t),β (t)) [Nm], (12.2a)

Ta(t) =
1
2

ρAV 2(t)CT(λ (t),β (t)) [N] (12.2b)

with the tip-speed ratio denoting the ratio between the blade tip and the mean wind
speed

λ (t) =
Ωr(t)R

V (t)
[·],

where R is the rotor radius and A = πR2 is the rotor swept area. The power
coefficient CP(λ ,β ) and thrust coefficient CT(λ ,β ) are smooth surfaces usually
given in tabular form. Figure 12.5 depicts CP and CT surfaces of a typical 2 MW
wind turbine.



310 F.D. Adegas et al.

−10
0

10
20

30

24681012
0

0.1

0.2

0.3

0.4

0.5
a b

bλ

C
P C
T

−10 0
10 20

30

24681012
0

0.5

1

1.5

bλ

Fig. 12.5 Power and thrust coefficients of a typical utility-scale wind turbine. (a) Power coefficient
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Fig. 12.6 Diagram of the drive train of the wind turbine

Aerodynamic torque Qa drives a drive train model consisting of a low-speed shaft
and a high-speed shaft having inertias Jr and Jg, and friction coefficients Br and Bg.
The shafts are interconnected by a transmission having gear ratio Ng, combined with
torsion stiffness Kdt, and torsion damping Bdt. This results in a torsion angle, θΔ (t),
and a torque applied to the generator, Qg(t), at a speed Ωg(t). The model of the
drive train is shown in Fig. 12.6 and given by

JrΩ̇r(t) =Qa(t)+
Bdt

Ng
Ωg(t)−KdtθΔ (t)− (Bdt + Br)Ωr(t) [Nm], (12.3a)

JgΩ̇g(t) =
Kdt

Ng
θΔ (t)+

Bdt

Ng
Ωr(t)−

(
Bdt

N2
g

+ Bg

)
Ωg(t)−Qg(t) [Nm], (12.3b)

θ̇Δ (t) =Ωr(t)− 1
Ng

Ωg(t) [rad/s]. (12.3c)

The thrust Ta acting on the rotor introduces fore–aft tower bending described
by the axial nacelle linear translation q(t). Sideward movements are ignored by
neglecting yawing and drive train reaction torque on the tower. The tower translates
in the same direction as the wind; therefore, aerodynamic torque and thrust are in
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fact driven by the relative wind speed V (t) = Vw(t)− q̇(t). The tower dynamics is
modeled as a mass-spring-damper system

Mtq̈t(t) = Ta(t)−Btq̇t(t)−Ktqt(t), (12.4)

where Mt is the modal mass of the first fore–aft tower bending mode, Bt is structural
damping coefficient, and Kt is the modal stiffness for axial nacelle motion due to
fore–aft tower bending.

Hydraulic pitch systems are satisfactorily modeled as a second order system with
a time delay, td, and reference angle βref(t)

β̈ (t) = −2ζωnβ̇(t)−ω2
n β (t)+ ω2

n βref(t − td), (12.5)

where the natural frequency, ωn, and damping ratio, ζ , specify the dynamics of the
model. To represent the limitations of the pitch actuators, for simulation purposes
the model includes constraints on the slew rate and the range of the pitch angle.

Electric power is generated by the generator, while a power converter interfaces
the wind turbine generator output with the utility grid and controls the currents in the
generator. The generator torque in (12.6) is controlled by the reference Qg,ref(t). The
converter dynamics are approximated by a first order system with time constant τg

and time delay tg,d

Q̇g(t) = − 1
τg

Qg(t)+
1
τg

Qg,ref(t − tg,d). (12.6)

Just as for the model of the pitch system, the slew rate and the operating range of
the generator torque are both bounded to match the limitations of the real system.
The power produced by the generator can be approximated from the mechanical
power calculated in (12.7), where ηg denotes the efficiency of the generator, which
is assumed constant

Pg(t) = ηgΩg(t)Qg(t). (12.7)

12.2.3 Linear Varying Parameters

From the model description, is clear that a wind turbine is a nonlinear, time-varying
system. What is not apparent is how to find an LPV description that captures this
dynamic behavior. Wind turbines can be represented as Quasi-LPV models [6, 19]
and Linear Fractional Transformation models [19], but the most common approach
relies on the classical linearization around equilibrium or operating points resulting
in a linearized LPV model [5,19,21]. The latter approach is adopted in this chapter.
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12.2.3.1 Aerodynamics

The underlying assumption of a wind turbine LPV model based on linearization
is that wind speed, rotor speed, and pitch angle can be described by slow and fast
components

V (t) = V (t)+ V̂(t), Ωr = Ω (t)+ Ω̂r(t), β (t) = β (t)+ β̂(t),

The collection of operating points (V ,Ω ,β ) is what defines the control strategy of a
wind turbine, selected to match steady-state requirements such as maximize energy
capture, minimize static loads, and limit noise emissions.

A typical control strategy of a generic 2 MW wind turbine is depicted in Fig. 12.7.
A more detailed treatment of different operating strategies for wind turbines [5, 7]
is outside the scope of this chapter. Three subareas on a typical control strategy can
be distinguished:

(A.1) On Region I (Vin to VΩN) the energy capture is maximized by keeping the
aerodynamic efficiency as high as possible. This can be accomplished by
tracking a rotational speed set point using generator torque as the control
input variable. Pitch actuation is not utilized for tracking purposes; the pitch
angle remains at the value of maximum aerodynamic efficiency. With only
one input and one output to be controlled, a multivariable controller is not
necessary on this region. Notice that Ω is proportional to V as a consequence
of optimal aerodynamic efficiency.
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(A.2) On Region II (VΩN to VPN), the wind turbine maintains constant rotational
speed at a nominal value ΩN, by acting on the generator torque. The rotational
speed is limited due to acoustic noise emission limits. Pitch actuation remains
unused. A multivariable controller is still not needed.

(A.3) On Region III (VPN to Vout), rated power PN is reached and the main goal is
to minimize power fluctuations. Small fluctuations on the generator torque
around rated value add damping to the drive train torsional mode and fine
control the electrical power. Therefore, pitch angle should be gradually
increased as wind speed rises to limit generated power by lowering the rotor
aerodynamic efficiency. In some wind turbines, active tower damping is also
implemented on this region.

A linearization-based LPV model is obtained by classical linearization around
the operating points given by the control strategy. The aerodynamic model is
exclusively the source of time-varying nonlinearities. A first order Taylor series
expansion of (12.2) leads to the following linearized representations of torque and
thrust:

Qa ≈ Qa(V ,Ω ,β ) +
∂Qa

∂V

∣∣∣∣
(V ,Ω ,β )

V̂ +
∂Qa

∂Ωr

∣∣∣∣
(V ,Ω ,β )

Ω̂r +
∂Qa

∂β

∣∣∣∣
(V ,Ω ,β )

β̂ , (12.8a)

Ta ≈ T a(V ,Ω ,β ) +
∂Ta

∂V

∣∣∣∣
(V ,Ω ,β )

V̂ +
∂Ta

∂Ωr

∣∣∣∣
(V ,Ω ,β )

Ω̂r +
∂Ta

∂β

∣∣∣∣
(V ,Ω ,β )

β̂ , (12.8b)

where Qa(V ,Ω ,β ) and T a(V ,Ω ,β ) are equilibrium components of the aerodynamic
torque and thrust, respectively. The partial derivatives of Qa and Ta are given by

∂Qa

∂V
=

ρAV 2

2Ωr

(
3CP +V

∂CP

∂λ
∂λ
∂V

)
,

∂Ta

∂V
=

ρAV
2

(
2CT +V

∂CT

∂λ
∂λ
∂V

)
,

∂Qa

∂Ωr
=

ρAV 3

2Ωr

(
∂CP

∂λ
∂λ
∂Ωr

− CP

Ωr

)
,

∂Ta

∂Ωr
=

ρAV 2

2
∂CT

∂λ
∂λ
∂Ωr

,

∂Qa

∂β
=

ρAV 3

2Ωr

∂CP

∂β
,

∂Ta

∂β
=

ρAV 2

2
∂CT

∂β
, (12.9)

and must be evaluated at the time-varying equilibrium point (V ,Ω ,β ). The partial
derivatives of a typical 2 MW wind turbine for the whole operational envelope are
depicted in Fig. 12.8. The aerodynamic partial derivatives given by (12.9), hereafter
also referred to as aerodynamic gains, are varying parameters in an LPV wind
turbine model.

With the assumption that the wind turbine is operating on the nominal trajectory
specified in Fig. 12.7, the equilibrium values for pitch angle and rotor/generator
speed can be described uniquely by the wind speed, e.g., Ω

(
V
)
, β
(
V
)
. This

means that the wind turbine can be described by an LPV model scheduled on wind
speed only

θop(t) := V (t). (12.10)
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Depending on the region of interest in the control strategy and the model
complexity, the varying parameters can be approximated as an explicit function of
the scheduling variable. An affine representation is always preferable to diminish the
computational cost of solving an LMI-constrained optimization. If tower dynamics
are omitted and the aim is to design a controller for Region III, the aerodynamic
torque gains can be fairly well approximated by a linear function of the wind
speed. In this case, the parameter variations in the nominal LPV plant model
are approximated using an affine description in the wind speed [26]. If tower
dynamics are taken into account, the aerodynamic gains can be fairly approximated
by polynomial functions in Region III. For the most general case, which is the design
of a single LPV controller covering the full control strategy locus, representing the
aerodynamic gains by polynomials is difficult and one has to resort to grid-based
methods at high computational cost [5, 21].

On most wind turbines, the wind speed is measured by an anemometer on the
nacelle, which only measures the wind speed at a single point in space and is
affected by the presence of the rotor. Therefore, this measurement is not a good
estimate of (12.10). To obtain the wind speed for scheduling purposes, an effective
wind speed estimator must be designed [20]. The effective wind speed is defined
as the spatial average of the wind field over the rotor plane with the wind stream
being unaffected by the wind turbine. By inspecting the output of wind models and
real field measurements, we determine the rate bounds on the effective wind speed
θ̂op(t) to be –2 m/s2 and 2 m/s2.

12.2.3.2 Faults

Faults in a wind turbine have different degrees of severity and accommodation
requirements. A safe and fast shutdown of the wind turbine is necessary to some of
them, while to others the system can be reconfigured to continue power generation.
Linear parameter varying control can be applied in the case of failures that gradually
change system’s dynamics. The most common faults along with their magnitude and
the rate at which they can be introduced are summarized in Table 12.1.

Pitch position and generator speed measurements are the sensors most affected
by failures. Originated by either electrical or mechanical anomalies, they can result
in either a bias or a gain factor on the measurements. A biased pitch sensor
measurement affects both the pitch system model and the pitch angle measurement.
When the bias is introduced, the pitch actuator model and measurement equation
are modified as

β̈ (t) = −2ζωnβ̇ (t)−ω2
n (β (t)+ βbias(t))+ ω2

n βref(t − td), (12.11a)

βmes(k) = β (k)+ βbias(k)+ vβ (k), (12.11b)

where vβ (k) is a measurement noise. A bias can either be a result of inaccurate
calibration of the pitch system or be an gradual fault.
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Table 12.1 Specification of ranges and rate limits of gradual faults

Fault Specification

Pitch sensor
Bias β̇bias(t) ∈ [−1◦/month, 1◦/month]

βbias(t) ∈ [−7◦, 7◦]

Pitch actuator
High air content θ̇ha(t) ∈ [−1/month, 1/month]

θha(t) ∈ [0, 1]

Pump wear θ̇pw(t) ∈ [0, 1/(20 years)]
θpw(t) ∈ [0, 1]

Hydraulic leakage θ̇hl(t) ∈ [0, 1/(100 s)]
θhl(t) ∈ [0, 1]

Pressure drop θ̇pd(t) ∈ [−0.033/s, 0.033/s]
θpd(t) ∈ [0, 1]

Generator speed sensor
Proportional error θ̇pe(t) ∈ [−1/month, 1/month]

θpe(t) ∈ [−0.1, 0.1]

A proportional error on the generator speed sensor changes the sensor gain. The
measurement equation

Ωg,mes(k) =
(
1 + θpe(k)

)
Ωg(k)+ vΩg(k) (12.12)

is a linear function of the gain deviation θpe, where vΩg(k) is a measurement noise.
The power converter and pitch systems are the actuators most likely to fail. Power

converter faults can result in an offset of the generated torque due to an offset in the
internal converter control loops. An offset in the internal converter control loops
modifies the generator and converter model as follows:

Ṫg(t) = − 1
τg

(Qg(t)+ Qg,bias(t))+
1
τg

Tg,ref(t − tg,d), (12.13)

where Qg,bias(t) is an offset of the generated torque.
A fault changes the dynamics of the pitch system by varying the damping ratio

and natural frequency from their nominal values ζ0 and ωn,0 to their faulty values ζf

and ωn,f. The dynamics of the pitch system can then be represented as

β̈ (t) = −2ζ (θf)ωn(θf)β̇ (t)−ω2
n (θf)β (t)+ ω2

n(θf)βref(t − td) [◦/s2] (12.14)

with the parameters changing according to a convex combination of the vertices of
the parameter sets [18]

ω2
n (θf) = (1−θf)ω2

n,0 + θfω2
n,lp, (12.15a)

−2ζ (θf)ωn(θf) = −2(1−θf)ζ0ωn,0 − 2θfζlpωn,lp, (12.15b)
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Table 12.2 Parameters for
the pitch system under
different conditions

Fault Parameters

No fault ωn = 11.11 rad/s, ζ = 0.6
High air content in the oil ωn,ha = 5.73 rad/s, ζha = 0.45
Pump wear ωn,pw = 7.27 rad/s, ζpw = 0.75
Hydraulic leakage ωn,hl = 3.42 rad/s, ζhl = 0.9
Pressure drop ωn,hl = 3.42 rad/s, ζhl = 0.9

The normal air content in the hydraulic oil is 7%, whereas
high air content in the oil corresponds to 15%. Pump wear
represents the situation of 75% pressure in the pitch system
while the parameters stated for hydraulic leakage corresponds
to a pressure of only 50%
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Fig. 12.9 Step responses of hydraulic pitch model under normal (blue) and fault (red) conditions

where θf ∈ [0, 1] is an indicator function for the fault with θf = 0 and θf = 1
corresponding to nominal and faulty conditions, respectively. Pitch system failures
are usually occasioned by the following reasons:

• Pump Wear is introduced very slowly and results in low pump pressure. When
θf(t) = 0 the pump delivers the nominal pressure, but as θf(t) goes to one the
pressure drops. Notice that θ̇f(t) ≥ 0 for all t, since the wear is irreversible
without replacing the pump. The fault described by θf = 1, corresponding to
a pressure level of 75%, can emerge after approximately 20 years of operation.

• Hydraulic leakage is introduced considerably faster than pump wear. Again
θ̇f(t)≥ 0 for all t, since a leakage cannot be reversed without repair of the system.
Notice that the pressure for θf = 1 corresponds to 50% of the nominal pressure.

• High air content in the oil is a fault that, in contrast to pump wear and hydraulic
leakage, may disappear; hence, θ̇f(t) can be both positive and negative. The
extreme values caused by θf = 0 and θf = 1 correspond to air contents of 7%
and 15% in the hydraulic oil.

Values for the natural frequency and damping ratio of the pitch system under
faults are described in Table 12.2. Step responses for the normal and fault conditions
in the case of high air content in the oil are illustrated in Fig. 12.9.
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If a number nθf of faults are considered on the modeling, θf denotes a vector of
scheduling parameters

θf = [θf,1, . . . ,θf,m] , m = 1, . . . ,nθf .

12.2.3.3 System Description

The synthesis of LPV controllers are posed similarly to the H∞ control of linear
systems. The first step is to identify the input variable w known as disturbance
or exogenous perturbation, and the fictitious output variable z called performance
output or error. Next, weighting functions for these inputs and outputs are chosen,
usually rational functions of the Laplace operator s stressing the frequencies of
interest. The standard state-space interconnections of the LPV model of the plant
and the weighting functions are called augmented plant, given by the general
continuous-time LPV system description shown in (12.16)

ẋ(t) = A(θ (t))x(t)+ Bw(θ (t))w(t)+ Bu(θ (t))u(t),

z(t) = Cz(θ (t))x(t)+ Dzw(θ (t))w(t)+ Dzu(θ (t))u(t),

y(t) = Cy(θ (t))x(t)+ Dyw(θ (t))w(t), (12.16)

where x(t) ∈ Rn is the state vector, w(t) ∈ Rnw is the vector of exogenous
perturbation, u(t) ∈Rnu is the control input, z(t) ∈Rnz is the controlled output, and
y(t) ∈Rny is the measured output. A(·), B(·), C(·), D(·) are continuous functions of
the time-varying parameter vector θ =

[
θop θf

]
.

Possible types of dependency of the aerodynamic gains on the scheduling
parameters have already been discussed in the Aerodynamics subsection. The
general case where no restrictions are imposed on the parameter dependence
is treated here [4, 5]. It is necessary to choose scalar functions of the varying
parameters such that the LPV model of the augmented plant (12.16) is affine in
these functions. That is,

⎡
⎣A(θ ) Bw(θ ) Bu(θ )

Cz(θ ) Dzw(θ ) Dzu(θ )

Cy(θ ) Dyw(θ ) Dyu(θ )

⎤
⎦=

⎡
⎣A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu

⎤
⎦

0

+∑
i

⎡
⎣A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu

⎤
⎦

i

ρi(θ ),

+∑
m

⎡
⎣ A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu

⎤
⎦

m

θ f ,m, i = 1, . . . ,nρ , m = 1, . . . ,nθ f , (12.17)
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where ρi(θ ) are scalar functions known as basis functions. The aerodynamic
partial derivatives are natural candidates for basis functions related to plant
nonlinearities [5]

ρ1(θ ) :=
1
Jr

∂Qa

∂Ω

∣∣∣∣
V
,

ρ4(θ ) :=
1

Mt

∂Ta

∂Ω

∣∣∣∣
V
,

ρ2(θ ) :=
1
Jr

∂Qa

∂V

∣∣∣∣
V
,

ρ5(θ ) :=
1

Mt

∂Ta

∂V

∣∣∣∣
V
,

ρ3(θ ) :=
1
Jr

∂Qa

∂β

∣∣∣∣
V
,

ρ6(θ ) :=
1

Mt

∂Ta

∂β

∣∣∣∣
V
,

where the division by Jr and Mt is adopted to improve numerical conditioning.

12.3 LPV Controller Design Method

In this section, an LMI-based optimization procedure for designing structured
discrete-time LPV controllers is presented. Decentralized controllers of any order,
fixed-order, and static output feedback (SOF) are among the possible control
structures. Stability is assessed via a parameter-dependent Lyapunov function with
varying parameters having their rates of variation contained in a compact closed
convex set. A parameter-varying nonconvex condition for an upper bound on the
induced L2-norm performance is solved via an iterative LMI-based algorithm [1,2].

An open-loop, discrete-time augmented LPV system with state-space realization
of the form

x(k + 1) = A(θ )x(k)+ Bw(θ )w(k)+ Bu(θ )u(k),

z(k) = Cz(θ )x(k)+ Dzw(θ )w(k)+ Dzu(θ )u(k),

y(k) = Cy(θ )x(k)+ Dyw(θ )w(k) (12.18)

is considered for the purpose of synthesis, where x(k)∈Rn is the state vector, w(k)∈
Rnw is the vector of disturbance, u(k) ∈ Rnu is the control input, z(k) ∈ Rnz is the
controlled output, and y(k) ∈Rny is the measured output. A(θ ), B(θ ), C(θ ), D(θ )
are continuous functions of some time-varying parameter vector θ =

[
θ1, . . . ,θnθ

]
.

The same matrix notation to both the continuous-time augmented plant (12.16) and
the discrete-time counterpart (12.18) have been adopted. Throughout the text, the
context makes it clear when a continuous or discrete system is being referred to.

Assume θ ranges over a hyperrectangle denoted Θ

Θ =
{

θ : θ i ≤ θi ≤ θ i, i = 1, . . . ,nθ
}

.

The rate of variation Δθ = θ (k + 1)−θ (k) belongs to a hypercube denoted V

V = {Δθ : |Δθi| ≤ vi, i = 1, . . . ,nθ} .
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The LPV controller has the form

xc(k + 1) = Ac(θ )xc(k)+ Bc(θ )y(k),

u(k) = Cc(θ )xc(k)+ Dc(θ )y(k), (12.19)

where xc(k) ∈Rnc and the controller matrices are continuous functions of θ . Note
that depending on the controller structure, some of the matrices may be zero. The
controller matrices can be represented in a compact way

K(θ ) :=

[
Dc(θ ) Cc(θ )

Bc(θ ) Ac(θ )

]
. (12.20)

The interconnection of system (12.18) and controller (12.19) leads to the following
closed-loop LPV system denoted Scl:

Scl :

{x(k + 1) = A (θ ,K(θ ))xcl(k)+B(θ ,K(θ ))w(k),

z(k) = C (θ ,K(θ ))xcl(k)+D(θ ,K(θ ))w(k),
(12.21)

where the closed-loop matrices are [24]

A (θ ,K(θ )) = A(θ )+ B(θ )K(θ )M(θ ), B(θ ,K(θ )) = D(θ )+ B(θ )K(θ )E(θ ),

C (θ ,K(θ )) = C(θ )+ H(θ )K(θ )M(θ ), D(θ ,K(θ )) = F(θ )+ H(θ )K(θ )E(θ ),

with

A(θ ) =

[
A(θ ) 0

0 0

]
,

C(θ ) =
[
Cz(θ ) 0

]
,

E(θ ) =

[
Dyw(θ )

0

]
,

M(θ ) =

[
Cy(θ ) 0

0 I

]
,

F(θ ) =Dzw(θ ),

D(θ ) =

[
Bw(θ )

0

]
,

B(θ ) =

[
Bu(θ ) 0

0 I

]
,

H(θ ) =
[
Dzu(θ ) 0

]
.

This general system structure can be particularized to some usual control
topologies. If K(θ ) is an unconstrained matrix and nc = 0, the problem becomes
a SOF. The static state feedback (SSF) is a particular case of SOF, when the system
output is a full rank linear transformation of the state vector ∀θ . If n = nc, the
full-order dynamic output feedback arises. In a structured control context, more
elaborate control systems can be designed by constraining K(θ ). A fixed-order
dynamic output feedback has nc < n. For decentralized controllers of arbitrary order,
the structure of K(θ ) is constrained to be

K(θ ) :=

[
diag(Dc(θ )) diag(Cc(θ ))

diag(Bc(θ )) diag(Ac(θ ))

]
,

where diag(·) stands that (·) has a block-diagonal structure.
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The design of a closed-loop system usually consider performance specifications
that can be characterized in different ways. Define Tzw(θ ) as the input–output
operator that represents the forced response of (12.21) to an input signal w(k) ∈ L2

for zero initial conditions. The induced L2-norm of a given input–output operator

‖Tzw‖2 := sup
(θ ,θΔ )∈Θ×V

sup
‖w‖2 
=0

‖z‖2

‖w‖2

is commonly utilized as a measure of performance of LPV systems and allows
formulating the control specification as in H∞ control theory. It is of interest to
note that an upper bound γ > 0 on the induced L2-norm ‖Tzw‖2 can be interpreted
in terms of the upper bound on the system’s energy gain

lim
h→∞

h−1

∑
k=0

z(k)T z(k) < γ2 lim
h→∞

h−1

∑
k=0

w(k)T w(k).

The LPV system (12.21) is said to have performance level γ when it is expo-
nentially stable and ‖Tzw‖2 < γ holds. An extension of the bounded real lemma
(BRL) for parameter-varying systems provides sufficient conditions to analyze the
performance level, by solving a constrained LMI optimization problem [10,27]. For
a given scalar γ and a given LPV controller K(θ ), if there exists a θ -dependent
matrix function P(θ ) = P(θ )T satisfying

⎡
⎢⎢⎣
P(θ + Δθ ) A (θ ,K(θ ))P(θ ) B(θ ,K(θ )) 0

� P(θ ) 0 P(θ )C (θ ,K(θ ))T

� � γI D(θ ,K(θ ))T

� � � γI

⎤
⎥⎥⎦> 0 (12.22)

∀(θ ,Δθ ) ∈ Θ ×V , then the system Scl is exponentially stable and ‖Tzw(θ )‖2 < γ .
The symbol � means inferred by symmetry.

The parameter-varying BRL just shown can be also applied to the case where
w(k) is not an energy signal (‖w(k)‖2 not finite) but has a nonzero root mean-square
(RMS) value

wRMS :=

[
lim
h→∞

1
h

h−1

∑
k=0

w(k)T w(k)

]1/2


= 0.

In this context, L2-norm of a system is given in terms of the RMS values of the
signals of interest, instead of ‖·‖2. Such a situation is more appropriate to interpret
control performance of a wind turbine, since the turbulent wind is a stochastic
disturbance that persists for long periods of time, thus ‖w(k)‖2 is not a good measure
of the signal.

When an LPV controller with performance level γ is not given but should be
found (synthesized), the inequality (12.22) is no longer an LMI in the unknown
variables due to the product between the variables K(θ ) and P(θ ). Thus, convex
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optimization algorithms cannot be applied to the condition as it is. Reformulations
into sufficient (possibly conservative) LMI constraints are readily available for
particular controller structures and type of parameter dependencies [9, 10].

We propose to design the controllers via an iterative algorithm, instead of
attempting to reduce the problem to LMIs. The iterative algorithm relies on the
following equivalent non-LMI parametrization that is suitable for iterative design
[2]. If there exist K(θ ), P(θ ) = P(θ )T, and G (θ ) satisfying:

⎡
⎢⎢⎢⎣

P(θ +Δθ ) A (θ ,K(θ )) B(θ ,K(θ )) 0

� −G (θ )TP(θ )G (θ )+G (θ )T +G (θ ) 0 C (θ ,K(θ ))T

� � γI D(θ ,K(θ ))T

� � � γI

⎤
⎥⎥⎥⎦> 0,

(12.23)

∀ (θ ,Δθ ) ∈Θ ×V , then the system Scl is exponentially stable and ‖Tzw(θ )‖2 < γ .
The affine dependence of the reformulated condition on K(θ ) allows the

controller matrices to be variables, irrespective of the chosen controller structure.
The inequality remains nonconvex due to the product between P(θ ) and the
introduced slack variable G (θ ). Furthermore, it involves the satisfaction of infinitely
many inequalities, since (12.23) should hold for all (θ ,Δθ ) ∈Θ ×V .

In order to make the problem computationally tractable, the iterative algorithm
solves LMI optimization problems with the slack matrix G (θ ) constant during an
iteration. An iteration should be understood to be an LMI-constrained optimization.
The use of G (θ ) as a parameter-dependent slack variable is facilitated by updating
its value at each iteration according to some predefined rule. In particular, the update
rule is

G (θ ){ j+1} =
(
P(θ ){ j}

)−1
, (12.24)

where {·} is the iteration index and j is the current iteration number.
The iterative algorithm for the design of a structured LPV controller with

minimum performance level γ is formulated next.

Algorithm 0: Set j = 0, a convergence tolerance ε , an initial G (θ ){0} and start to
iterate:
(A.1) For fixed G (θ){ j}, find P(θ){ j}, P(θ +Δθ){ j} , K(θ){ j}, and γ{ j} satisfying the

LMI-constrained problem

Minimize γ subject to (12.23).

(A.2) If
∣∣γ{ j} − γ{ j−1}∣∣≤ ε , stop. Otherwise, G (θ){ j+1} =

(
P(θ){ j})−1

, set j = j +1 and go to
step 1.
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12.3.1 Initial Slack Matrix G (θ){0}

The initial value of G (θ ){0} required to initialize Algorithm 0 can be obtained in
different ways. If a given initial controller K(θ ) satisfies the following optimization
problem:

Minimize γ subject to (12.22), ∀(θ ,Δθ ) ∈Θ ×V ,

then the resulting P(θ ) can be utilized to derive G (θ ){0} = P(θ )−1. The example
section shows the usage of this approach.

Alternatively, an iterative feasibility algorithm can be created by relaxing the
inequality (12.23). Instead of requiring the inequality to be positive definite (> 0),
a variable term is included to the right hand side (> diag(τI,τGT G,τI,τI)), where
τ is a scalar variable. The algorithm maximizes τ until the value reaches a certain
chosen υ > 0.

Algorithm 1: Set j = 0, a convergence tolerance ε , a υ > 0, an initial G (θ ){0} = I
and start to iterate:
(A.1) For fixed G (θ){ j}, find P(θ){ j}, P(θ +Δθ){ j}, K(θ){ j}, γ{ j}, and scalar τ satisfying the

LMI-constrained problem

Maximize τ subject to (12.23) with the right hand side changed from > 0 to
> diag(τI,τGT G,τI,τI), and τ < υ .

(A.2) If
∣∣τ{ j} − τ{ j−1}∣∣≤ ε , stop. Otherwise, G (θ){ j+1} =

(
P(θ){ j})−1

, set j = j +1 and go to
step 1.

The resulting G (θ ){0} can subsequently be used to initialize Algorithm 0.

12.3.2 From Infinite to Finite Dimensional

The LMI problems of Algorithm 0 involve infinitely many LMIs, as θ and Δθ
are defined in a continuous space. When LMIs depend affinely on θ and Δθ , the
synthesis problem at each iteration is reduced to an optimization problem with a
finite number of LMIs checked at (θ ,Δθ )∈Vert Θ ×Vert V . Note that Vert Θ is the
set of all vertices of Θ . For LMIs polynomially θ -dependent, relaxations based on
multiconvexity arguments also reduce the problem to check LMIs at the vertices of
the parameter space [1, 2]. This procedure, based on sufficient conditions, may lead
to extra conservatism. In the general case, where no restrictions on the parameter
dependence are imposed, one has to resort to ad-hoc gridding methods [4]. The
gridding procedure consists of defining a gridded parameter subset denoted Θg ⊂
Θ , designing a controller that satisfies the LMIs ∀θ ∈ Θg, and checking the LMI-
constraints in a denser grid. If the last step fails, the process is repeated with a
finer grid.
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Due to the assumption of general parameter dependence of the open-loop plant
on the scheduling variables (12.17), the gridding approach is used in the controller
design. The Lyapunov and the LPV controller matrices are affine in the basis
functions

P(θ ) = P0 +
nρ

∑
i=1

ρi(θk)Pi +

nθf

∑
i=1

θf,iPnρ+i, (12.25a)

K(θ ) = K0 +
nρ

∑
i=1

ρi(θ )Ki +

nθf

∑
i=1

θf,iKnρ +i. (12.25b)

Due to the bounded parameter rate set V assumed known, the Lyapunov function
at sample k + 1 can be described as

P(θ + Δθ ) = P0 +
nρ

∑
i=1

ρi(θ + Δθ )Pi +

nθf

∑
i=1

(θf,i + Δθf,i)Pnρ+i. (12.26)

Note the general parameter dependence of (12.26) on Δθ occasioned by ρi(θ +
Δθ ). Conveniently, the basis functions at sample k + 1 are represented as a linear
function of ρ(θ ) and Δθ

ρi(θ + Δθ ) := ρi(θ )+
∂ρi(θ )

∂θ
Δθ , (12.27)

thereby turning inequality (12.23) affine dependent on the rate of variation Δθ .
Thus, it is sufficient to verify (12.23) with (12.26) and (12.27) only at Vert V .

The iterative algorithm for a chosen grid Θg ⊂Θ is presented in the sequel.

Algorithm 2: Set j = 0, a convergence tolerance ε , initialize G (θ ){0} ∀θ ∈Θg, and
start to iterate:

(A.1) For fixed G (θ){ j}, and i = 0,1, . . . ,nρ +nθ f , find P{ j}
i > 0, K{ j}

i , and γ{ j} satisfying the
LMI-constrained problem

Minimize γ subject to (12.23), ∀ (θ ,Δθ) ∈Θg × VertV .

(A.2) If
∣∣γ{ j} − γ{ j−1}∣∣ ≤ ε , stop. Otherwise, G (θ){ j+1} = P(θ){ j}−1, ∀θ ∈Θg. Set j = j +1

and go to step 1.

The Lyapunov variable P(θ ){ j} > 0 may be close to singular at each iteration,
making the inversion required to compute G (θ ) possibly ill conditioned. To alleviate
this issue, an additional LMI constraint

P(θ ){ j} > μI,
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improves numerical condition of the inversion by imposing a lower bound on the
eigenvalues of P(θ ){ j}, where μ > 0 is a chosen scalar. There exists a tradeoff
between the value of μ and the attained value of γ . Higher values of μ may lead
to more conservative controllers, although from our experience, the small value of
μ required to better condition the inversion does not influence significantly on the
performance level γ .

The gridding procedure for controller synthesis can be summarized by the
following steps:

(A.1) Define a grid Θg for the compact set Θ .
(A.2) Find initials G (θ ){0}, ∀θ ∈Θg.
(A.3) Solve Algorithm 2.
(A.4) Define a denser grid.
(A.5) Verify the feasibility of the LMI (12.22) with the computed controller K(θ ),

in each point of the new grid. If it is infeasible, choose a denser grid and go
to step 2.

12.3.3 Controller Implementation

The iterative LMI optimization algorithm provides the controller matrices Ac,i, Bc,i,
Cc,i, Dc,i, for i = 0,1, . . . ,nρ + nθf . These matrices, the basis functions, and the
value of the scheduling variables are the only required information to determine
the control signal u. At each sample time k, the scheduling variable θ is measured
(or estimated) and a control signal is obtained as follows:

(A.1) Compute the value of the basis functions ρi(θ ), for i = 0,1, . . . ,nρ . The basis
functions may be stored in a lookup table that takes θ as an input and outputs
an interpolated value of ρ(θ ).

(A.2) With the value of the basis functions in hand, determine the controller
matrices Ac(θ ), Bc(θ ), Cc(θ ), Dc(θ ) according to

Ac(θ ) = Ac,0 +
nρ

∑
i=1

ρi(θ )Ac,i +

nθf

∑
i=1

θf,iAc,nρ+i,

Bc(θ ) = Bc,0 +
nρ

∑
i=1

ρi(θ )Bc,i +

nθf

∑
i=1

θf,iBc,nρ+i,

Cc(θ ) = Cc,0 +
nρ

∑
i=1

ρi(θ )Cc,i +

nθf

∑
i=1

θf,iCc,nρ+i,

Dc(θ ) = Dc,0 +
nρ

∑
i=1

ρi(θ )Dc,i +

nθf

∑
i=1

θf,iAc,nρ +i.
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(A.3) Once the controller matrices have been found, the control signal u(k) can be
obtained by the dynamic equation (12.19) of the LPV controller, which only
involves multiplications and additions.

12.4 Example: LPV PI Controller Tolerant to Pitch
Actuator Faults

The proportional and integral (PI) is the most utilized controller by the wind
energy industry. At low wind speeds, the PI speed control using generator torque
as controlled input can be quite slow, thus tuning is not significantly challenging.
However, at high wind speeds, the PI speed control using pitch angle as controlled
input strongly couples with the tower dynamics, denoting a multivariable problem,
and should be properly designed. Inappropriate gain selection can make rotational
speed regulation “loose” around the set point or make the system unstable, as well
as excite poorly damped structural modes [7].

The concepts seen throughout this chapter are here applied to the state-of-the-art
controller structure of the wind turbine industry [8]. The present example intends to
show that theoretical rigorousness on the design of gain-scheduled controllers may
bring advantages in terms of performance and reliability of wind turbines in a closed
loop.

12.4.1 Controller Design

For a clear and didactic exposure, the adopted control structure depicted in
Fig. 12.10 is simpler than an industry-standard Region III controller [8], but includes
the most common control loops.

The generator speed is regulated by a PI controller of the form

GPI := kp(θ )+ ki(θ )
(s+ zI)

s
,

where s denotes the Laplace operator. Instead of a pure integrator, the PI controller
is composed by an integrator filter

GI(s) :=
s+ zI

s
,

for reasons to be explained later, where the filter zero zI is a design parameter.
It is possible to provide an extra signal by using an accelerometer mounted in the

nacelle, allowing the controller to better recognize between the effect of wind speed
disturbances and tower motion on the measured power or generator speed. With
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Fig. 12.10 Schematic block diagram of a controlled wind turbine in Region III

this extra feedback signal, tower bending moments loads can be reduced without
significantly affecting speed or power regulation [7]. Therefore, it is assumed that
tower velocity q̇ is available for measurement, by integrating tower acceleration q̈,
and is multiplied by a parameter-dependent constant kq̇(θ ) for feedback.

Additionally, active drive train damping is deployed by adding a signal to the
generator torque to compensate for the oscillations in the drive train. This signal
should have a frequency, ωdt, equal to the eigenfrequency of the drive train, which
is obtained by filtering the measurement of the generator speed using a bandpass
filter of the form

Gdt := Kdt
2ζdtωdts(1 + τdts)

s2 + 2ζdtωdts+ ω2
dt

.

The time constant, τdt, introduces a zero in the filter, and can be used to compensate
for time lags in the converter system. The filter gain kdt and the damping ratio ζdt

are selected based on classical design techniques.
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A power controller for reducing fast power variations is treated simplistically
as a proportional feedback from generator speed to generator torque. Considering
a constant power control scheme, the generator torque can be represented as a
function of the generator speed. The proportional feedback is nothing but the partial
derivative of generator torque with respect to generator speed

∂Qg(Ωg)

∂Ωg
= − PN

NgΩ 2
g,N

.

In real implementations, a slow integral component is added to the loop to include
asymptotic power tracking.

Instead of the classical control techniques, the design of PI speed and tower
feedback loops are revisited under the LPV framework. For a didactic and clear
exposure, the interconnection of the drive train with the damper is now considered
as a first order low pass filter from aerodynamic torque to generator speed, and the
rotor speed proportional to the generator speed. The LPV controller can now be
designed to trade off the tracking of generator speed and tower oscillations with
control effort (wear on pitch actuator). The dynamic model of the variable-speed
wind turbine can then be expressed as an LPV model of the form

G :

{ ẋ = A(θ ) x + Bw(θ ) û+ Bu(θ )βref

y = Cy x
,

where states, controllable input and measurements are

x =
[
Ωr q̇ q β̇ β xΩ ,i

]T
, u = βref, y =

[
Ωg yΩ ,i q̇

]T
.

with open-loop system matrices

A(θ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1(θ )− 1
Jr + JgN2

g

∂Qg

∂Ω
−ρ2(θ ) 0 0 ρ3(θ ) 0

ρ4(θ ) − 1
Mt

Bt −ρ5(θ ) − Kt

Mt
0 ρ6(θ ) 0

0 1 0 0 0 0
0 0 0 a44(θf) −a12(θf) 0
0 0 0 1 0 0

Ng 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Bu =
[
ρ2(θ ) ρ5(θ ) 0 0 0 0

]T
, Bw =

[
0 0 0 b4,1(θf) 0 0

]T
, Cy =

⎡
⎣Ng 0 0 0 0

zI 0 0 0 1
0 1 0 0 0

⎤
⎦,

a12(θf) = b41(θf) = (1−θf(t))ω2
n,0 + θf(t)ω2

n,lp,

a44(θf) = –2(1−θf(t))ζ0ωn,0 − 2θf(t)ζlpωn,lp.
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The basis functions ρ1(θ ), . . . ,ρ6(θ ) related to the parameter-varying aerodynamic
gains are selected as

ρ1 :=
1

Jr + JgN2
g

∂Q
∂Ω

∣∣∣∣
V̂
,

ρ4 :=
1

Mt

∂T
∂Ω

∣∣∣∣
V̂
,

ρ2 :=
1

Jr + JgN2
g

∂Q
∂V

∣∣∣∣
V̂
,

ρ5 :=
1

Mt

∂T
∂V

∣∣∣∣
V̂
,

ρ3 :=
1

Jr + JgN2
g

∂Q
∂β

∣∣∣∣
V̂
,

ρ6 :=
1

Mt

∂T
∂β

∣∣∣∣
V̂
.

Notice the PI controller integrator filter GI conveniently augmented into the state-
space of G, represented by the state xΩ ,i and the output yΩ ,i. The plant Gp is defined
as the wind turbine model solely (plant G without the augmentation of GI).

Considering G as the plant for synthesis purposes, the LPV controller structure
reduces to a parameter-dependent SOF of the form

K(θ ) = Dc,0 +
6

∑
i=1

ρi(θ )Dc,i + θfDc,7, Dc,n :=
[
Dp,n Di,n Dq̇,n

]
,

n = 0,1, . . . ,7.

Controller tuning follows a procedure similar to the H∞ design. Notice that, for
fixed values of the varying parameter θ , and initially neglecting the tower velocity
feedback, the controller design becomes a mixed sensitivities optimization problem
intended to minimize the norm

∥∥∥∥Wz1 GI S Gv

Wu GPI S Gv

∥∥∥∥
∞

,

where S is the sensitivity defined as S :=
(
I + Gp GPI

)−1, Gv is the transfer function
from V̂ to Ω̂g, Wz1 and Wu are weighting functions. The weight Wz1 applied to
the generator speed deviations can be used to shape the closed-loop response of
rotational speed in face of wind disturbances, given by Ω̂ (t)= SGvV̂ (t). The desired
sensitivity in closed loop is

SΩ (s) :=
s2 + 2ξΩ ωΩ s

s2 + 2ξΩ ωΩ s+ ω2
Ω

,

where the natural frequency ωΩ and damping ratio ξΩ are design parameters that
select the desired second-order closed-loop behavior. The desired sensitivity SΩ can
be applied as a loop-shaping weight by defining Wz1 as

Wz1(s) :=
1

GI(s)SΩ (s)
=

s2 + 2ξΩ ωΩ s+ ω2
Ω

(s+ zI)(s+ 2ξΩ ωΩ )
.
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Wu is a first order high-pass filter that penalizes high-frequency content on the
pitch angle

Wu(s) := k3
s+ z3

s+ p3
.

Wz1 and Wu governs the tradeoff between rotational speed regulation and pitch
wear. Due to the resonance characteristics of the transfer function from V̂ to q̇,
the weighting function Wz2 is chosen as a scalar k2 that tradeoffs the desired tower
damping.

Two LPV controllers are designed, one fault intolerant and another tolerant to
pitch actuator faults. The only difference on their synthesis is the inclusion of the
fault-dependent terms P7θf and Dc,7θf of the Lyapunov and controller matrices,
respectively. The parameters for the loop-shaping weight Wz1 are selected as ωΩ =
0.6283 rad/s (0.1 Hz) and ξΩ = 0.7, with the zero of the integrator filter located at
zI = 1.0 rad/s. A special attention must be devoted to the choice of Wu. Due to the
fact that the pitch system has slower dynamics in the presence of low oil pressure,
the bandwidth of this filter must be made large enough to allow rotational speed
and tower damping control in the occurrence of faults. Defining Ω3P as three times
the nominal rotational speed Ωr,N , in the present example, k3 = 1, p3 = 1.5Ω3P and
z3 = 15Ω3P.

Remember that the iterative LMI algorithm is a synthesis procedure in discrete
time. Therefore, the augmented LPV plant in continuous time is discretized using
a bilinear (Tustin) approximation [3] with sampling time Ts = 0.02 s, at each point
Θg ×VertV . The rate of variation of the scheduling variables in continuous time
must as well be converted to discrete-time by the relation Δθ (k) = TsΔθ (t).

The initial slack matrices G(θ ,Δθ ){0}, ∀(θ ,Δθ ) ∈ Θg × Vert V required to
initialize the LMI-based algorithm are determined from the solution of the following
LMI optimization problem:

Minimize γ subject to (12.22), (12.26), (12.27), ∀(θ ,Δθ ) ∈Θg ×Vert V

with a given initial controller K(θ ). The resulting Lyapunov matrix determines
G(θ ,Δθ ){0} = P(θ ,Δθ )−1. The proportional and integral gains of the given initial
controller can be computed by placement of the poles of the transfer function from
V̂ to Ω̂g. Neglecting pitch actuator dynamics, and considering a pure integrator, the
kp and ki gains can be described analytically as [16]

kp(θ ) =

2ξΩ ωΩ

(
Jr +N2

g Jg

)
−Ng

∂Qg

∂Ωg
+ρ1(θ )

−Ngρ3(θ )
, ki(θ ) =

ω2
Ω

(
1+ξ 2

Ω

)(
Jr +N2

g Jg

)
−Ngρ3(θ )

.

The tower feedback gain of the initial controller is kq̇(θ ) = 0, meaning no active
tower damping.
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Fig. 12.11 Evolution of performance level γ and controller gains kp, ki, kq̇ during the iterative
LMI synthesis. Controller gains computed at θop = 15 m/s, θf = 0

Convergence tolerance of the iterative algorithm is set to ε = 10−3. After
89 iterations, convergence is achieved to a performance level γ = 0.586. The
evolution of γ{ j} versus the iteration number is depicted in Fig. 12.11, where the
monotonically decreasing property of the sequence is noticeable. The proportional
and integral gains depicted on the figures are multiplied by the gearbox ratio Ng

for better illustration. The controller gains K(θ ) = [kp(θ ), ki(θ ), kq̇(θ )] computed
at θop = 15 m/s, θf = 0, during the course of the iterative LMI algorithm, are also
shown. The synthesis procedure converge to controller gains different than the gains
of the initial controller. The tower feedback gain kq̇, null in the initial controller, has
converged to a nonzero value, meaning active tower damping.

The proportional, integral, and tower feedback gains as three-dimensional sur-
faces of the scheduling parameters V and θf are illustrated in Fig. 12.12a–c. The
controller gains capture the dependence of the LPV system on the wind speed given
by the basis functions. Compare the shape of the surfaces with the aerodynamic
gains (Fig. 12.8). Also notice the slight changes in kp and kq̇ and the changes in ki

scheduled by θf.



332 F.D. Adegas et al.

0
0.2

0.4
0.6

0.8
1

10
15

20
25

0.2

0.4

0.6

0.8

1

1.2
a b

c

V V

V

qf qf

qf

k
p

k
q

k
i

0
0.2

0.4
0.6

0.8
1

10
15

20
25

0

0.1

0.2

0.3

0.4

0.5

0
0.2

0.4
0.6

0.8
1

10
15

20
25

0.04

0.06

0.08

0.1

0.12

Fig. 12.12 Proportional, integral and tower feedback gains as functions of the operating point and
fault scheduling variables

12.4.2 Simulation Results

The performance of the LPV controllers are accessed in a nonlinear wind turbine
simulation environment [12]. The effective wind speed is estimated by an unknown
input observer that uses measurements of generator speed, generator torque, and
pitch angle [20]. Figures 12.13a–12.14d depict time series of the variables of interest
resulting from a 600 s simulation. A mean speed of 17 m/s with 12% turbulence
intensity and shear exponent of 0.1 characterizes the wind field (Fig. 12.13a). At
time t = 200 s, the pitch system experiences a fault with θf increasing from 0
to 1 (Fig. 12.13b). At t = 430 s, the pitch system comes to normality with θf

decreasing from 1 to 0. Both variations on the fault scheduling variable are made
with maximum rate of variation.

Results of LPV controllers intolerant and tolerant to pitch actuator faults are
compared to support a discussion of the consequences of the fault on the closed-
loop system as well as fault accommodation. When the wind turbine is controlled by
the fault intolerant LPV PI controller, the rotational speed (Fig. 12.13c) experiences
poor and oscillatory regulation during the occurrence of faults, more pronouncedly
while θf is varying. The threshold for a shutdown procedure due to overspeed
is usually between 10% and 15% over the nominal speed [23]; in this particular
case, the overspeed would not cause the wind turbine to shut down. The FT-
LPV PI controller successfully accommodates the fault, maintaining rotor speed
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properly regulated. Oscillatory power overshoots of up to 6% of the nominal power
(Fig. 12.13d) degrades power quality; the same does not happen to the FT-LPV
controlled system.

More serious than the effects on rotational speed and power are the conse-
quences of faults on the pitch system and tower. Excessive pitch angle excursions
during faults (Fig. 12.14a) with the limits on velocity of ±8 deg/s being reached
(Fig. 12.14b) may cause severe wear on pitch bearings. The FT-LPV controller
maintain pitch excursions and velocities within normal limits. The tower experi-
ences displacements (Fig. 12.14c) of up to 0.48 m, an increase of approximately
60% when compared to the FT-LPV. The displacements comes along with very high
tower velocities of almost 0.4 m/s, 260% higher than the fault accommodated case.

In such a situation, the supervisory controller would shut down the wind turbine
due to excessive vibrational levels measured by the nacelle accelerometer. The
same would not be necessary if the wind turbine is controlled by the FT-LPV.
Therefore, fault-tolerance leads to higher energy generation and availability. It
also collaborates to a better management of condition-based maintenance; higher
priority of maintenance can be given to wind turbines with faults that cannot be
accommodated by the control system. These are examples of the benefits that the
LPV control design framework presented in this chapter can bring to wind turbines
in closed loop with industry-standard as well as more elaborate controllers.

12.5 Conclusions

This chapter initially presents the modeling of a wind turbine model as an LPV
system, considering faults on actuators and sensors. Later, an iterative LMI-based
algorithm for the design of structured LPV controllers is described. This constitutes
a unified LMI-based design framework to address gain-scheduling, fault-tolerance,
and robustness on the design of wind turbine controllers.

The method is based on parameter-dependent Lyapunov functions, which reduces
conservativeness of control for systems with rate bounds, which is the case in this
work. The iterative algorithm may be computationally expensive depending on the
number of plant states and scheduling variables, but brings desired flexibility in
terms of the controller structure: decentralized of any order, dynamic (reduced-
order) output feedback, SOF, and state feedback are among the possible ones.
Moreover, the resulting controller can also be easily implemented in practice due to
low data storage and simple math operations. In fact, the required data to be stored
on the controller memory is only the controller matrices, and scalar functions of the
scheduling variables representing plant nonlinearities. The mathematical operations
needed to compute the controller at each sampling time are look-up tables with
interpolation, products between a scalar and a matrix, and sums of matrices.

A design example of a fault-tolerant controller for the Region III, with a structure
similar to the state-of-the-art industrial controllers, intends to show that theoretical
rigorousness on the design of gain-scheduled controllers may bring advantages in
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terms of performance and reliability of wind turbines in closed loop. The presented
framework is not limited to the specific example shown. Due to its flexibility, the
framework can be applied to other known wind turbine controller structures or even
to explore different control philosophies.

Simulations indeed confirm that the fault-tolerant LPV controllers have superior
performance in the occurrence of faults. The LPV controller designed for the
nominal system start oscillating when the fault is introduced. In a real situation,
the supervisory controller would shut down the wind turbine due to excessive
vibrational levels measured by the nacelle accelerometer. The same would not be
necessary if the wind turbine is controlled by the FT-LPV. Therefore, higher energy
generation and availability is achieved. It also contributes to a better management of
condition-based maintenance; priority on maintenance can be given to wind turbines
with faults that cannot be accommodated by the control system.
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