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Abstract— We consider an aggregator controlling a mixed
portfolio of conventional power generators and demand side
units. The generators are controllable within certain power and
ramp limitations while the demand side units are characterized
by flexible consumptions and therefore can be treated as energy
storages of limited capacity. We address the problem of reducing
the load on the conventional generators by letting the flexible
consumers participate in the provision of primary frequency
reserve. In particular, it is desired that the flexible consumers
compensate for rapid grid frequency changes. In this work,
we design an aggregator control strategy based on closed-loop

model predictive control. The controller is able to mobilize the
flexible consumers ahead of time such that we are able to reduce
the load on the conventional generators by more extensive use
of the demand side units.

I. INTRODUCTION

With an increasing focus on climate-related issues and

rising fossil fuel prices, the penetration of renewable en-

ergy sources is likely to increase in the foreseeable future

throughout the developed world [1]. Indeed many actions

are taken from a political point to increase the penetration

of renewables: in the US almost all states have renewable

portfolio standards or goals ensuring a certain percentage of

renewables [2]. Similarly, the commission of the European

Countries has set targets of 20 % renewables by 2020 [3]

while China has doubled the wind power production every

year since 2004 [4].

As a consequence of this increase of renewables, the power

system is moving from a system with fewer centralized

conventional power plants to a system with a large number

of distributed smaller production units [5]. As an example

of this evolution, Denmark has moved from a situation with

a total of 16 central power plants in 1980, to a system

which today consists of 16 central power plants, 1000 local

combined heat and power plants and around 6000 wind

turbines [6].

A number of challenges are associated when replacing

central power plants with distributed generating units: the

central power plants not only deliver power but also provide

ancillary services to ensure reliable delivery of electricity and

secure operation of the transmission system. This includes

frequency stability support, power balancing, voltage control

etc. When these power plants are replaced with renewables
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such as wind turbines and photovoltaics, the ability to

provide ancillary services in the classical sense disappears;

the renewable energy sources will typically maximize the

power production thus not provide ancillary services. Though

recent works suggest that renewable production units can

take part in the balancing effort in certain conditions (see,

e.g., [7], [8]), it remains impossible for wind power plants

and photovoltaics to provide ancillary services when there is

no or little wind or solar irradiation.

Another benefit of conventional fossil fuel power plant

generators is that they are synchronous with the grid and

therefore provide rotating inertia supporting the grid fre-

quency against changes [9]. As renewable energy sources

typically interface with the grid via power electronics, they

will not be able to provide this inertia [10].

Moreover, renewables are often times intermittent sources

characterized by highly fluctuating power generation: they

can suddenly increase or decrease the production depending

on the weather conditions. These sudden production changes

are not always predictable and can therefore be severe for

the grid stability [11].

It is therefore evident, that in a grid of high penetration

of renewables, the need for balancing ancillary services will

increase [12], [13]. As the conventional power plants are

phased out, alternative sources of ancillary services must be

found. One of the approaches towards alternative ancillary

services is the smart grid concept, where consumers take part

in the balancing effort [14], [15]. The idea is to utilize the

demand side in a way beneficial for the grid stability by mov-

ing loads in time, e.g. by allowing local devices with large

time constants to store more or less energy at convenient

times, thereby adjusting the momentary consumption. One

obvious method to do so is by exploiting large thermal time

constants in deep freezers, refrigerators, local heat pumps

etc. See, e.g., [16].

A lot of effort is put into research in the context of

demand side flexibility utilization to support the electri-

cal grid. In [17], a hierarchical Model Predictive Control

(MPC) design is introduced to utilize flexible consumers

to counteract quickly fluctuating imbalances. This idea is

extended in [18] and [19], where the ability to handle grid

congestion is included in the controller design. But while

the works [17], [18], [19] illustrate that flexible consumers

are able to contribute to the balancing effort, they do not

describe how this can be accomplished in a liberalized

market setting. Further, the cases are idealized such that the

controller possesses almost perfect predictions of the future

fluctuations.



In this work, we examine the possibilities of using a

mixed portfolio of demand side units and productions units

to participate in the ancillary service market by providing

primary frequency reserve. Following, we design a controller

that is able to mobilize the portfolio of generators and

consumers to provide primary frequency reserve at minimum

cost. The controller achieves this by utilizing the demand side

units with hardly any ramp constraints to compensate for the

fast frequency changes while using the slow and inexpensive

conventional power generators to release the demand side

units. Hereby the load on the conventional generators is kept

at a minimum. This control behavior is achieved based on a

closed-loop model predictive control strategy, which is able

to prepare the storages and generators ahead of time for the

future unknown frequency changes.

The outline of the rest of the paper is as follows. First, in

Sec. II, we briefly describe the various forms of balancing

services. Next, in Sec. III, we present a general model for

the generators and consumers. In Sec. IV, we design a

closed-loop predictive controller that utilizes the portfolio

of production and consumption units to provide primary

frequency reserve at minimum operational cost. Sec. V

illustrates the methods with a numerical example and finally,

Sec. VI sums up the work.

II. PRIMARY FREQUENCY RESERVES

In the following, we briefly describe primary frequency

reserve and how a mixed portfolio of consumers and gener-

ators are able to provide this ancillary service.

A. Primary Frequency Reserve Specifications

In the electrical grid, Transmission System Operators

(TSOs) are responsible for enabling a secure and reliable

power system by keeping balance between production and

consumption as well as maintaining power quality and en-

suring a stable transmission system. In general, the TSOs do

not possess production units, and therefore procure ancillary

services from suppliers [20].

To ensure balance, the TSOs must maintain the system

frequency at its target value. In order to do this, a certain

amount of active power must be kept in reserve and available

for control such that frequency deviations can be restored.

For this purpose, three types of frequency reserve services

exist: primary, secondary and tertiary frequency reserves [9],

where we concentrate about the fastest reserve, namely the

primary frequency reserve.

The primary frequency reserve is an automatic control

which is used in frequency control. A main target for the

primary control is to stabilize the frequency in the case

of major outages of either loads or suppliers. The primary

control reserve is required to sustain at least a certain amount

of time, as it is then relieved by the secondary control [21].

The time scale for activation primary frequency reserve is in

the area of 10-30 seconds.

B. Consumers Providing Primary Frequency Reserve

In the context of ancillary services, two main consumer

properties are important. The fist property is that the con-

sumers will have very high ramp limits as they are deter-

mined by the time it takes to switch the devices on/off, which

is very fast compared to adjusting the power production

of e.g. a combined heat and power plant. The second

property is that flexible consumers only are able to store

a limited amount of energy. This is evident from the fact

that the flexible consumers in general only are able to move

consumption in time, not actually use more or less energy.

If we as an example consider an electrically heated house, a

cold storage, or an electric vehicle battery, we observe that

they indeed are flexible and thus able to store energy, but

that they over time will use the same amount of energy.

Due to the high ramp limits of the demand side units,

they are well suited for primary frequency control where a

fast response is needed. But as they are limited in energy

capacity, we can not rely solely on demand side units; we

will therefore consider a portfolio consisting of both demand

side units and conventional generators. The idea is to use

the demand side units to compensate for the fast changes

in frequency while using slow and inexpensive generators

to relieve the demand side units. The consumers will then

allow us to reduce the actuation of the conventional power

plants, in particular the fast generators which are also most

expensive to operate. In the following, we consider such a

mixed portfolio.

III. MODELING

We consider a portfolio of a total of n power production

and demand side units interconnected in a star topology

consisting of nl lines, see Fig. 1. We limit the work to star

topology girds as this corresponds to the topology of low

voltage grids; however, the methods in the paper can easily

be extended to meshed grids.

The n units are under the jurisdiction of an aggregator

who is able to control their power consumption/production

within given limits. The aggregator utilizes the portfolio to

participate in the primary frequency reserve market and must

control the units accordingly depending on their characteris-

tics and on the amount frequency reserve sold to the TSO.

Throughout the modeling of the system, we describe the

dynamics with discrete time equations and use subscript t
to indicate the sample number.

A. Generators and Demand Side Units

We describe both the generators and the demand side

units using the same model. The n units in the portfolio are

characterized by power consumptions/productions u ∈ Rn

subject to power constraints

umin � ut � umax (1)

where umin, umax ∈ Rn are lower and upper limits, respec-

tively. Here � represents componentwise inequality. Note

that the power consumption/production u is a small signal

value; hence the lower power limits umin can be negative.
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Fig. 1. Interconnected producers and consumers in a grid of limited
capacity (figure adapted from [22]).

For a power producer, the power constraints represent the

maximum and minimum deviation from the nominal pro-

duction, while for a consumer it describes the maximum

and minimum deviation in power consumption. We define

u in consumption terms such that (ut)i < 0 corresponds

to a decrease in consumption compared to the nominal

consumption for device i and vice versa for (ut)i > 0.

Further, the units are subject to ramp limit given by

∆umin � ∆ut � ∆umax (2)

where ∆ut = ut − ut−1 and where ∆umin,∆umax ∈ Rn

describe the ramp limits.

With each unit, we associate an amount of stored energy

x ∈ Rn. The relation between the power consumption u and

the stored energy x is described by the difference equation

(see, e.g., [23])

xt+1 = Axt −But (3)

where A,B ∈ Rn×n are diagonal matrices where the diago-

nal elements of A and B describe the first order dynamics of

the energy storages. The model only represents the flexible

part of the units and therefore does not contain any base

load. The storage limits are given by

xmin � xt � xmax, (4)

where xmin, xmax ∈ Rn describe the lower and upper limits,

respectively. These power constraints could be extended to be

time-varying which for example would allow us to specify a

specific time where a battery must be fully charged etc., but

in this work we keep the limits time-invariant for simplicity.

For a house with electrical heating, the limits could represent

the lowest and highest allowed temperature in the house.

Similarly for an electrical vehicle, the limits could represent

an empty and a full battery. Note that for generators, we

simply let the corresponding entries in the matrices A,B
equal zero, as they do not possess the ability to store energy.

The consumed or produced power of the units flow through

the links of the grid, as illustrated in Fig. 1. The partial flows

g ∈ Rnl through the links caused by the generators and

consumers are given by

gt = Gut (5)

where G ∈ Rnl×n has the structure

Gij =

{

1 if unit j is supplied through link i,
0 otherwise.

In Fig. 1 this is illustrated: the different consumers with

power consumption p1, . . . , p8 will load the different lines

with loads g1, . . . , g7 depending on the grid structure, which

is described by G.

The grid is protected from overcurrents by electrical fuses;

hence, the partial line flows are subject to given partial flow

constraints

gt � gmax (6)

where gmax ∈ Rnl describes the limits. Note that such limits

are not currently an issue, but it is expected to be an issue in

the future when large numbers of heat pumps and electrical

vehicles will be put into operation. Therefore it is possible

that legislations or markets will enforce such partial flow

limits. See, e.g., [19]. Further note that voltage issues also

are expected in the coming years on long thin distribution

lines that are subject to large loads. By including a more

sophisticated model, voltage limits could also be included as

constraints to the problem but this is not done in this work.

Finally note, that the total power delivery of the portfolio

is given by 1Tut, where 1 is a vector of all ones. The total

power 1Tut is positive for a net production and negative for

a net consumption.

B. Primary Frequency Reserve

The aggregated generators and consumers participate in

the primary frequency reserve market by placing a symmetric

bid of p MW for a certain time span (for instance 4 hours

in some systems [24]). If the bid is accepted, the aggregator

must provide the sold primary frequency reserve. The speci-

fications of the delivery of primary frequency control depend

on the system. Typical specifications are that primary control

must be provided linearly with the frequency deviation in

the frequency deviation interval ±200 mHz; further, the

activation time of the full reserve must be no more than

30 seconds.

Let ∆ft ∈ R describe the frequency deviation from the

nominal frequency at sample t. Then the aggregator must

track the reference rt at sample t given by

rt = max
(

min
(

p∆ft−t0/∆f, p
)

,−p
)

. (7)

Here ∆f is the frequency deviation at which the full bid must

be activated, e.g., ∆f = 200 mHz as described above. The

scalar t0 is the number of samples before the full reserve

should be activated, e.g., t0 = 3 if the activation time is

30 seconds as described above and the sampling time is 10

seconds.

We model the grid frequency as a first order system

∆ft+1 = a∆ft + wt (8)



where wt ∈ W = [w, w] is the change in frequency at every

sample which is assumed bounded, white and zero mean.

The reason for this model is that we assume a large system

where we do not affect the system frequency; however, the

accumulated primary control will drive the frequency towards

the nominal frequency. The bounds reflect that the frequency

in the grid can not jump arbitrarily from sample to sample.

The parameter a ∈ R describes how fast the grid restores to

the nominal frequency. Note that a linear model of any order

can be chosen, but for the sake of simplicity it is chosen to

use a first order model.

IV. CONTROLLER SYNTHESIS

The basis of the controller is that the n generators and

consumers are aggregated and utilized to bid into the primary

frequency reserve market with a bid of p MW. The goal

of the controller is to provide primary frequency reserve

according to the given specifications at the lowest possible

price while honoring the limits of the generators, consumers,

and the links in the grid. We emphasize that the provision

of primary frequency reserve is based on a portfolio of units

with various characteristics, ranging from storages to small

and large generators – this is in contrast to conventional

reserve provision done by a single power plant. In order

to optimize cost, the controller must exploit this diversity of

the units, especially the fast ramp limits of the demand side

units.

A. Problem Formulation

Based on the overall model of generators, consumers, and

the the grid, we construct a problem formulation which is

later used to design a controller.

1) Constraints: The aggregator must provide a certain

amount of frequency reserve depending on the deviation from

the nominal grid frequency ∆f and on the amount of sold

primary reserve p. The amount of primary reserve, that the

aggregator must provide, is described by (7) and gives the

following constraint to the aggregator

1Tuτ = rτ (9)

for τ ≥ 0. Further, the aggregator must honor the rate-,

power- and energy storage limitations of grid, generators,

and consumers, which can be described as follows:

xτ ∈ X , uτ ∈ U , ∆uτ ∈ ∆U (10)

for τ ≥ 0 where

U = {u|umin � u � umax, Gu � gmax}

X = {x|xmin � x � xmax}

∆U = {∆u|∆umin � ∆u � ∆umax}.

2) Objective: The objective of the aggregator is to min-

imize the average production cost of delivering the sold

frequency reserve.

The cost of operating the portfolio is a function of u and

x. We assume a convex stage cost function ℓ : Rn×Rn → R

and define the average cost J∞ as

JT (x, u) =
1

T

T−1
∑

τ=0

ℓ(xτ+1, uτ ) (11)

J∞(x, u) = lim sup
T→∞

JT (x, u). (12)

If we consider an operating production unit, the cost of

providing frequency reserve will reflect the cost of deviating

from the nominal operation point and is thus a function of

u. For a flexible consumer, the cost of providing frequency

reserve will reflect the discomfort associated with storing

energy and is therefore a function of x. For a house with

electrical heating, the discomfort cost would represent the

cost of deviating from the desired temperature set-point.

B. Closed-loop Model Predictive Control

The problem formulation states that the controller must

ensure the provision of the required primary frequency

reserve while minimizing the average production cost. In

other words: the objective J∞ is to be minimized under

the constraints (9) and (10). In the following, we design a

receding horizon control strategy which approximately solves

this problem. The receding horizon controller minimizes JT
over a the finite horizon of T samples and applies first control

input; at next sample this optimization is redone (hence the

name receding horizon). This results in an economic finite

horizon model predictive controller, as the objective is a

minimization of an economical cost and not a distance to

a certain reference, as is the case in stabilization problems.

A main question in the controller design concerns tracking

the reference rt, as this reference is driven by the unpre-

dictable disturbance w, see (7). One obvious way to deal

with the disturbance is to use the expected value, i.e., let

wτ |t = E(w) = 0, τ ≥ t at sample t. The benefit of this

strategy is that it leads to the design of a simple certainty

equivalent MPC strategy but on the other hand, such simple

disturbance model may lead to poor performance [25]. In

particular, a certainty equivalent strategy will not prepare the

storages in the power portfolio for possible future up- and

down-regulation needs as it assumes no future disturbance.

Another way to handle the unpredictable disturbance is to

design a robust model predictive controller that optimizes a

single control signal to minimize the worst case cost under

all possible disturbance realizations. While this formulation

takes the future disturbances into account in the optimization,

it suffers from often being conservative [26]. The reason for

this conservatism is that this strategy is open-loop within the

horizon, in the sense that the controller does not take into

account that at the next time sample, more information will

be available and the optimization will be redone including

this new information.

The above described certainty equivalent controller and

robust MPC controller are both open-loop MPC strategies,

where the next sample of the control signal is chosen from

optimization of a single control sequence. In order to design a

controller that is able to prepare the power portfolio for future

frequency changes in a non-conservative fashion, we instead



consider closed-loop MPC. In contrast to open-loop MPC

where we optimize a single control sequence, closed-loop

MPC optimizes a sequence of control policies. This means

that we do not commit to a certain control input sequence

for the whole control horizon; instead we choose a control

policy which will allow different control sequences depend-

ing on the realizations of the future disturbances. Hereby

the controller will achieve a closed-loop behavior, where we

allow recourse as more information becomes available (see,

e.g., [26], [22], [27]). Note that the terminology of open-loop

MPC vs. closed-loop MPC is adopted from the literature,

e.g., the references above. Further, note that both open-loop

and closed-loop MPC strategies indeed are receding horizon

control strategies where reoptimization is performed at each

sample when new measurements are available; however,

only the closed-loop control strategy considers the various

possible disturbance outcomes within each optimization.
Such closed-loop MPC strategy is considered in the fol-

lowing. The motivation is that this strategy will enable us to

act preemptively against future disturbance realizations, even

though they are unpredictable. By considering all possible

disturbance realizations, instead of just the expected value

of the disturbance, we obtain a controller that is able to

mobilize the storages such that they are ready to provide

both up- and down-regulation, depending on the future

unpredicted frequency behavior. In a sense, closed-loop MPC

is a systematic way of implementing a mid-ranging strategy

on the energy storages [28], however where we avoid being

conservative due to the closed-loop fashion where recourse

is allowed.
1) Min-Max Feedback Predictive Control: One way to

implement closed-loop MPC is a min-max approach. In this

approach, all possible disturbance realizations within a finite

horizon are considered and the maximum cost is minimized

over a sequence of control policies. As the disturbance w is

bounded in a polytope W and as the model of the dynamics

is linear and the objective is convex, we know that such

min-max optimization can be performed by considering the

vertices of the disturbance polytope alone [22].
The min-max method is chosen as this method clearly

illustrates the main message of this paper: that performance is

increased when our control strategy takes the possible future

frequency deviation realizations into account and hereby plan

for the future unknown events. Other strategies could have

been chosen instead such as scenario based strategies. See,

e.g., [29], [30].
For a finite horizon T , the controller must therefore

consider the 2T extreme disturbance realizations based on

the vertices w, w of W . Following the notation of [22],

we denote the extreme disturbance sequences and associated

reference sequences

{wi
t, . . . , w

i
t+T−1}, i ∈ I (13)

{rit, . . . , r
i
t+T−1}, i ∈ I, (14)

respectively, where i ∈ I = {1, 2, . . . , 2T }; i.e., I describes

the number of extreme disturbance realizations. The refer-

ence sequences can be found based on previous frequency

measurements and the disturbance sequence by (7). Simi-

larly, we denote the control and state sequences

{ui
t, . . . , u

i
t+T−1}, i ∈ I (15)

{xi
t, . . . , x

i
t+T }, i ∈ I, (16)

respectively. The objective of the controller is to optimize the

control sequences {ui
t, . . . , u

i
t+T−1} such that the maximum

cost of
∑τ+T

τ=t ℓ(xi
τ , u

i
τ ) for i ∈ I is minimized. Based on

the dynamics and constraints of the system and on the cost

function, we are able to formulate this as a finite horizon

optimization problem. At sample t the optimization problem

is given as follows:

minimize max
i∈I

t+T−1
∑

τ=t

ℓ(xi
τ+1, u

i
τ )

subject to xi
τ+1 = Axi

τ +Bui
τ

xi
τ+1 ∈ X , ui

τ ∈ U , ∆ui
τ ∈ ∆U

1Tui
τ = riτ

xi1
τ = xi2

τ ⇒ ui1
τ = ui2

τ

(17)

for τ = t, . . . , t + T − 1; i, i1, i2 ∈ I and where the

variables are the control sequences {ui
t, . . . , u

i
t+T−1} and

associated states {xi
t+1, . . . , x

i
t+T }. The data is the reference

sequences {rit, . . . , rt+T−1}, the previous input ui
t−1 = ut−1

and the current state xi
t = xt. Note that the grid frequency

dynamics (8) are indirectly included in the optimization

problem as the reference sequences riτ are generated based

on the possible extreme disturbance realization. This means

that we must construct the reference sequences riτ at each

iteration as described in the algorithm later in this section.

The first two constraints in (17) regard the system dynam-

ics and the input and state constraints. The third constraint

assures that the controller indeed provides the required

primary reserve. The last constraint, xi1
τ = xi2

τ ⇒ ui1
τ = ui2

τ ,

is a causality constraint (see [22], [26]) which is described

in the following.

The closed-loop min-max model predictive controller is

illustrated in Fig. 2. The figure illustrates the extreme dis-

turbance realizations with a horizon T = 3 when we are

at time sample t; further, the figure shows the control-

and state sequences for the given horizon. We can use

the figure to describe the behavior of the controller: at

sample t we observe the state xt and determine the control

sequences and associated state sequences {ui
t, u

i
t+1, u

i
t+2},

{xi
t, x

i
t+1, x

i
t+2, x

i
t+3} such that the objective is minimized.

Due to the causality constraint, we have that ui
t = ut as

xi
t = xt which means that we settle on a single control

signal ut which is applied to the plant. We, however, do

not settle on single future control signals ut+1, ut+2; instead

we design a control sequence for each possible extreme

disturbance realization and do not choose which control

signal to apply until next sample when wt is known. In this

way, the controller takes into account our ability to perform

recourse as more information becomes available.

Finally we note that Problem (17) is a convex optimization

problem as the causality constraint can be reformulated to
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Fig. 2. The 8 different extreme disturbance realizations with a horizon
T = 3.

linear equality constraints. This means that the problem can

be solved globally and efficiently [31].

2) The Control Algorithm: Based on the above description

of the closed-loop optimization, we are able to formulate the

controller algorithm:

At sample t

1) Collect the current storage levels of the consumers

xt, the previously applied control input ut−1 and the

current grid frequency ft.
2) Construct the extreme disturbance sequences

{wi
t, . . . , w

i
t+T−1}, i ∈ I based on the disturbance

vertices w,w.

3) Construct the extreme reference sequences

{rit, . . . , r
i
t+T−1} ∈ I based on the previous

references rt−t0 , . . . , rt−1, the disturbance sequences

and the amount of sold primary reserve p using (7).

4) Solve Problem (17) and denote the optimal control

sequences {ui⋆
t , . . . , ui⋆

t+T−1}, i ∈ I.

5) Apply the fist control input u⋆
t = ui⋆

t to the generators

and consumers.

6) Increase t by one and repeat from 1.

C. Scalability and Implementation

A major difficulty with the presented method is the scal-

ability as the min-max MPC method scales exponentially

with the control horizon. For larger number of devices and in

particular for large horizons, the presented method therefore

has its limitations. For practical implementation, it might

therefore be necessary to alter the method for example to

scenario based methods, see [29], [30], or methods that

assume a certain class of policies, for example causal affine

functions of the uncertainty as in [32], instead of dealing

with each of the 2T extreme disturbance realizations.

V. NUMERICAL EXAMPLE

We perform a number of numerical examples that illus-

trate the behavior of the closed-loop MPC algorithm. The

examples are kept at a conceptual level with a small number

of units to clearly visualize the behavior of the controller.

We consider a portfolio of four units: two consumers and

two generators. They have the following characteristics.

• unit1 and unit2: ideal storages with no ramp limits

but limited storage capacity; unit1 is on line close to

congestion.

• unit3: slow generator with low operational cost.

• unit4: fast generator with high operational cost.

Throughout the examples, we will use an open-loop

certainty equivalent MPC controller as reference. This ref-

erence controller is implemented with same objective and

constraints but use the expected value of the disturbance as

prediction, i.e., wt|τ = E(w) = 0, τ ≥ 0.
A cost function on the form

ℓ(xt, ut) = xT
t Qxt + ‖Rut‖1 (18)

is used. The cost of utilizing the storages is assumed

quadratic; this could reflect temperature comfort limits of an

electrically heated house where a small deviation has close

to no cost, while larger deviations are expensive. The cost

of the generating is are chosen to be a weighted one-norm;

this illustrates that even small changes in the operation of the

generators have a significant cost. Note that we are operating

with small-scale values and that ut corresponds to deviations

from the nominal power consumption/generation.

The aggregator managing the portfolio has sold p = 5 MW

primary frequency reserve and we assume that the power

reference must be met in 15 s and use a sampling rate of 15 s

for simplicity. Finally, we assume that the frequency never

changes faster than 40 mHz/sample and we use a prediction

horizon of T = 8 samples. We can specify the properties of

the optimization problem as follows:

xmin = (0, 0, −, −)T , xmax = (80, 80, −, −)T kWh

∆umax = −∆umin = (100, 100, 25, 100)T kW/s

Q = diag(1, 1, 0, 0), R = (0, 0, 10, 1)T ,

which simply state two consumers with limited capacity but

no ramp limits, a slow inexpensive generator and a fast

and expensive generator. We do not consider power limits.

Further, unit1, unit3, unit4 are on lines with no congestion

while unit2 is on a line which allows only 0.3 MW.
The desired behavior of the controller is to use the storages

unit1, unit2 to provide fast regulation then use the slow

inexpensive generator unit3 to relieve the storages hereby

avoiding using the expensive generator unit4. But as utilizing

the storages is also associated with a cost, the controller

must ensure that the storage level in unit1 and unit2 are

minimized while still being able to provide both up- and

down-regulation.
In the following, we will look at two examples. The first

example is constructed such that the ability of the closed-

loop MPC controller to take preemptive action against future



frequency changes is made obvious. The second example

is meant to be an example of normal operation for the

controller.

A. Preemptive Action

In this example we consider an example where the fre-

quency suddenly drops more than 0.2 Hz, see top plot of

Fig. 3. The frequency drop causes the aggregator to provide

the full 5 MW of up-regulation. The behavior of the closed-
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Fig. 3. Plot 1: grid frequency deviation ∆f and limits ±∆f . Plot 2,3:
power productions of unit3 (slow, inexpensive) and unit4 (fast, expensive)
for the open-loop (red, solid) and the closed-loop controller (blue, dashed).
Plot 4: energy levels of unit1 on congested line (blue, dashed) and unit2 on
the non-congested line (blue, solid) in the closed-loop case; the open-loop
storage levels are not visible as they remain zero.

loop MPC controller is seen in Fig. 3. In the first minutes

where the frequency is stable, the controller uses the slow

and inexpensive generator to fill up the energy storages of

unit1 and unit2, mainly the storage of unit2 where there is no

congestion problem. The controller fills up the storages as it

knows this will be beneficial in case of a sudden frequency

drop.

Exactly because of this preemptive action, the closed-loop

MPC algorithm is able to provide the necessary up-regulation

at the time of the frequency drop without utilizing the

expensive generator unit4; instead the storages compensate

for the fast frequency drop while the slow generator unit3
relieves the storages (see Fig. 3). This is exactly the desired

behavior for the controller and is achieved as the controller

minimizes the worst case future cost in a closed-loop manner.

Further we note, that the closed-loop MPC algorithm does

not refill the storages unit1 and unit2 after they have been

relieved; the controller knows that the reference never will

exceed 5 MW even if the frequency drops further. Thereby

no unnecessary storage actuation is performed.

As comparison we observe the behavior of the open-

loop MPC reference controller. This controller does not

consider the effects of future frequency changes and therefore

minimizes its cost function by keeping all storages empty.

When the frequency drops, it is forced to use the expen-

sive generator to provide up-regulation at a high cost. The

comparison is presented in Fig. 3.

Note that we start the simulation with the storages empty,

hereby the action of the closed-loop control becomes clear

as it can be seen that it fills the storages. If we had started

with the storages filled up, we would see the closed-loop

control decrease the storage level to the same levels as in

the presented example; on the contrary, the open-loop control

would decrease the storage levels to zero as it does not expect

future disturbances and therefore does not expect to benefit

from non-empty storages.

B. Normal Operation

We now consider an example of what could be normal

operation for the controller. It is assumed that the change

in frequency is band-limited Gaussian noise with standard

deviation 40 mHz per sample and limits ±40 mHz per

sample. An example of this is illustrated in Fig. 4 for a

50 minute sequence. The performance of the open-loop and
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Fig. 4. Plot 1: grid frequency f and limits ±∆f . Plot 2,3: power
productions of unit3 (slow, inexpensive) and unit4 (fast, expensive) for the
open-loop (red, solid) and the closed-loop controller (blue, dashed).

the closed-loop MPC strategy is presented, illustrating that

the closed-loop controller is able to almost completely avoid

using the fast and expensive generator by more extensive and

intelligent utilization of the storages. The example shows that

the closed-loop MPC controller is able to let the storages act

as a fast generator, thereby reducing the operational costs

significantly.

To enhance the reliability of the results, 5 such 50 minute

simulations are completed with different system frequency

realizations, all revealing similar results: a significantly lower

cost when utilizing the closed-loop MPC control law. The

normalized costs for the 5 simulations are presented in

Table I.
As previously mentioned, and ad-hoc control strategy

could be to implement mid-ranging on the energy storages.

This was done on the example presented here and by



Disturbance sequence 1 2 3 4 5

Jol−MPC 0.79 0.70 1.00 0.34 0.56
Jcl−MPC 0.32 0.30 0.49 0.04 0.16

TABLE I

PERFORMANCE COMPARISON.

extensive tuning it was possible to achieve a performance

that indeed was better than the certainty equivalent scheme,

however still significantly worse than the closed-loop MPC

control strategy. These results are not presented here.

VI. CONCLUSION

In this paper we have described how a mixed portfolio

of power generators and flexible demand side units can be

aggregated and used to provide primary frequency reserve.

Hereby we are able to reduce the load on conventional

generators. Further, we have shown how a simple model of

the grid frequency and bounds on the change in frequency

can be used in the design of a closed-loop model predictive

controller. The controller assures that the frequency reserve

obligation is met and that the grid constraints are honored,

while minimizing the operational cost of the portfolio. Fur-

ther, the closed-loop controller enables the energy storages to

act preemptively against future rapid grid frequency changes,

which significantly reduces the load on the conventional

generators in the portfolio.
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