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Abstract— We consider an aggregator managing a portfolio
of runtime and downtime constrained ON/OFF demand-side
devices. The devices are able to shift consumption in time
within certain energy limitations. We show how the aggregator
can manage the portfolio of devices to collectively provide
upward and downward regulation. Two control strategies are
presented enabling the portfolio to provide regulating power
while respecting the runtime, downtime, and energy constraints
of the devices. The first strategy is a predictive controller
requiring complete device information; this controller is able
to utilize the full flexibility of the portfolio but can only handle
a small number of devices. The second strategy is an agile
controller requiring less device information; this controller is
able to handle a large number of devices but not able to utilize
the full flexibility of the portfolio.

I. INTRODUCTION

With an increasing focus on climate-related issues and

rising fossil fuel prices, the penetration of renewable en-

ergy sources is likely to increase in the foreseeable future

throughout the developed world [1]. Many actions have been

taken from a political point to increase the penetration of

renewables: in the US, almost all states have renewable

portfolio standards or goals that ensure a certain percentage

of renewables [2]. Similarly, the commission of the European

Community has set a target of 20 % renewables by 2020 [3],

while China has doubled its wind power production every

year since 2004 [4]. In Denmark, the 2020 goals are 35 %

sustainable energy over all energy sectors and 50 % wind

power in electrical energy sector [5].

A major challenge arises when replacing central power

plants with renewable energy sources: the central power

plants do not only deliver power but also provide ancillary

services to ensure a reliable and secure electrical power

system. This includes frequency stability support, power

balancing, voltage control, etc. When the conventional power

plants are replaced with renewables such as wind turbines

and photovoltaics, the ability to provide ancillary services in

the classical sense disappears; the renewable energy sources

will often fully utilize the available power and thus not be

able to provide balancing ancillary services. Moreover, many

renewable sources are characterized by highly fluctuating
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power generation: they can suddenly increase or decrease

production depending on weather conditions. These rapid

production changes are not always predictable and can

therefore have severe consequences for grid stability [6].

It is therefore evident that in a grid with high penetration

of renewables, the need for balancing ancillary services will

increase [7], [8]. As conventional power plants are pushed

out gradually, alternative sources of ancillary services must

be found. One of the approaches to obtaining alternative

ancillary services is the smart grid concept, where demand-

side devices with flexible power consumption take part in the

balancing effort [9], [10]. The basic idea is to let an aggrega-

tor manage a portfolio of flexible demand-side devices and

utilize the accumulated flexibility in the unbundled electricity

markets on equal terms with conventional generators [11].

In this work, we consider the class of flexible consumption

devices that only can be switched either ON or OFF possibly

with minimum runtime and minimum downtime constraints.

This covers a large range of different devices, for example

thermal devices such as heat pumps, refrigeration and freezer

systems, etc. We present two different direct load control

strategies for enabling these devices to provide ancillary

services: a predictive and an agile controller. The predictive

controller requires full knowledge of all device parameters

and provides an upper performance bound. This controller

is, however, only able to handle a limited number of devices

due to the computational burden. On the other hand, the agile

controller is able to handle many devices and requires only

little knowledge of the device parameters at the expense of

not being able to utilize the full flexibility.

The paper structure is as follows. In Sec. II, the system

architecture is presented. Following, in Sec. III, it is de-

scribed how flexible ON/OFF consumers are able to deliver

regulating reserves. In Sec. IV and Sec. V, the predictive and

agile control strategies are presented. Numerical examples

demonstrating these strategies are presented in Sec. VI.

Finally, Sec. VII concludes the work.

II. SYSTEM ARCHITECTURE

In this section, we describe the overall relation between

consumers, the aggregator, and the electricity markets.

A. The Aggregator as a Player in the Electricity Markets

We consider an unbundled liberalized electricity market

system architecture. In this setup, the Transmission System

Operators (TSOs) are responsible for secure and reliable

system operation and must consequently ensure balance

between production and consumption. Generally speaking,



in an unbundled electricity market, TSOs do not own pro-

duction units and must therefore procure ancillary services

in the electricity markets to ensure system stability [12].

The aggregator is a legal entity able to enter into flexi-

bility contracts with consumers. These contracts allow the

aggregator to manage the consumers’ flexible consumption;

hereby, the aggregator is able to utilize the accumulated

consumer flexibility to participate in the electricity markets.

The flexible devices are managed by the aggregator through

a technical unit often referred to as a virtual power plant

(VPP). This setup is illustrated in Fig. 1 and inspired

by [11]. In this work, we consider an aggregator utilizing

the consumer flexibility to participate in the regulating power

markets.

Aggregator

VPP

Markets

Device1 Device2 · · · Devicen

bid/acceptance

reserve activation/
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Fig. 1. Aggregator bidding in the electricity markets by managing n flexible
ON/OFF devices through a VPP.

B. The Regulating Power Market

The suppliers can submit bids for upward regulation

(increased production or reduced consumption) or downward

regulation (decreased production or increased consumption)

in the regulating power market. In the delivery hour, the

TSO will activate the submitted bids if needs for upward or

downward regulation occur.

The focus of this work is a dispatch strategy for a portfolio

of devices activated for a given regulating power delivery.

This means that we do not consider flexibility estimation,

bidding strategies or similar in this work; rather, we describe

how the portfolio should be managed to deliver regulating

power once activated.

C. Demand-Side Devices as Power Reserves

Through a VPP, the aggregator manages a portfolio of

runtime/downtime constrained ON/OFF devices with flexible

power consumption. This covers a large class of devices;

for example, thermal devices with large time constants such

as electrically heated houses, refrigerations systems, water

heaters, etc. [13]. The power consumption of these devices

is not continuously adjustable; rather, the devices are either

turned ON or OFF.

In order for consumption devices to provide ancillary

services, they must be separated from and independent of

ordinary consumption and must be approved by a TSO as

consumption that can be used as regulation reserves [14].

The hourly energy consumption of the portfolio must equal

the energy bought at the spot-markets as long as the portfolio

is not activated for power reserves. Upon activation, the

hourly energy consumption of the portfolio must be adjusted

accordingly.

In this work, we assume that the portfolio of devices

under the jurisdiction of the aggregator indeed is approved

by a TSO. Moreover, we assume that the necessary two-

way communication between the aggregator’s VPP and the

ON/OFF devices exists as illustrated in Fig. 1.

III. REGULATING RESERVES VIA ON/OFF DEVICES

In this section we describe how a portfolio of ON/OFF

devices collectively can deliver regulating power.

A. ON/OFF Consumption Devices

The VPP manages a portfolio of n flexible ON/OFF

consumption devices. We assume that these devices can

be modeled as energy storages with a time-varying drain.

Denote the energy levels of the devices x(k) ∈ Rn, the

nominal device power ratings p(k) ∈ Rn, and the drain rates

v(k) ∈ Rn, where k is the sample number using a sampling

time Ts. We model device i is as

xi(k + 1) = xi(k) + Ts (piui(k)− vi(k)) (1)

xi(1) = x0
i (2)

where x0 ∈ Rn represents the initial states of the devices

and

u(k) ∈ {0, 1}n (3)

describes the state of each device: ui(k) = 1 if device i is

ON and ui(k) = 0 if device i is OFF. The storage capacities

are limited in size, thus we have

0 � x(k) � x (4)

where x ∈ Rn describes the devices’ energy limits and

� represents componentwise inequality. The interpretation

of these limitations depends on the type of device. For

space heating systems, space cooling systems, water heating

systems, etc., the limits could represent an allowable tem-

perature band [13].

The ON/OFF devices are furthermore characterized by

minimum runtime constraints and minimum downtime con-

straints describing that once a device is turned ON, it must

remain ON for a certain amount of time; similarly, that once

a devices is turned OFF, it must remain OFF for a certain

amount of time. We use r, r ∈ Zn

+ to describe the runtime

and downtime limits by letting ri be the minimum number

of samples device i must remain ON once turned ON and

by letting r
i

be the minimum number of samples device i
must remain OFF once turned OFF:

ui(k)− ui(k − 1) = 1 =⇒
ui(k + 1) = 1, . . . , ui(k + ri − 1) = 1

(5)

ui(k)− ui(k − 1) = −1 =⇒
ui(k + 1) = 0, . . . , ui(k + r

i
− 1) = 0

(6)



where (5) describes the runtime constraint while (6) describes

the downtime constraint. This type of constraints occur in

many ON/OFF devices such as thermal systems where rapid

switching of the compressor can damage the device or

reduce lifetime significantly; likewise, rapid switching of for

example heat pumps, will deteriorate performance.

B. Provisions of Regulating Reserves

The portfolio of ON/OFF devices is separated from and

independent of regular consumption and is approved by

the TSO as being able to deliver regulating reserves. The

portfolio must therefore consume the electricity purchased

at the spot-markets for each hour of the day. If the portfolio

is activated for upward regulation, the consumption must be

decreased accordingly the given hour; similarly, if activated

for downward regulation, the consumption must be increased

accordingly the given hour.

For simplicity, we make two assumptions that do not corre-

spond to the regulating power markets. First, we assume that

regulating power deliveries always are activated for exactly

one delivery hour. In reality, however, the activation can be

done for a shorter period and also within a delivery hour.

Second, we assume that regulating power can be delivered

in any manner, as long as the correct volume of energy is

provided within the delivery hour. In reality, however, the

regulating power must be provided at constant power.

Let l be the index of the operation hour and let the

electricity purchased in the electricity markets for hour l
be denoted espot(l) ∈ R. Further, let ereg(l) ∈ R denote

the activated regulating power delivery in time period l and

define ereg(l) as positive for upward regulation and negative

for downward regulation in production terms. The energy

reference eref(l) ∈ R for the portfolio is hereby given by

eref(l) = espot(l)− ereg(l) (7)

meaning that the portfolio of ON/OFF devices must consume

the energy eref(l) in hour l.

C. Regulating Power via ON/OFF Devices

As described, it is assumed that the power consumption

within hour l can be chosen in any way as long as the energy

reference eref(l) is tracked according to the requirements. The

portfolio is operated at a sampling rate Ts which is in the

magnitude of minutes and thereby faster than the one-hour

energy periods. The total power consumption of the portfolio

at time sample k is denoted pout(k) ∈ R and given by

pout(k) = 1
T p(k) (8)

where 1 is a vector with all components one. The hourly

energy consumption eout(l) ∈ R of the portfolio is found

by integrating the portfolio power consumption pout(k) over

each hour l:

eout(l) = Ts

k2(l)
∑

k=k1(l)

pout(k) (9)

where k1(l) and k2(l) indicate the first and last sample of

the power consumption within hour l:

k1(l) =
3600
Ts

(l − 1) + 1, k2(l) =
3600
Ts

l (10)

as 3600
Ts

corresponds to the number of samples within one de-

livery hour. As the portfolio operates as a regulating reserve

provider, it must be assured that the difference between the

hourly energy consumption reference eref(l) and the hourly

energy consumption eout(l) is sufficiently small, hence we

must minimize the tracking error eerror(l) ∈ R given by

eerror(l) = |eref(l)− eout(l)| . (11)

D. Summary of ON/OFF Device Characteristics

To visualize some of the concepts introduced in this

section, we conclude with a small example. Consider a

portfolio of 20 ON/OFF devices. The parameters of the

portfolio are not important for this example but can be found

later in (21). We assume that each device is operated by a

local hysteresis controller on the form

ui(k) =







1 if xi(k) ≤ 0
0 if xi(k) ≥ xi

ui(k − 1) otherwise.
(12)

The hourly power consumption pref(k) and the energy con-

sumption eout(l) are presented in Fig. 2 along with the

energy levels of 5 of the devices, for a 10 hour period.

For comparison, the figure also shows the nominal power

consumption, given directly by summation of the drain rates

v(k), and the nominal energy consumption, given by the

accumulated drain per hour. The nominal energy consump-

tion could correspond to the expected energy consumption

and therefore the electricity we have purchased at the spot-

market.

An important point can be made from the energy delivery

plot: large deviations between purchased electricity and

actual consumption can occur due to the stochastic behavior

of the ON/OFF devices. This is, however, not acceptable

as a provider of regulating reserves. Therefore, a controller

must manage the switching of the ON/OFF devices to assure

that we indeed consume the purchased electricity. Further,

this controller must adjust the consumption when activated

for upward or downward regulation. Such controllers are

developed in the following two sections.

IV. PREDICTIVE CONTROLLER SYNTHESIS

In this section, we design a predictive controller to man-

age the portfolio of runtime/downtime constrained ON/OFF

devices. The controller relies on perfect information of the

future load vi(k), the power rating pi, and the capacity xi

of all devices for a given horizon of L hours.

The predictive controller is not to be seen as an imple-

mentable strategy as it is not realistic to achieve such perfect

information several hours ahead; further, the algorithm will

show to be computationally heavy and thus only applicable

for a limited number of devices. On the contrary, the pre-

dictive controller serves as an upper performance bound: it

uses perfect information of the future conditions and finds a
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Fig. 2. Behavior of portfolio controlled with local hysteresis controllers
compared to the nominal (predictable) behavior. Subplot (a): hourly energy
consumption; subplot (b): power consumption; subplot (c): energy levels
x(k) for 5 of the 20 devices and corresponding energy limitations x.

control strategy for the portfolio within the control horizon

of L hours if feasible. This upper bound allows us to evaluate

the performance of the agile controller which is presented in

next section.

A. Optimization of ON/OFF Devices

The objective of the predictive control strategy is to

determine the ON/OFF pattern of each device in the portfolio

such that the hourly energy consumption of the portfolio

tracks the energy reference while the devices honor runtime,

downtime, and energy constraints. Define I as the set of all

devices, L as the set of the L delivery hours, and K as the

set of time samples from the beginning of the first delivery

hour to the end of the last delivery hour:

I = {1, . . . , n}, L = {1, . . . , L}, K = {1, . . . ,K},
(13)

where K = 3600L/Ts is the number of time samples within

the horizon of L delivery hours.

Based on the previously introduced model, we can sum-

marize the constraints and roughly formulate the predictive

controller as follows.

minimize
∑

l∈L

eerror(l)

subject to Eqs. 1–3, 5–6, i ∈ I, k ∈ K
Eqs. 4, 8, k ∈ K
Eqs. 9, l ∈ L

(14)

where the variables are u(k), k ∈ K. Denote a solution to

the optimization problem u⋆(k), k ∈ K. Note that v(k), k ∈
K is data to the problem meaning that perfect drain rate

predictions are required to solve the problem. The solu-

tion u⋆(1), . . . , u⋆(K) will describe how the devices can

be switched ON and OFF such that the energy reference

eref(1), . . . , eref(L) is tracked within the smallest average

deviation, while runtime, downtime, and energy constraints

are honored.

Notice that in this work we simply use Problem (14) in

a static manner, i.e. we perform an open loop optimization

over the whole horizon. This is done as the solution only

is used as an upper performance bound based on perfect

portfolio knowledge as previously described. The optimiza-

tion problem could, however, be implemented in a receding

horizon fashion where we optimize over a given horizon,

apply the first element of the solution u⋆(1) to the plant, and

then reoptimize the following sample after new information

is obtained [15].

B. Binary Linear Optimization Problem

Problem (14) is a mixed integer linear optimization prob-

lem: dynamics (1), (2), state limitations (4), and conver-

sion from power to energy (8), (9) are linear constraints.

Further, the runtime and downtime constraints (5), (6) can

be rewritten into linear constraints, see for example [16],

[17]; similarly, the energy constraint (11) can be rewritten

into linear constraints, see for example [18]. Finally, the

ON/OFF constraint (3) makes the optimization problem

binary (mixed integer). This mixed integer linear optimiza-

tion problem resembles a unit commitment problem [19].

Generally speaking, this type of program is hard and can

only be solved for a smaller number of devices and for

shorter time horizons when using commercial optimization

tools. For a larger number of devices, alternative methods

are needed. As it is desired to be able to aggregate and

control thousands of devices, alternative control strategies

are needed. Therefore, an agile strategy is presented in the

following section, relying on fast sorting algorithms rather

than mixed integer optimization.

V. AGILE CONTROLLER SYNTHESIS

In this section, we present an agile controller that is able to

overcome some of the limitations of the predictive strategy.

By agile is meant a controller that seeks to maximize the

agility of the portfolio by utilizing the least agile devices

first [20]. In this context, an agile device corresponds to a

device that is able to change state but does not demand a

state change within a short horizon. Three major advantages

are that the agile controller is able to:

1) handle a portfolio with a large numbers of devices

2) operate with little knowledge of the device parameters

3) handle devices that autonomously switch state.

These three features are necessary in a real life scenario

where it is desired to aggregate thousands of small devices

and where specific knowledge of each single device is

difficult to assess and expensive to communicate. In the

following, we describe an agile controller that satisfies the

above three features.

A. Agile Controller Structure

The agile controller consists of two parts: a feedback

controller and a dispatcher, see Fig. 3. Each device in
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Fig. 3. Illustration of the agile strategy: a controller integrates the power error perror between the power reference pref and the measured power consumption
pout to determine a control signal pctrl to the dispatcher. The dispatcher translates the control signal pctrl to ON/OFF signals u.

the portfolio operates by hysteresis control corresponding

to (12) such that each device autonomously switches state

if it reaches its energy limits. The feedback controller and

dispatcher work on top of this: the power consumption of

the portfolio pout is measured and subtracted from a power

reference pref resulting in a power error perror which is the

input to the feedback controller. The controller determines

the control signal pctrl and feeds this signal to the dispatcher

which translates pctrl to ON/OFF signals as described by u.

To emphasize the simplicity and robustness of the agile

controller, we assume that the available information is very

limited as described by the following:

1) the individual drain rates vi(k) are unknown,

2) the individual power ratings pi are unknown; only the

mean power rating p̃ = 1
n
1
T p and the real-time total

power consumption pout(k) are known,

3) the individual device states x(k) and energy limits

xi are unknown; only the real-time state of charge

si(k) = xi(k)/xi is known.

Hereby, each device is only required to communicate the

state of charge si(k) ∈ R to the VPP, which significantly

reduces the communication flow. Further, the VPP tasks are

simplified as it is sufficient to estimate the mean power rating

p̃ ∈ R instead of individual power ratings and drain rates.

Note, however, that this relaxation requires that the power

ratings, drain rates, and energy limits of the devices in the

portfolio are within the same order of magnitude, i.e., this is

not intended for a portfolio mixing for example large-scale

CHP heating elements and small domestic heat pumps.

B. Energy Reference and Power Reference

The controller must ensure that the energy reference eref(l)
is tracked for each delivery hour l. This is done by translating

the energy reference eref(l) to a power reference pref(k). The

sampling rate of the power reference is in the magnitude

of minutes and thus faster than the hourly sampling time

of the energy reference. A freedom lies in the translation

from energy reference to power reference. In this work, this

freedom is utilized to make the power reference smooth over

time such that fast power reference jumps are avoided. In this

work we construct a filter that minimizes the two-norm of

the change in power from sample to sample; however, other

methods can be chosen. Later, in Fig. 5, this smoothing is

seen when comparing the energy reference in subplot (a)

with the power reference in subplot (b).

C. Feedback Controller

The feedback controller measures the power consumption

of the portfolio pout(k) and compares this with the power

reference pref(k) to determine the power error perror(k) ∈ R:

perror(k) = pref(k)− pout(k). (15)

The feedback controller is implemented as a pure integral

controller as our main objective is to follow the hourly energy

reference eref(l) which is exactly the integrated power. Fur-

ther, the integral action will provide the necessary robustness

to cope with the incomplete knowledge of the portfolio. The

control signal pctrl(k) is therefore simply found as

pctrl(k) = pctrl(k − 1) + kIperror(k) (16)

where kI ∈ R is the integral gain.

D. Agile Dispatcher

The dispatcher translates the control signal pctrl(k) into an

ON/OFF signal u(k) to the devices. The basic idea in the

dispatcher is to maximize the agility of the portfolio meaning

that the least agile devices should be activated first.

1) Feasible Devices: First, it is necessary to examine

the subset of devices Iup(k) ⊆ I able to provide upward

regulation at time k and the subset of devices Idown(k) ⊆ I
able to provide downward regulation at time k. For a device

to provide upward regulation at sample k, it must currently

be in state ON and be able to switch to state OFF which

requires that it has been ON for at least ri samples. Similar

argumentation can be made for a device to be able to provide

downward regulation. Define the counters c(k) ∈ Zn

+ as

ci(k) =

{

ci(k − 1) + 1 if ui(k) = ui(k − 1)
1 otherwise

(17)

such that ci(k) is the number of samples that device i has

been in its current state ui(k). Then the sets

Iup(k) = {i ∈ I|ui(k − 1) = 1, ci(k − 1) ≥ r} (18)

Idown(k) = {i ∈ I|ui(k − 1) = 0, ci(k − 1) ≥ r} (19)

will describe the devices feasible for upward and downward

regulation, respectively.

2) Least Agile Device First: The dispatcher is given the

control signal pctrl and must determine if some of the devices

in the portfolio must be switched from ON to OFF or

vice versa. The agile dispatch strategy is to choose among

the devices available for upward (downward) regulation the

device closets to its upper (lower) bound. This strategy can

be interpreted in different ways. One interpretation is that

this is the strategy that will operate the devices as close as

possible to the nominal hysteresis control strategy previously

presented. Another interpretation is that this strategy maxi-

mizes the agility of the portfolio by always selecting the least

agile device, see for example [20]. Finally, this strategy can



be interpreted as resembling the scheduling algorithm known

as “least laxity first”, where the process with the smallest

process slack time is activated first [21].

3) Dispatch Algorithm: Under the assumption that each

device has a nominal power consumption given by p̃, the

dispatcher expects the power output of the portfolio to equal

p̃1Tu(k). Therefore, the dispatcher will choose to switch the

state of |nsw(k)| devices at time k:

nsw(k) = round
(

pctrl(k)/p̃− 1
Tumeas(k)

)

(20)

where umeas(k) ∈ Rn is the measured ON/OFF-state of the

n devices at time k and round(·) is the “round to nearest

integer” function. Note that it is necessary to measure the

ON/OFF-states of the devices at time k as some devices

may have reached the limitations and autonomously switched

state according to the local hysteresis control. The dispatcher

will switch max(0, nsw(k)) devices from OFF to ON and

max(0,−nsw(k)) devices from ON to OFF at time k. Hereby

the expected power output p̃1Tu(k) will get as close as

possible to the control signal pctrl(k).
In order to maximize the agility of the portfolio, we

simply activate the device closest to its limit first. When

nsw(k) < 0, we need to decrease consumption and switch

the −nsw(k) devices with the highest state of charge from

ON to OFF; similarly, when nsw(k) > 0, we need to increase

consumption and therefore switch the nsw(k) devices with

the lowest state of charge from OFF to ON. This way of

finding u(k) is described in Algorithm 1. The algorithm

simply states that if nsw(k) < 0, upward regulation is

provided by selecting the −nsw(k) devices with highest state

of charge from Iup (if non-empty) and switching the state of

these devices from ON to OFF, and vice versa for downward

regulation.

Algorithm 1: Agile Dispatch Algorithm.

Initialize u(k) := umeas(k);
collect control signal pctrl(k) and find nsw(k) by (20);

for j = 1, . . . , |nsw(k)| do

update Iup(k), Idown(k) based on (18) and (19);

if nsw(k) > 0 and Idown 6= ∅ then
find the least agile device that can provide

downward regulation: i := argmini∈Idown
si;

switch device ON: ui(k) := 1 ;

else if nsw(k) < 0 and Iup 6= ∅ then
find the least agile device that can provide

upward regulation: i := argmax
i∈Iup

si;

switch device OFF: ui(k) := 0 ;

end

end

apply u(k) to the portfolio;

E. Agile Controller Algorithm

We are now ready to describe the full algorithm of

the agile controller, see Algorithm 2. As mentioned, the

algorithm can be visualized as in Fig. 3.

Algorithm 2: Agile Controller Algorithm.

Initialize Determine the energy reference eref(l) by (7)

and convert to a smooth power reference pref(k);
for k = 1, . . . , 3600L/Ts do

if ereg(l) is changed by system operator then
Update energy reference eref(l) by (7) and

convert to a smooth power reference pref(k);
end

Measure current power consumption pout(k) and

determine perror(k) according to (15);

Obtain pctrl(k) by integration according to (16);

Translate pctrl(k) to u(k) according to Algorithm 1;

Dispatch the ON/OFF signals u(k) to the portfolio;

end

VI. NUMERICAL EXAMPLES

In this section, two numerical examples are considered:

a small-scale example where the predictive strategy and the

agile strategy are compared and a large-scale example that

only the agile controller is able to handle. A sampling time

Ts = 5 minutes is used.

A. Small-Scale Example

In this example, the portfolio consists n = 20 ON/OFF

devices with parameters

pi ∈ [2, 9], vi(k) ∈ [0, pi], [kW],

xi ∈ [1, 7], x0
i
∈ [1, xi], [kWh],

ri = 6, r
i
= 6, [samples].

(21)

The parameters are selected such that the time to fully

charge a device and to fully discharge a device are uniformly

distributed in the interval 1 to 4 hours. Further, the load

vectors v(k) are chosen such that the total load curve 1T v(k)
has the typical consumption shape with a morning and an

evening peak as is visible in subplot (a) of Fig. 5. The

runtime and downtime constraints are identical and equal to

6 samples corresponding to 30 minutes. These parameters are

the same as used in the hysteresis controller case presented

in Fig. 2.

A horizon of 10 hours is considered. The energy reference

eref(l) is set equal to the nominal energy consumption in

the first and last 4 hours of the horizon. In hour 5 and

6, the energy consumption is set such that the maximum

possible energy consumption is moved from hour 6 to hour

5; the volume of energy we can move is found via the

predictive controller. The reference and the behavior of both

the predictive and the agile controller are illustrated in Fig. 4.

This numerical example shows a number of interesting

results. In subplot (a) we notice, that the agile controller is

able to track the same reference as the predictive controller

except for the two hours where load is shifted. In these

two hours, the predictive controller is able to move at most

30 kWh while the agile controller is able to move at most

19 kWh corresponding to 63 % of the maximum possible.
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Fig. 4. Comparison of the behavior of the predictive controller and the agile
controller tracking the hourly energy reference eref(l). Subplot (c) shows
the energy levels of the devices in the predictive controller case.

Subplot (b) of Fig. 4 shows the power reference found

by smoothing the energy reference; further, this plot shows

the power consumption in case of the agile controller and

in case of the predictive controller. This plot shows an

important difference between the two control strategies: the

agile controller seeks to track this power reference, while the

predictive controller does not consider the power reference;

instead it directly considers the energy reference which in

this case causes a fluctuating power consumption.

Finally, subplot (c) of Fig. 4 shows the energy levels of

the 20 devices in the case of the predictive method. This

plot illustrates the fundamental idea of moving consumption

in time: almost all devices are ON in hour 5 to increase con-

sumption lifting the energy levels of all devices; following,

in hour 6, many of the devices are switched OFF again.

B. Large-Scale Example

We consider a portfolio of n = 10, 000 ON/OFF devices

with parameter distributions and runtime/downtime limita-

tions similar to the previous example. A horizon of 24 hours

is used. The predictive controller is not able to handle a

portfolio of this size, therefore we only consider the agile

controller. We consider an energy reference equal to the

nominal power consumption; however, we shift a total of

14 MWh of consumption from the afternoon peak hours to

the off-peak hours in the evening as depicted in subplot (a)

of Fig. 5. The agile controller is able to track the reference

with an error less than 0.5 MWh/h throughout all 24 hours.

In subplot (b) of Fig. 5, the nominal power consumption

and the power reference are showed. Subplot (c) show the

energy levels of 100 of the 10, 000 devices in the portfolio.

This figure shows the behavior of the controller: the overall

energy levels in the devices are reduced in the afternoon

peak hours to assure that the consumption is decreased as

required; following, the energy levels are restored when the

energy consumption reference is increased in the evening.

Finally, subplot (d) shows the number of devices navail able

to perform upward regulation and downward regulation:

navail(k) = card(Iup(k)) + card(Idown(k)) (22)

where card(X ) denotes the cardinality of X , i.e., the

number of elements in X . The plot shows that throughout the

delivery period, there are between 2,000 and 7,500 available

devices. Further, the plot shows that after the consumption

of the devices is reduced at hour l = 14, the number of

available devices decreases as the overall energy level must

be kept low until the consumption of the devices is increased

at hour l = 19.

VII. CONCLUSION

In this work we showed how a portfolio of runtime

and downtime constrained ON/OFF devices with flexible

power consumption can be managed to collectively provide

a delivery of regulating power. We described how to track a

regulating power reference based on a predictive controller

requiring perfect information of the device parameters. The

predictive strategy was able to fully utilize the flexibility of

the devices and thereby provide the largest possible amount

of regulating reserves. Following, we described how to track

the regulating power reference based on an agile control

strategy relying only on estimates of the device parameters.

The agile controller was able to track an energy reference

even for a large number of devices and with very limited

knowledge of the portfolio parameters; however, it was not

able to utilize the flexibility to the limits as the predictive

controller.
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