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Abstract— Linear aeroelastic models used for stability anal-
ysis of wind turbines are commonly of very high order. These
high-order models are generally not suitable for control analysis
and synthesis. This paper presents a methodology to obtain a
reduced-order linear parameter varying (LPV) model from a
set of high-order linear time invariant (LTI) models. Firstly,
the high-order LTI models are locally approximated using
modal and balanced truncation and residualization. Then, an
appropriate coordinate transformation is applied to allow inter-
polation of the model matrices between points on the parameter
space. The obtained LPV model is of suitable size for designing
modern gain-scheduling controllers based on recently developed
LPV control design techniques. Results are thoroughly assessed
on a set of industrial wind turbine models generated by the
recently developed aeroelastic code HAWCStab2.

I. INTRODUCTION

Linear aeroelastic models used for stability analysis of
wind turbines are commonly of very high order. Multibody
dynamics coupled with unsteady aerodynamics (e.g. dynamic
stall) are among the recently developments in wind turbine
aeroelasticity [1]. The resulting models contains hundreds or
even thousands of flexible modes and aerodynamic delays.
In order to synthesize wind turbine controllers, a common
practice is to obtain linear time-invariant (LTI) models from
a nonlinear model for different operating points. Modern
control analysis and synthesis tools are inefficient for such
high-order dynamical systems; reducing the model size is
crucial to analyze and synthesize model-based controllers.

Model-based control of wind turbines has been extensively
researched during the last decade [2]. The linear parameter
varying (LPV) framework shown to be suitable to cope, in
a systematic manner, with the inherent varying dynamics
of a wind turbine over the operating envelope [3], [4], [5].
Wind turbine LPV models are usually simple, first-principles
based, often neglecting dynamics related to aerodynamic
phenomena and some structural modes. This in turn restricted
LPV control of wind turbines to the academic environment
only. A procedure to encapsulate high-fidelity dynamics of
wind turbines as an LPV system would be beneficial to
facilitate industrial use of LPV control.

This paper presents a procedure to obtain a reduced-
order LPV wind turbine model from a set of high-order
LTI models. Firstly, the high-order LTI models are locally
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approximated using modal and balanced truncation and resid-
ualization. Then, an appropriate manipulation of the coordi-
nate system is applied to allow interpolation of the model
matrices between points of the parameter space. The obtained
LPV model is of suitable size for synthesizing modern gain-
scheduling controllers based on the recent advances on LPV
control design. Time propagation of the varying parameter is
not explicitly utilized. Therefore, the procedure assumes that
the varying parameter do not vary excessively fast in time, in
line with common practices in gain-scheduling control [6].
Results are thoroughly assessed on a set of industrial wind
turbine models derived by the recently developed aeroelastic
code HAWCStab2 [7].

This paper is organized as follows. The modeling princi-
ples of the high-order LTI wind turbine models are exposed
in Section II. Section III is devoted to present the proposed
method. Section IV brings a numerical example along with
results. Conclusions and future work are discussed in Section
V.

II. WIND TURBINE MODEL

A nonlinear high-fidelity aeroelastic model is the starting
point of the modeling procedure. The wind turbine struc-
ture is modeled with nonlinear kinematics based on co-
rotational Timoshenko elements. Aerodynamics are modeled
with Blade Element Momentum (BEM) coupled with un-
steady aerodynamics based of shed-vorticity and dynamic
stall. Linearization is performed analytically around a steady
operational state for a given mean wind speed, rotor speed
and collective pitch angle. Hansen [7] gives a more com-
plete description of the linear aeroelastic model for an
isolated blade. Two main equations of motion, one related
to structural dynamics and another related to aerodynamics
constitutes the LTI model

Mq̈s(t)+(C+G+Ca) q̇s(t)+(K +Ks f +Ka)us(t)

+A f xa(t) = Fs(t)

ẋa(t)+Adxa(t)+Csaq̇s(t)+Ksaqs(t) = Fa(t)
(1)

where qs are the elastic and bearing degrees of freedom,
xa are aerodynamic state variables, M is the structural mass
matrix, C the structural damping matrix (Rayleigh), G the
gyroscopic matrix, Ca is the aerodynamic damping matrix,
K the elastic stiffness matrix, Ks f the geometric stiffness
matrix, Ka the aerodynamic stiffness matrix, A f is the
coupling of the structure to aerodynamic states, Ad represents
aerodynamic time lags, Csa and Ksa are coupling matrices to



structural states. Fs and Fa represent forces due to actuators
and wind disturbance. The equations in first order form are

ẋ(t) = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t)
(2a)

x(t)=
[
xa(t) qs(t) q̇s(t)

]T u(t)=
[
Qg(t) β (t) V (t)

]T
(2b)

where the controllable inputs are the generator torque Qg
and collective pitch angle β , and V is the uniform wind
speed disturbance input. The model outputs considered here
are the generator angular velocity Ω and tower top lateral
displacement q. The first output is usually measured and feed
to a speed controller that manipulates the pitch angle β . The
second output can be utilized for lateral tower load mitigation
by generator torque control [8]. The aeroelastic tool offers
the possibility to select other inputs and outputs, but we limit
to the ones just mentioned to clearly expose the results.

III. REDUCED ORDER LPV MODEL

Consider Ns stable multiple-input multiple-output (MIMO)
LTI dynamical systems (2) of order n corresponding to
parameter values θ (i), i = 1,2, . . . ,Ns,

Si :

{
ẋi(t) = Aixi(t)+Biu(t)
y(t) =Cixi(t)+Diu(t)

, i = 1, . . . ,Ns. (3)

where Ai ∈ Rn×n, Bi ∈ Rn×nu , Ci ∈ Rny×n, Di ∈ Rny×nu .
We seek a reduced-order parameterized model S(θ) of order
r < n which approximates Si,

S(θ) :

{
ẋ = A(θ)x(t)+B(θ)u(t)
y(t) =C(θ)x(t)+D(θ)u(t)

(4)

where A(θ) ∈Rr×r, B(θ) ∈Rr×nu , C(θ) ∈Rny×r, D(θ) ∈
Rny×nu are continuous functions of a vector of varying pa-
rameters θ :=

[
θ1,θ2, . . . ,θNθ

]T . The dynamics of the origi-
nal system Si and the approximated system S(θ) are assumed
to evolve smoothly with respect to θ (i) and θ , respectively.
The parameter θ may represent the current operating point. It
also may describe deviations on aerodynamics and structural
properties for the sake of parametric model uncertainties.
Plant parameters to be designed under an integrated plant-
controller synthesis scheme could also be parameterized.

Variation in aerodynamic forces under structural vibration
contributes significantly to changes in natural frequencies
and damping of some structural modes. A specific procedure
that takes these particularities into account is proposed here.
A flowchart containing the required steps is depicted in Fig.
1.

Known methods for model reduction constitutes the pro-
posed scheme and are briefly explained in the sequel, in the
context of our application. Consult the survey of [9] for a
more comprehensive exposure on model reduction.
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Fig. 1. Scheme overview.

A. Model Reduction

A reduced order model is commonly obtained by trunca-
tion of appropriate states. Let the state vector xi be partitioned
into xi := [xr,i xt,i]

T where xr,i is the vector of retained states
and xt,i is the vector of truncated states. The original system
is partitioned accordingly[

ẋr,i(t)
ẋr,i(t)

]
=

[
Arr,i Art,i
Atr,i Att,i

][
xr,i(t)
xt,i(t)

]
+

[
Br,i
Bt,i

]
u(t)

y =
[
Cr,i Ct,i

][xr,i(t)
xt,i(t)

]
+Du(t)

(5)

and the reduced model is simply given by the state-space
equation of the retained states

ẋr,i = Arr,ixi(t)+Br,iu(t),

y =Cr,ixr,i +Du(t)
(6)

If the original model is a stable system so is its trun-
cated counterpart. While truncation tends to produce a good
approximation in the frequency domain, the zero frequency
gains (DC gains) are not guaranteed to match. This can be
of particular importance in a wind turbine model because
some aerodynamic states may not influence the transient
behavior but can contribute significantly to low frequency
gains. Matching DC gains can be enforced by a model
residualization method by setting the derivative of xt,i to zero
in (5) and solving the resulting equation for xr,i. After trivial
manipulations, the reduced model is given by

ẋr,i =
[
Arr−ArtA−1

tt Atr
]

i xr,i +
[
Br−ArtA−1

tt Bt
]

i u(t)

y =
[
Cr−CtA−1

tt Atr
]

i xr,i +
[
D−CtA−1

tt Bt
]

i u(t)
(7)

Note that Att,i is assumed invertible for (7) to hold.
Residualization is performed in both modal and balanced
reduction steps.

1) Modal Truncation: Due to size and numerical prop-
erties associated with large size systems and low damped
dynamics, model reduction algorithms based on Hankel
singular values can fail to produce a good reduced model.



In order to start the reduction process, the original model is
truncated to an intermediate size for subsequent reduction in
a more accurate way. In modal form the system is put into a
modal realization before states are truncated [10]. The modal
form realization has the state matrix A is in block diagonal
form with either 1×1 or 2×2 blocks when the eigenvalue is
real or complex, respectively. Let system Si be represented
in modal form,

Sm,i :

{
ẋi(t) = Am,ixm,i(t)+Bm,iu(t)
y(t) =Cm,ixm,i(t)+Dm,iu(t)

(8a)

Am,i = diag(Am,k,i),

Am,k,i =−ek,i for real eigenvalues,

Am,k,i =

[
−ξk,iωk,i ωk,i

√
1−ξ 2

ωk,i
√

1−ξ 2 −ξk,iωk,i

]
for complex eigen.

Bm,i =


Bm,1,i
Bm,2,i

...
Bm,k,i

 , Cm,i =
[
Cm,1,i Cm,2,i . . . Cm,k,i

]
i = 1, . . . ,Ns, k = 1, . . . ,Nm.

(8b)
where Nm is the number of modes, ξk,i and ωk,i are the
damping ratio and natural frequency of mode k and model i.
The diagonal blocks are usually arranged in ascending order
according to their eigenvalue magnitudes. The magnitude
of a complex eigenvalue is ωk,i while for a purely real
eigenvalue is ek,i. The retained states are then the ones with
magnitudes smaller than a chosen treshhold ω̄ . The interme-
diate model must contain all modes within the frequencies
of interest for control design. A large number of states (300
to 450) is expected at this stage since many modes are of
low frequency.

2) Balanced Truncation: The order of the intermediate
system is further reduced by balanced truncation. In balanced
truncation [11] the system is transformed to a balanced
realization. A MIMO LTI system of the form (3) is said
to be balanced if, and only if, its controllability and ob-
servability grammians are equal and diagonal, i.e. Pi =
Qi = diag(σ1, . . . ,σn), where σ1, . . . ,σn denotes the Hankel
singular values sorted in decreasing order and matrices Pi, Qi
are the controllability and the observability Gramians. The
gramians are solutions of the following Lyapunov equations

AiPi +PiAT
i +BiBT

i = 0

AT
i Qi +QiAi +CT

i Ci = 0
(9)

If this holds, the balanced system is given by

Sb,i :

{
ẋb,i =W T

i AiVixb,i(t)+W T
i Biui(t)

y(t) =CiVixb,i(t)+Diui(t)

i = 1, . . . ,Ns.

(10)

where xb ∈ Rn, V = UZΣ−1/2 and W = LY Σ−1/2, together
with the factorizations P =UUT , Q = LLT and the singular

value decomposition UT L = ZΣY T [12]. This state coordi-
nate equalizes the input-to-state and state-to-output energy
transfers, making the Hankel singular values a measure of
the contribution of each state to the input/output behavior.

Denote Vi(r) and Wi(r) the first r columns of Vi and Wi. The
reduced-order systems Ŝi

Ŝi :

{
˙̂xi = Âix̂i(t)+ B̂iui(t)
ŷ(t) = Ĉix̂i(t)+ D̂iûi(t)

i = 1, . . . ,Ns. (11)

are obtained by truncation when the projectors Vi(r) and
Wi(r) are applied to the intermediate sized model. In words,
the balanced truncation removes the states with low Hankel
singular values, thus not much information about the system
will be lost. When applied to a stable system, balanced
truncation preserves stability and guarantees and an upper
bound on the approximation error in an H∞ sense [13].
Expected order of the final reduced system is 7 to 20 states.
The choice of the final order depends on the required model
complexity and admissible error between the full and reduced
model.

B. State-Space Consistency & Interpolation

Consider the balanced reduced models Ŝi and put them
in modal form. The first step towards a consistent state-
space representation is to assure that all modes keep their
positions in the state matrix throughout the parameter space.
The second step to a consistent state-space is to ensure that
values of the entries of the system matrices change smoothly
between each LTI system. At this point, the system matri-
ces cannot be readily interpolated because the modal and
balanced similarity transformations applied to the original
system are not unique. One could think of interpolating the
system in modal form. Indeed, the state matrix A is unique
up to a permutation of the location of the modes and could
easily be interpolated, but the similarity transformation that
puts the system in modal form is not unique. Therefore,
matrices B̂ and Ĉ may have entries with abrupt value changes.
The balanced realization is unique up to a sign change and
consequently abrupt sign changes in the system matrices may
occur from one LTI system to another. As suggested by [14],
these issues can be corrected by properly changing the sign
of the correspondent eigenvectors.

Instead of correcting the eigenvectors before similarity
transformations, we propose to transform the reduced order
LTI systems into a representation based on the companion
canonical form. No unique canonical form for multivari-
able systems is known to exist [15]. However, there exist
algorithms which, for a system under arbitrary similarity
transformation, find a unique companion form [16]. One
algorithm with such properties is implemented in the function
canon of MATLAB. The companion form is poorly con-
ditioned for most state-space computations [17]. In order
to avoid numerical issues, each mode k of the reduced
system in modal coordinates is transformed into a companion
realization. The system matrices of this particular realization



are

Ac,i = diag(Ac,k,i), Bc,i =


Bc,1,i
Bc,2,i

...
Bc,k,i

 ,
Cc,i =

[
Cc,1,i Cc,2,i . . . Cc,k,i

]
,

Ac,k,i =−ak,i

Bc,k,i =
[
1 b1,k,i . . . bnu−1,k,i

]
for real eigenvalues,

Cc,k,i =


c1,k,i

. . .

cny−1,k,i

0




Ac,k,i =

[
0 −ak,i,1

1 −ak,i,2

]
,

Bc,k,i =

[
0 b11,k,i . . . b1nu−1,k,i

1 b21,k,i . . . b2nu,k,i

]
for complex eigen.

Cc,k,i =


c11,k,i . . . c1r,k,i

...
. . .

...
cny1,k,i . . . cnyr,k,i


i = 1, . . . ,Ns, k = 1, . . . ,Nm.

(12)
The characteristic polynomial of each mode appears in
the rightmost column of the matrix Ac,k,i. The entries of
Ac,k,i, Bc,k,i and Cc,k,i may be easily checked for possible
inconsistencies of a particular mode, by detecting abrupt
value changes between LTI systems. The state-space matrices
are now at a realization suitable for interpolation. Let z(θ) be
one matrix entry, function of θ . We focus on the polynomial
dependence

z(θ) =
Np

∑
k=1

ηk pk(θ) (13)

where pk is a set of multivariate polynomials on the parame-
ters θ1, . . . ,θNθ

and ηk are coefficients to be determined. Let
zi be the values of a matrix element for i = 1, . . . ,Ns. Define
the following matrices

H =

 p1(θ
(1)) . . . pNp(θ

(1))
...

. . .
...

p1(θ
(Ns)) . . . pNp(θ

(Ns)

=
[
P1 . . . Pnp

]
ZT =

[
z1 . . . zNs

]
, Γ

T =
[
η1 . . .ηNp

]
.

(14)
A linear least squares fit minimizes the quadratic error

between z(θ (i)) and zi, i = 1, . . . ,Ns

Γ
∗ = arg min

Γ
(Z−HΓ)T (Z−HΓ) (15)

The optimal Γ∗ is determined by initially computing a
singular value decomposition of H

ϒΞΨ
T = svd(H) (16)

With the decomposition at hand, the solution to the linear
least squares problem is given by

Γ
∗ = ΨΞ

+
ϒ

T Z (17)

where Ξ+ stands for the Moore-Penrose pseudoinverse of
Ξ. Repeating the above procedure for each matrix entry
results in the polynomial approximations of the matrices
A(θ), B(θ), C(θ), D(θ) that can be used for subsequent
analysis and design of controllers.

IV. NUMERICAL EXAMPLE

In this section, the proposed procedure is applied to the
NREL 5MW reference wind turbine model [18]. The aim
is to find an LPV model encapsulating the wind turbine
dynamics operating at the full load region. Large scale
MIMO LTI models with 877 states are computed by the
aeroelastic code HAWCStab2 [7] for wind speeds equidistant
1 m/s (θ (i) ∈ {12,13, . . . ,25}). The model is parameterized
by the mean wind speed θ := V̄ . A fifth-order polynomial
dependence of the LPV system matrices

[
A(θ) B(θ)
C(θ) D(θ)

]
=

[
A0 B0
C0 D0

]
+

5

∑
d=1

[
Ad Bd
Cd Dd

]
θ

d (18)

gives a fair trade-off between interpolation accuracy and
polynomial order. Due to the different units of inputs and
outputs, the LTI systems should be suitably normalized
before the order is reduced. Parameter-independent scales
are applied to all LTI models such that expected signal
excursions are normalized to 1. The generator torque input
was scaled to 5% of the rated torque. The pitch angle input
and wind speed input remained unscaled. The rotor angular
velocity is scaled to the maximum excursion desired in
closed-loop, 5 % of its nominal value. The lateral tower top
displacement was scaled with the H∞-norm of the inputs to
this output channel.

Bode plots of the original, intermediate and final reduced
order models for an operating point θ = 15 m/s are depicted
in Fig. 2. The intermediate model with 410 states resulted
from modal truncation and residualization of the original
system. A balanced truncation with residualization further
reduced the size to 14 states. The magnitude plots have
an excellent agreement in the frequencies of interest. The
residualization in both steps assisted to a better fit of the
low frequency content of the tower displacement output.
Attempts to use balanced truncation directly on the original
system failed to produce a good approximation due to
numerical ill-conditioning.

The balanced realization ”misses” a low frequency anti-
resonance related to the transfer function from wind speed
input to tower displacement output. Notice the differences in
magnitude and more pronouncedly phase around 10−2 Hz.
However, this anti-resonance does not contribute significantly
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Fig. 2. Bode plots of the original, intermediate and final reduced order
models for a mean wind speed of 15 m/s.

to the input-output behavior of the MIMO system. A com-
parison of the minimum and maximum singular values is
depicted in Fig. 3 and shows an excellent agreement.

Step responses of the original, intermediate and final
reduced order models for a mean wind speed of 15 m/s are
depicted in Fig. 4. Except for some high frequency content
in the signal from generator torque to tower position, the
responses are identical.

The location of the poles of the LPV system for a 2Ns
grid of equidistant operating points is illustrated in Fig. 5.
The arrows indicate how the poles move for increasing mean
wind speeds. A smooth evolution of the poles along the full
load region is noticeable.

The relative difference of the Hankel singular values of
the interpolated LPV system and the reduced order system
defined as

σrel,r,i =
σint,r,i−σr,i

σr,i
×100, i = 1, . . . ,Ns (19)

serves as a measure of the quality of the interpolation. A
good fit can be corroborated by some metrics of σrel,r,i given
in Tab. I. The mean difference in the Hankel singular values
is only 0.27% and the maximum difference just 2.75%.
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Fig. 4. Step responses of the original, intermediate and final reduced order
models for a mean wind speed of 15 m/s.

V. CONCLUSION & FUTURE WORK

This paper presents a procedure to obtain a reduced-order
LPV model of a wind turbine from a set of high-order
LTI models. Finding ways to encapsulate high-fidelity LTI
aeroelastic models as an LPV system is an important step to
increase the utilization of recent advances in LPV control by
the wind turbine industry. The proposed procedure starts by
model reduction of the high-order LTI systems at different
values of the parameter space. Manipulations of the state-
space coordinates follows, in order to arrive at low-order
consistent LTI systems for subsequent interpolation. The
reduced-order LPV system has a suitable size for analysis
and synthesis of controllers and presents smoothly varying
dynamics along the scheduling parameter range.

A subject for future work is to initially interpolate the
set of high-order LTI models and later apply an appropriate
reduction method to realize a reduced order LPV model.
Preserving structure reduction methods applied directly in
the second order vector equations of motion in an interest-
ing topic to be studied. Model complexity versus required
polynomial degree and a comparison with models obtained
by first-principles is also subject of future work.
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Fig. 5. Pole location of the LPV model for frozen values of the varying
parameter θ .

TABLE I
DIFFERENCE IN THE HANKEL SINGULAR VALUES BETWEEN THE LPV

AND REDUCED ORDER SYSTEM FOR FROZEN VALUES OF θ .

Max Min Mean Std. dev
2.75 0.001 0.27 0.57
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