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Abstract Control configuration selection is the pro-
cedure of choosing the appropriate input and output
pairs for the design of decoupled (SISO or block) con-
trollers for multivariable systems. This step is an im-
portant prerequisite for a successful industrial control
strategy. In industrial practice it is often the case that
systems which need to be controlled are non-linear,
and linear models are insufficient to describe the be-
havior of the processes. The focus of this paper is on
the problem of control configuration selection for a
class of non-linear systems which is known as bilin-
ear systems. A gramian-based interaction measure for
control configuration selection of MIMO bilinear pro-
cesses is described. In general, most of the results on
the control configuration selection, which have been
proposed so far, can only support linear systems. The
proposed gramian-based interaction measure not only
supports bilinear processes but also can be used to pro-
pose a richer sparse or block diagonal controller struc-
ture. The method is illustrated further with the help of
some illustrative examples.
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1 Introduction

The technological world of today has been witness-
ing the increased complexity due to the rapid devel-
opment of the process plants and the manufacturing
processes. The computational complexity, the relia-
bility problems and the restrictions in communication
make the centralized control of such large-scale com-
plex systems expensive and difficult.

To cope with these problems, several decentralized
control structures have been introduced and imple-
mented over the last few decades [1]. The decentral-
ized controllers have several advantages, which make
them popular in industry. The decentralized controllers
are easy to understand for operators, easy to imple-
ment and to re-tune [1, 2].

The decentralized control systems design is a two-
step procedure. The controller structure selection and
input–output pairing is the first main step and the con-
troller synthesis for each channel is the second step
of the decentralized control. The focus of this pa-
per is on pairing and the controller structure selec-
tion of the decentralized control systems. This issue
is a key problem in the design of decentralized and
distributed control systems, which directly affects the
stability and the performance of the control systems.
The interaction measures play an important role in the
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suitable pairing and the controller structure selection
for the decentralized and the distributed control. In-
teraction measures make it possible to study input–
output interactions and to partition a process into sub-
systems in order to reduce the coupling, to facilitate
the control and to achieve a satisfactory performance.
The interaction measures have received a lot of atten-
tion over the last few decades [2, 3]. There are two
broad categories of interaction measures in the litera-
ture. The first category is the relative gain array (RGA)
and its related indices [4–9] and the second category
is the family of the gramian-based interaction mea-
sures [10–13].

The most well-known and commonly used interac-
tion measure is the relative gain array (RGA), which
was first proposed in [4]. In the RGA, d.c. gain of the
process is used for the construction of the channel in-
teraction measure. The RGA is not sensitive to delays
and more importantly it considers the process just at a
particular frequency.

The RGA has been studied by several other re-
searchers (see, e.g. [5, 6]). There are also other sim-
ilar measures of interaction, which use dc gain of the
process e.g. the NI (the Niederlinski index) [7].

The NI does not provide more information for pair-
ing compared to RGA. The RGA and the NI have been
extended for input–output pairing of unstable MIMO
systems in [2]. The relative interaction array (RIA) is
an interaction measure, which is similar to RGA and
it is based on considering the interaction as an unmod-
eled term at d.c.

RIA does not provide more information than the
RGA about the channel interactions of the process.
These indices use the model of the processes at zero
frequency. In [6, 8], the relative dynamic gain array
(RDGA) was proposed for the first time. The RDGA
shows how the interaction varies over the frequency.
The idea is further generalized in [9] by the gener-
alized relative dynamic gains (GRDG). This method
was mainly proposed for 2 × 2 systems.

The second category of interaction measures is the
family of gramian-based methods. A method from this
category was first proposed in [10] and further in [11].
In this category, the observability and the controllabil-
ity gramians are used to form the Participation Matrix
(PM). The elements of the PM encode the informa-
tion of the channel interactions. PM is used for pair-
ing and the controller structure selection. The Han-
kel Interaction Index Array (HIIA) is a similar in-
teraction measure, which was proposed in [12]. The

gramian-based interaction measures have several ad-
vantages over the interaction measures in the RGA cat-
egory. The gramian-based interaction measures take
the whole frequency range into account rather than a
single frequency. This family of the interaction mea-
sures suggests more suitable pairing and allows more
complicated controller structures. For more details re-
garding the applications and the differences between
two main categories of the interaction measures, see
[11–14].

The gramian-based interaction measures have prov-
en to be very useful measures, which encode more
information on channel interactions compared to the
family of RGA interaction measures. The results on
the gramian-based interaction measures, which have
been proposed so far, only support linear systems.
However, in many applications, linear models are of-
ten insufficient to describe the behavior of the pro-
cesses. On the other hand, due to the complexity of
non-linear systems, methods for analyzing non-linear
systems or synthesizing their controllers are not as
well developed as their linear counterparts. This is the
main reason that the interaction measures and con-
troller structure selection issue are not studied exten-
sively for non-linear systems compared to linear sys-
tems.

Bilinear systems constitute an important class
of non-linear systems which comprise perhaps the
simplest class of non-linear models with a lot of
practical applications. Bilinear systems enjoy well-
established theories and find applications in the va-
riety of fields to describe the practical processes rang-
ing from electrical networks, hydraulic systems to
heat transfer, and chemical processes [20]. Moreover,
many highly non-linear systems may be modeled as
bilinear systems with appropriate state feedback or
can be approximated as bilinear systems in the so-
called bilinearization process see e.g. [21, 22, 26]
and [29].

In this paper, the gramian-based interaction mea-
sure is extended to support bilinear processes. The pro-
posed interaction measure is used for pairing and the
controller structure selection.

The paper is organized as follows. In the next sec-
tion, we review the concept of the gramians for bi-
linear systems. The interpretation of the controllabil-
ity and observability gramians is also discussed in this
section. Section 3 presents how gramians can be used
to quantify the channel interactions for bilinear sys-
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tems. The application of the proposed interaction mea-
sure in pairing and the controller structure selection is
explained in this section. Section 4 presents the exten-
sion of the proposed interaction measure for possible
non-square bilinear systems. In Sect. 5, the proposed
method is illustrated further with the help of some il-
lustrative examples including a bilinear model of a
hydraulic rotary multi-motor system. Section 6 con-
cludes the paper.

The notation used in this paper is as follows: M∗
denotes the transpose of matrix if M ∈ R

n×m and
complex conjugate transpose if M ∈ C

n×m. The stan-
dard notation >,≥ (<,≤) is used to denote the pos-
itive (negative) definite and semidefinite ordering of
matrices. Struc(Π) denotes the structure of a MIMO
system Π . For a m × p MIMO system Π with in-
put u(t) ∈ R

m and output y(t) ∈ R
p,Struc(Π) =

[πij ]p×m is a symbolic array where πij = ∗, if there
exists a subsystem in Π with input uj and output yi .
Otherwise: πij = 0.

2 Controllability and observability gramians

The controllability and the observability gramians are
well-known matrices, which are widely used to check
the controllability and the observability of dynamical
systems. The gramians are also widely used in the pro-
cess of model order reduction [15, 16]. The controlla-
bility and observability gramians show how difficult a
system is to control and to observe, respectively. This
is an interesting feature which makes gramians very
useful for pairing and for the control structure selec-
tion.

For a discrete-time bilinear dynamical system
which is described by

Π :
⎧
⎨

⎩

x(k + 1) = Ax(k) + ∑m
j=1 Njx(k)uj (k)

+ Bu(k),

y(k) = Cx(k).

(1)

Here x(k) ∈ R
n,u(k) ∈ R

m,y(k) ∈ R
p , the controlla-

bility gramian P is defined as [17–19]:

P :=
∞∑

i=1

∞∑

ki=0

. . .

∞∑

k1=0

PiP
∗
i , (2)

where

P1(k1) = Ak1B,

Pi(k1, . . . , ki) (3)

= Aki
[
N1Pi−1 N2Pi−1 · · · NmPi−1

]
,

and the observability gramian Q is defined as

Q :=
∞∑

i=1

∞∑

ki=0

. . .

∞∑

k1=0

Q∗
i Qi, (4)

where

Q1(k1) = CAk1,

(5)

Qi(k1, . . . , ki) =

⎡

⎢
⎢
⎢
⎣

Qi−1N1

Qi−1N2
...

Qi−1Nm

⎤

⎥
⎥
⎥
⎦

Aki .

The gramians are given by the solutions of the gener-
alized Lyapunov equations [19]:

APA∗ − P +
m∑

j=1

NjPN∗
j + BB∗ = 0,

(6)

A∗QA − Q +
m∑

j=1

N∗
j QNj + C∗C = 0.

The generalized Lyapunov equations can be solved it-
eratively. The controllability gramian P can be ob-
tained from [19]:

P = lim
i→∞ P̂i (7)

where

AP̂1A
∗ − P̂1 + BB∗ = 0,

AP̂iA
∗ − P̂i +

m∑

j=1

Nj P̂i−1N
∗
j + BB∗ = 0, (8)

i = 2,3, . . . .

In other words, all what we need to do is to run
(8) and to compute P̂i ’s and terminate the computa-
tion when P̂i converges to a constant matrix. Dually
the observability gramian can be computed [19]. The
controllability and observability gramians are defined
analogously for continuous-time systems. Let Π be a
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continuous-time bilinear system described by

Π :
⎧
⎨

⎩

ẋ(t) = Ax(t) + ∑m
j=1 Njx(t)uj (t)

+ Bu(t),

y(t) = Cx(t),

(9)

where x(t) ∈ R
n,u(t) ∈ R

m,y(t) ∈ R
p , the controlla-

bility gramian P is defined as [30]

P :=
∞∑

i=1

∫ ∞

0
· · ·

∫ ∞

0
PiP

∗
i dt1 · · ·dti, (10)

where

P1(t1) = eAt1B

Pi(t1, . . . , ti ) (11)

= eAti
[
N1Pi−1 N2Pi−1 . . . NmPi−1

]

and the observability gramian is defined as

Q :=
∞∑

i=1

∫ ∞

0
· · ·

∫ ∞

0
Q∗

i Qi dt1 · · ·dti, (12)

where

Q1(t1) = CeAt1 ,

(13)

Qi(t1, . . . , ti ) =

⎡

⎢
⎢
⎢
⎣

Qi−1N1

Qi−1N2
...

Qi−1Nm

⎤

⎥
⎥
⎥
⎦

eAti .

These gramians are given by the solutions of the gen-
eralized Lyapunov equations:

AP + PA∗ +
m∑

j=1

NjPN∗
j + BB∗ = 0, (14)

A∗Q + AQ +
m∑

j=1

N∗
j QNj + C∗C = 0. (15)

Analogous to discrete-time case, the generalized Lya-
punov equations can be solved iteratively. More details
on gramians and its interpretations and computations
are discussed in [19] and [30].

3 Interaction measure

In this section, an interaction measure for the square
discrete-time and continuous-time bilinear MIMO

Fig. 1 MIMO system with input u ∈ R
m and output y ∈ R

m

processes (Fig. 1) is built upon the notion of the grami-
ans. The trace of the cross gramian is used as a con-
venient basis to present the channel interaction and to
select the most appropriate controller structure.

For a square MIMO bilinear system Π with repre-
sentation (1), we have

B = [b1 b2 . . . bm],
(16)

C∗ = [c1 c2 . . . cm].

A set of elementary SISO systems can be associ-
ated to the MIMO system, such that each SISO system
has a single input uj (t) and single output yi(t). The
state-space representation of each elementary system
is given by

Πij :
{

x(k + 1) = Ax(k) + Njx(k)uj (k) + bjuj (k),

yi(k) = c∗
i x(k),

(17)

with gramians Pj and Qi . The controllability gramian
Pj and the observability gramian Qi for the elemen-
tary systems are the solutions to

APjA
∗ − Pj + NjPjN

∗
j + b∗

j bj = 0,

A∗QiA − Qi + N∗
j QiNj + c∗

i ci = 0.
(18)

Following a similar procedure for a continuous-time
MIMO bilinear system Π with representation (9), a
set of elementary SISO systems can be associated to
the system:

Πij :
{

ẋ(t) = Ax(t) + Njx(t)uj (t) + bjuj (t),

yi(t) = c∗
i x(t).

(19)

The controllability gramian Pj and the observability
gramian Qi for the elementary systems are the solu-
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tions to

APj + PjA
∗ + NjPjN

∗
j + bjb

∗
j = 0,

A∗Qi + AQi + N∗
j QiNj + c∗

i ci = 0.
(20)

The information of the channel interaction which is
obtained from the gramians of the elementary systems
is encompassed into the so-called participation matrix
(PM):

Ψ = [ψij ] ∈ R
m×m, (21)

where

ψij = trace[PjQi]
∑m

i=1
∑m

j=1 trace[PjQi] . (22)

Note that 0 ≤ ψij < 1 and
∑m

i=1
∑m

j=1 ψij = 1.
The participation matrix highlights the elementary

subsystems, which are more important in the descrip-
tion of MIMO systems, and in this way it shows the
suitable pairing and the appropriate controller struc-
ture to select.

For pairing and the controller structure selection,
the structure of the nominal system Πn needs to be
obtained. The nominal model is a model, which is ob-
tained by keeping some of the elementary subsystems
of the actual MIMO process and ignoring the rest. For
example, assume that one of the ordinary methods for
pairing is used and a decentralized control is synthe-
sized. If the inputs and outputs are re-labeled, one only
needs to design m independent SISO controller loops,
for elementary diagonal subsystems. In this case:

Struc(Πo) =
⎡

⎢
⎣

∗ 0 0

0
. . . 0

0 0 ∗

⎤

⎥
⎦

m×m

. (23)

For the designed controller C we have

Struc(C) =
⎡

⎢
⎣

∗ 0 0

0
. . . 0

0 0 ∗

⎤

⎥
⎦

m×m

. (24)

The elements of the PM show which elementary sub-
systems are significant and should be considered in the
nominal model. When ψij is small, the associated el-
ementary subsystem to the pair (i, j) is either hard to
control or hard to observe. This shows that this subsys-
tem does not have any significant effect in the actual

input–output relation and could be ignored in the nom-
inal model. When ψij is larger than 1/m2, some states
in the elementary system with output yj and input uj

are easy to control and easy to observe and therefore
Πij is a good candidate to be kept in the nominal sys-
tem. The suitability of the pairing and the performance
of the controller structure highly depend on how close
the sum of the chosen ψij elements is to one. When
the sum of the chosen ψij elements is close to one, the
nominal and the actual model are close to each other
and the error is not significant. The complexity of the
selected controller structure depends on the number of
the ψij elements. In the completely decentralized con-
trol, which is the least complicated controller struc-
ture, the number of the chosen elements would be m.

For example consider a 3 × 3 process model with
PM:

Ψ =
⎡

⎣
0.1833 0.1685 0.0861
0.1200 0.0445 0.1783
0.0639 0.0691 0.0863

⎤

⎦ .

To pair inputs and outputs for decentralized control
structure, we have to select one element per row
and one element per column. ψ11,ψ12,ψ21 > 1/m2,
therefore their associated elementary subsystems are
good candidates to be involved in the nominal model.
However, the best paring for a decentralized controller
can be obtained with (u1, y1), (u2, y3), (u3, y2) which
are associated with

Σ = ψ11 + ψ23 + ψ32 = 0.4307.

The structure of the nominal model is

Struc(Πo) =
⎡

⎣
∗ 0 0
0 0 ∗
0 ∗ 0

⎤

⎦ .

A simple controller structure for selection is the struc-
ture of Π−1

o :

Struc(C) = Struc
(
Π−1

o

) =
⎡

⎣
∗ 0 0
0 0 ∗
0 ∗ 0

⎤

⎦ .

If practically it is possible to use more complicated
control structures than completely decentralized con-
trol, y1 could be commanded from u2 and then we will
have

Σ = ψ11 + ψ12 + ψ23 + ψ32 = 0.599.
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The structure of the nominal model then will be

Struc(Πo) =
⎡

⎣
∗ ∗ 0
0 0 ∗
0 ∗ 0

⎤

⎦ .

A simple controller structure to select:

Struc(C) = Struc
(
Π−1

o

) =
⎡

⎣
∗ 0 ∗
0 0 ∗
0 ∗ 0

⎤

⎦ .

In this case the structure is partially decentralized.

4 Pairing and the controller structure for
non-square systems

Non-square systems are multivariable systems with an
unequal number of inputs and outputs. Non-square
systems are divided into two classes: systems with
more inputs than outputs and systems with more out-
puts than inputs. Although non-square plants are often
encountered in many engineering disciplines, the the-
ory for analysis and control of non-square plants even
for linear systems is not well developed.

The main strategy for control of non-square pro-
cesses is the squaring strategy. That is, the necessary
number of outputs or inputs are added or deleted from
the system to obtain a square plant. Then, the well-
established control methods can be used for the non-
square processes. However, this has its own problems.
Introducing some more outputs and inputs results in
more costs and maintenance issues and ignoring some
of the inputs will certainly degrade the degrees of free-
dom for achieving the desired response. If we delete
some outputs, it degrades the reliability of our mea-
surements. For non-square linear systems with more
inputs than outputs, the control considering the non-
square system structure leads to higher performance
compared with the squared case [31, 32]. For non-
square systems with more outputs than inputs, the no-
tion of perfect control in the least squares sense similar
to the one proposed in [32] can be derived. However,
a natural extension of our proposed interaction mea-
sure to non-square bilinear system is presented in the
sequel.

For a non-square MIMO bilinear system with rep-
resentation (1), we have

B = [b1 b2 . . . bm],
(25)

C∗ = [c1 c2 . . . cp].
If we associate a set of elementary SISO systems to
this MIMO system such that each SISO system has a
single input uj (t) and single output yi(t), the state-
space representation of each elementary system will
be

Πij :
{

x(k + 1) = Ax(k) + Njx(k)uj (k) + bjuj (k),

yi(k) = c∗
i x(k).

Assume that the controllability and the observability
gramians for these subsystems are Pj and Qi .

The non-square PM is defined as

Ψ = [ψij ] ∈ R
m×p, (26)

where

ψij = trace[PjQi]
∑p

i=1

∑m
j=1 trace[PjQi]

. (27)

The criterion for the control structure selection based
on this PM is similar to the one of the square sys-
tem. The only difference is that if the structure of the
nominal model is Struc(Πo), a simple non-square sug-
gested structure for the controller Cwill be

Struc(C) = Struc
(
Π+

o

)
, (28)

where “+” denotes the Moore–Penrose pseudo in-
verse. The procedure is similar for continuous-time bi-
linear systems.

5 Pairing and the controller structure selection:
illustrative examples

In this section, three numerical examples are used to
illustrate the proposed controller structure selection
method. The first example is a square continuous-time
bilinear model, the second is a non-square continuous-
time bilinear model and the last one is a discrete-time
bilinear model of a multi-motor hydraulic system.

5.1 Continuous-time bilinear model

Consider a continuous-time bilinear model with the
following standard state-space representation:
{

ẋ(t) = Ax(t) + ∑3
j=1 Njx(t)uj (t) + Bu(t),

y(t) = Cx(t).
(29)
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Here

A =
⎡

⎣
−30 0 0

0 −70 0
0 0 −15

⎤

⎦ ,

N1 = N2 =
⎡

⎣
0 −0.07 0
30 0 0
0 0 0

⎤

⎦ ,

N3 =
⎡

⎣
0 0 −0.07
0 0 0
30 0 0

⎤

⎦ ,

B =
⎡

⎣
20 0 0
0 60 0
0 0 50

⎤

⎦ , C =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ .

Solving the Lyapunov equation for the subsystems, the
PM is computed as

Ψ =
⎛

⎝
0.00133 0.219 0.744

0.000000133 0.00219 0.0000595
0.000000648 0.0000857 0.033

⎞

⎠ .

The structure of nominal model which this PM sug-
gests for a decentralized control is

Struc(Πo) =
⎡

⎣
0 0 ∗
0 ∗ 0
∗ 0 0

⎤

⎦ .

This structure is associated to Σ = ψ22 +ψ31 +ψ13 =
0.7461 and a simple controller which is suggested for
this is

Struc(C) =
⎡

⎣
0 0 ∗
0 ∗ 0
∗ 0 0

⎤

⎦ .

A more complicated model structure is

Struc(Πo) =
⎡

⎣
0 ∗ ∗
0 ∗ 0
∗ 0 0

⎤

⎦

which is associated to Σ = ψ22 + ψ31 + ψ13 + ψ12 =
0.9655 and a simple controller which is suggested for
this is

Struc(C) =
⎡

⎣
0 0 ∗
0 ∗ 0
∗ ∗ 0

⎤

⎦ .

5.2 Non-square bilinear model

Consider a non-square bilinear model with three in-
puts and two outputs and the following standard state-
space representation:

{
ẋ(t) = Ax(t) + ∑3

j=1 Njx(t)uj (t) + Bu(t),

y(t) = Cx(t),
(30)

where

A =
⎡

⎣
−30 0 0

0 −70 0
0 0 −15

⎤

⎦ ,

N1 = N2 =
⎡

⎣
0 −0.07 0
30 0 0
0 0 0

⎤

⎦ ,

N3 =
⎡

⎣
0 0 −0.07
0 0 0
30 0 0

⎤

⎦ ,

B =
⎡

⎣
20 0 0
0 60 0
0 0 50

⎤

⎦ ,

C =
[

1 0 −1
2 0.1 0

]

.

The non-square PM for this system is

Ψ =
(

0.000274 0.0452 0.16
0.0011 0.181 0.613

)

.

The nominal model which this PM suggests for a de-
centralized control is

Struc(Πo) =
(

0 ∗ 0
0 0 ∗

)

,

and therefore a simple controller which is suggested
for this is

Struc(C) = Struc
(
Π+

o

) =
⎛

⎝
0 0
∗ 0
0 ∗

⎞

⎠ .

A more complicated model structure according to PM
is

Struc(Πo) =
(

0 ∗ 0
0 ∗ ∗

)
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and therefore a simple controller which is suggested
for this is

Struc(C) = Struc
(
Π+

o

) =
⎛

⎝
0 0
∗ 0
∗ ∗

⎞

⎠ .

5.3 Discrete-time bilinear model

In the sequel, the proposed interaction measure is
used for pairing and the controller structure selec-
tion for a discrete-time bilinear model for a hydraulic
multi-motor rotary system. In general, hydraulic sys-
tems are highly non-linear dynamical systems; see,
e.g. [27, 28]. The linear models are not sufficiently
accurate to describe them and consequently the con-
trollers which are designed based on the linear models
of the hydraulic systems quite often do not give satis-
fying results in practice. On the other hand, due to the
complexity of the highly non-linear hydraulic models,
methods for analyzing them or synthesizing their con-
trollers are not well developed and often they are dif-
ficult to apply in practice. In between the spectrum of
different models to describe a hydraulic system from
linear model to highly non-linear models, the bilinear
models often offer an adequately accurate model with
a well-developed theory for the analysis and control
[23–25].

Consider a continuous-time bilinear model of the
hydraulic rotary multi-motor system in [23]. The
model is discretized by Euler’s forward discretiza-
tion method with the sampling time Ts = 0.001. One
should note that in general we do not have to dis-
cretize the model as we have developed the method
for the continuous-time case in previous sections.
However, to illustrate the method and to see how the
method works for discrete-time systems, discretiza-
tion is performed to obtain a discrete-time example.
The discrete-time bilinear model is

Π :

⎧
⎪⎨

⎪⎩

x(k + 1) = Ax(k) + ∑3
j=1 Njx(k)uj (k)

+ Bu(k),

y(k) = Cx(k),

(31)

where

A =
⎡

⎣
0.99997 0 0

0 −0.99997 0
0 0 0.99997

⎤

⎦ ,

N1 =
⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦ , C =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ ,

N2 =
⎡

⎣
0 −0.00007 0

0.03 0 0
0 0 0

⎤

⎦ ,

N3 =
⎡

⎣
0 0 −0.00007
0 0 0

0.03 0 0

⎤

⎦ ,

B =
⎡

⎣
200 0 0
0 6 0
0 0 10

⎤

⎦ .

The participation matrix (PM) for this bilinear sys-
tem is obtained using the proposed method:

Ψ =
⎛

⎝
0.0985 0.000399 0.00111
0.443 0.0018 0.00499
0.443 0.0018 0.00501.

⎞

⎠

The ψ21,ψ31 entries are significant compared to other
entries. The Σ associated to the best possible pairing
for the decentralized control is

Σ = ψ33 + ψ12 + ψ21 = 0.4486.

The structure of the nominal model for this pairing will
be

Struc(Πo) =
⎡

⎣
0 ∗ 0
∗ 0 0
0 0 ∗

⎤

⎦ .

The suggested simple control structure for this pair-
ing is

Struc(C) = Struc
(
Π−1

o

) =
⎡

⎣
0 ∗ 0
∗ 0 0
0 0 ∗

⎤

⎦ .

If it is allowed to use more complex controllers
than decentralized control (partially decentralized), y1

could be commanded from u3 and then we have

Σ = ψ33 + ψ21 + ψ12 + ψ31 = 0.8918,

associated with

Struc(Πo) =
⎡

⎣
0 ∗ 0
∗ 0 0
∗ 0 ∗

⎤

⎦ .
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The simple control structure for this pairing is

Struc(C) = Struc
(
Π−1

o

) =
⎡

⎣
0 ∗ 0
∗ 0 0
0 ∗ ∗

⎤

⎦ .

The Σ for this structure is very close to one.

6 Conclusion

A gramian-based interaction measure for the decen-
tralized control of bilinear processes is proposed in
this paper. The proposed MIMO interaction measure is
the extension of its gramian-based analogous counter-
part, which has been proposed for decentralized input–
output pairing as well as for the controller architec-
ture selection for the linear processes. The proposed
measure reveals more information about the ability of
the channels to be controlled and to be observed and
provides hints for the selection of the richer controller
structures such as triangular, sparse and block diago-
nal.

Acknowledgements This work was supported by the Danish
Research Council for Technology and Production Sciences.

References

1. Scattolini, R.: Architectures for distributed and hierarchi-
cal model predictive control—a review. J. Process Control
19(5), 723–731 (2009)

2. Hovd, M., Skogestad, S.: Pairing criteria for decentralised
control of unstable plants. Ind. Eng. Chem. Res. 33, 2134–
2139 (1994)

3. Van de Wal, M., De Jager, B.: A review of methods for
input/output selection. Automatica 37(4), 487–510 (2001)

4. Bristol, E.H.: On a new measure of interaction for multi-
variable process control. IEEE Trans. Autom. Control 11,
133–134 (1966)

5. Skogestad, S., Morari, M.: Implications of large RGA el-
ements on control performance. Ind. Eng. Chem. Res. 26,
2323–2330 (1987)

6. Witcher, M.F., McAvoy, T.J.: Interacting control systems:
steady-state and dynamic measurement of interaction. ISA
Trans. 16(3), 35–41 (1977)

7. Niederlinski, A.: A heuristic approach to the design of lin-
ear multivariable interacting control systems. Automatica
7, 691–701 (1971)

8. Bristol, E.H.: Recent results on interaction in multivari-
able process control. In: 71st AIChE Conference, Miami,
Florida, USA (1978)

9. Gagnon, E., Desbiens, A., Pomerleau, A.: Selection of pair-
ing and constrained robust decentralized PI controllers.
In: American Control Conference, San Diego, California,
USA, pp. 4343–4347 (1999)

10. Conley, A., Salgado, M.E.: Gramian based interaction mea-
sure. In: The 39th IEEE Conference on Decision and Con-
trol, Sydney, Australia, pp. 5020–5022 (2000)

11. Salgado, M.E., Conley, A.: MIMO interaction measure and
controller structure selection. Int. J. Control 77(4), 367–383
(2004)

12. Wittenmark, B., Salgado, M.E.: Hankel-norm based inter-
action measure for input-output pairing. In: Proc. of the
2002 IFAC World Congress, Barcelona, Spain (2002)

13. Halvarsson, B.: Comparison of some gramian based in-
teraction measures. In: IEEE International Symposium on
Computer Aided Control System Design (CACSD 2008),
Part of IEEE Multi-Conference on Systems and Control,
San Antonio, Texas, USA, pp. 138–143 (2008)

14. Samuelsson, P., Halvarsson, B., Carlsson, B.: Interaction
analysis and control structure selection in a wastewater
treatment plant model. IEEE Trans. Control Syst. Technol.
13(6), 955–964 (2005)

15. Antoulas, A.C.: Approximation of Large-Scale Dynamical
Systems. Advances in Design and Control. SIAM, Philadel-
phia (2005)

16. Gugercin, S., Antoulas, A.: A survey of model reduction by
balanced truncation and some new results. Int. J. Control
77, 748–766 (2004)

17. Dorissen, H.T.: Canonical forms for bilinear systems. Syst.
Control Lett. 13(1), 54–160 (1989)

18. D’Alessandro, P., Isidori, A., Ruberti, A.: Realization and
structure theory of bilinear dynamic systems. SIAM J. Con-
trol 12, 517–535 (1974)

19. Zhang, L., Lam, J., Huang, B., Yang, G.H.: On gramians
and balanced truncation of discrete-time bilinear systems.
Int. J. Control 76, 414–427 (2003)

20. Mohler, R.R.: Nonlinear Systems, vol. II. Prentice Hall,
New Jersey (1991)

21. Svoronos, S., Stephanopoulos, G., Aris, R.: Bilinear ap-
proximation of general non-linear dynamic systems with
linear inputs. Int. J. Control 31, 109–126 (1980)

22. Deutscher, J.: Nonlinear model simplification using L2-
optimal bilinearization. Math. Comput. Model. Dyn. Syst.
11, 1–19 (2005)

23. Guo, L., Shone, A., Ding, X.: Control of hydraulic multi-
motor systems based on bilinearization. Automatica 30(9),
1445–1453 (1994)

24. Schwarz, H., Dorissen, H.T., Guo, L.: Bilinearization of
nonlinear systems. In: Systems Analysis and Simulation,
vol. 46, pp. 89–96. Akademie Verlag, Berlin (1988)

25. Guo, L., Schwarz, H.: A control scheme for bilinear sys-
tems and application to a secondary controlled hydraulic
rotary drive. In: Proc. 28th IEEE Conf. on Decision and
Control, Tampa, FL, pp. 542–547 (1989)

26. Juang, J.-N.: Continuous-time bilinear system identifica-
tion. Nonlinear Dyn. 39, 79–94 (2005)

27. Chen, C.-T.: Hybrid approach for dynamic model identifi-
cation of an electro-hydraulic parallel platform. Nonlinear
Dyn. 67, 695–711 (2012)

28. Scheidl, R., Manhartsgruber, B.: On the dynamic behav-
ior of servo-hydraulic drives. Nonlinear Dyn. 17, 247–268
(1998)



H.R. Shaker, J. Stoustrup

29. van de Wouw, N., Nijmeijer, H., van Campen, D.H.:
A Volterra Series approach to the approximation of stochas-
tic nonlinear dynamics. Nonlinear Dyn. 27, 397–409
(2002)

30. Zhang, L., Lam, J.: On H2 model reduction of bilinear sys-
tems. Automatica 38, 205–216 (2002)

31. Treiber, S., Hoffman, D.W.: Multivariable constraint con-
trol using a frequency domain design approach. In: Pro-

ceeding of the 3rd Conference on Chem. Proc. Control,
Amsterdam (1986)

32. Khaki-Sedigh, A., Moaveni, B.: Control Configuration Se-
lection for Multivariable Plants. Lecture Notes in Control
and Information Sciences. Springer, Berlin (2009)


	An interaction measure for control configuration selection for multivariable bilinear systems
	Abstract
	Introduction
	Controllability and observability gramians
	Interaction measure
	Pairing and the controller structure for non-square systems
	Pairing and the controller structure selection: illustrative examples
	Continuous-time bilinear model
	Non-square bilinear model
	Discrete-time bilinear model

	Conclusion
	Acknowledgements
	References


