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Abstract—In this paper we discuss two different approaches
to model the flexible power consumption of heat pump heated
households: individual household modeling and lumped model-
ing. We illustrate that a benefit of individual modeling is that we
can overview and optimize the complete flexibility of a heat pump
portfolio. Following, we illustrate two disadvantages of individual
models, namely that it requires much computational effort to
optimize over a large portfolio, and second that it is difficult to
accurately model the houses in certain time periods due to local
disturbances. Finally, we propose a lumped model approach as
an alternative to the individual models. In the lumped model,
the portfolio is seen as baseline consumption superimposed with
an ideal storage of limited power and energy capacity. The
benefit of such a lumped model is that the computational effort
of flexibility optimization is significantly reduced. Further, the
individual disturbances will smooth out as the number of houses
in the portfolio increases.

I. INTRODUCTION

The use of heat pumps is expected to increase in the

foreseeable future throughout the developed world, due to its

high efficiency and ability to utilize the inexhaustible and

renewable ambient ground or air heat. In the future Danish

electricity system it is expected that domestic heat pumps

will play an important role as flexible consumption: already

now, around 27, 000 heat pumps are installed in Denmark [1],

and potentially 205, 000 households can benefit from replacing

oil-fired boilers with heat pumps in the coming years [2]. It

is therefore most relevant to consider how to aggregate and

control this flexibility towards the electricity markets.

Control of smaller flexible consumers to support grid sta-

bility has been discussed as early as the 1980s [3]. Since,

the topic of demand-side management has received much

attention from a research perspective including control of heat

pumps [4], [5]. In particular, optimization of heat pumps has

received much attention in Denmark the last few years, see [6],

[7], [8], [9], [10].

Adequate flexibility models are a crucial element in the

control of flexible devices. In many works, such flexibility

models are used to design appropriate control strategies for

controlling heat pumps, see e.g. [11], [7], [9], [12]. Several

studies demonstrate how to construct such household mod-

els: In [13], an individual heat pump model is successfully

constructed based on real life experiments conducted in a

laboratory setting. In [14], a custom built house is modeled

successfully with a linear model for an inhabited household.

Other works construct household models based on inhabited

households, see [8], [15].

In this work, we argue that an alternative to such individual

household models is to utilize a lumped model that represents

an entire portfolio of households. Two main arguments for

proposing this lumped model are as follows. The first reason

is that a lumped flexibility model has the clear advantage that

the computational efforts of flexibility optimization decreases

drastically by comparison with individual models. The second

reason is that the many disturbances to some extent will cancel

out as the number of households in the portfolio increases,

reducing the disturbances seen in the lumped model. Such a

lumped model approach is described for example in [16], [17],

[18], but is only dealt with via simulations. In this work we

use real life data to motivate the use of such a lumped model.

First, we use data from inhabited Danish houses heated

with heat pumps to illustrate that local disturbances at the

households can be large and that this may result in poor

modeling results at certain times. Following, we present the

lumped model as an alternative approach. The basic concept

is to consider a portfolio of households as an ideal storage

of a given volume. Combined with the baseline consumption

of the portfolio, this model can be utilized for flexibility

optimization.

The paper is structured as follows. First in Sec. II we

describe the heat pump platform where the data is taken

from; following in Sec. III, we introduce the concept of

flexibility modeling and optimization. In Sec. IV we present

the individual modeling approach and show the benefits and

limitations associated with this method, similarly in Sec. V, a

lumped model is presented and the benefits and limitations of

this method is illustrated. Finally in Sec. VI, a discussion of

the two methods is presented and in Sec. VII we conclude the

work.

II. REAL LIFE HEAT PUMP DEMONSTRATION SETUP

In this section, we describe the platform of households with

heat pumps used as data source in this study.

A. Heterogeneous Households Portfolio

The platform called Styr din varmepumpe (meaning: Control

your heat pump) consists of 300 households with heat pump

heating [8]. The houses are all real life inhabited houses



located in different locations in Denmark. The houses vary

from smaller houses with a total area of 100 m2 to larger

houses with an area of 400 m2. Further, the houses vary in

type: some are old houses constructed in the 1850s while other

houses are newly constructed.

Also the heat pumps are different; more than 50 different

heat pump designs are present. Moreover, the heating systems

vary much in the different houses: all the houses have a heat

pump but some of the houses use underfloor heating while

other have radiators. Additionally, some of the houses are

equipped with other heating sources than the heat pump, for

example a wood stove or solar heating. Consequently, we

are dealing with a realistic real life heterogeneous household

portfolio representative of typical Danish households.

B. Controlling and Monitoring the Households

The households included in this platform have all installed

the heat pumps before being a part of this project. Various

sensor equipment has therefore been subsequently installed.

These sensors include power measurements of the heat pump,

a single indoor thermometer, and an outdoor thermometer. In

this project it has not been possible to remotely control the

heat pumps.

The sensor data is transmitted over an Internet connection

to a server. The sampling time of the communication link

between heat pump and the server is 5 minutes.

III. MODELING AND OPTIMIZATION OF FLEXIBLE

CONSUMPTION

In this section, we briefly describe the purpose of a heat

pump flexibility model, how such a model can be utilized, and

motivate why it is interesting to examine a lumped flexibility

model approach.

A. Flexibility Optimization

Heat pumps are flexible consumption devices due to the

inherent thermal capacity of the houses. Consequently, it is

possible to aggregate and optimize the consumption of a port-

folio of heat pumps towards some given objective. Examples

could be to optimize the consumption based on a price signal

or based on predictions of the spot price, or it could be to

provide ancillary services.

B. Flexibility Model

A flexibility model is required to perform flexibility opti-

mization, i.e. we must know to what extent the consumption

can be shifted without violating the comfort limits of the in-

habitants. Such flexibility models are constructed on household

level in many works, meaning that a flexibility model of each

house is constructed, see e.g. [11], [7], [9], [12].

In this work we are argue that when dealing with real

life households equipped with a single indoor thermometer,

disturbances can in certain time periods be so severe and

the available sensing is so limited, that individual flexibility

modeling is difficult. Therefore we propose an alternative

approach: Instead of modeling each house separately, we

consider the portfolio as one entity and construct a model of

the combined flexibility, i.e., we consider a lumped model. The

benefit of such a lumped model is that the many disturbances

will cancel out as the number of houses comprising the

portfolio increases.

IV. INDIVIDUAL MODELING OF HOUSEHOLDS

In this section, we show the concept of an individual

household model and how such a model can be used for

flexibility optimization. Further, we illustrate the difficulties

in utilizing such a flexibility model.

A. Individual Model and Flexibility Optimization

Let i index the households, let I be the total number of

houses in the portfolio, and let I = {1, . . . , I} represent the

entire portfolio. A linear nth-order individual household model

can be expressed as

xi(k + 1) = Aixi(k) +Biui(k) + Civi(k) (1)

where xi(k) ∈ Rn is the state vector, ui(k) ∈ R is the power

input from the heat pump, and vi(k) ∈ Rm is the disturbance

inputs such as outdoor temperature, solar irradiation, wind,

etc. The matrices Ai ∈ Rn×n, Bi ∈ Rn×1, Ci ∈ Rn×m

represent the household dynamics. Further, the state and input

limitations are modeled as follows

xi(k) ∈ Xi, ui(k) ∈ Ui, i ∈ I (2)

where sets Xi, Ui, i ∈ I describe the system limitations such

as the power limitations of the heat pump and the thermal

comfort limitations. Many of the works using individual heat

pump models rely on such linear models.

A simple version of this thermal model is a first order

model where the state xi is the indoor temperature and

where Xi represent the lower and upper allowable temperature

and where ui is the electrical power and Ui describe the

power limitations for house number i. This simple model

can be extended for example to include a state for the floor

temperature or for separate rooms, etc.

We construct a small example to illustrate how such a

model can be utilized for flexibility optimization. Assume

we have purchased electricity at the spot market for example

for the following day. We denote the purchased electricity

pspot(k), k ∈ K where K = {k1, . . . , k2} represent our

horizon. Further, assume our objective is to consume what we

have purchased at the spot market to avoid imbalance and thus

avoid trading balancing power at possibly unfavorable prices.

We can formulate this as an optimization problem

min.
∑

k∈K

∣

∣

∣

∣

∣

pspot(k)−
∑

i∈I

ui(k)

∣

∣

∣

∣

∣

s.t. xi(k + 1) = Aixi(k) +Biui(k) + Civ̂i(k)
xi(k + 1) ∈ Xi, ui(k) ∈ Ui

k ∈ K, i ∈ I

(3)

where the variables are ui(k), xi(k + 1), i ∈ I, k ∈ K and

the data is current state x(k), the purchased electricity and

predictions of the disturbance inputs pspot(k), v̂i(k), k ∈ K.



We notice two things in Problem 3: First we see that

this method is able to deal with each household individually

and therefore will handle the energy optimization optimally

within the horizon provided the models are true and the

disturbance predictions are perfect. Second, we observe that

the computationally complexity grows rapidly with the number

of houses I indicating that this method might not be suitable

when dealing with thousands of heat pumps.

B. Individual Modeling of Inhabited Household

In the above subsection, we illustrated how household

models can be utilized to optimize the flexibility towards

some objective. In this subsection, we illustrate some of the

difficulties of making individual flexibility models.

We use data from 40 of the houses in the available platform

and attempt to fit different models including 1st and 2nd

order linear models. The heat pump power is taken as input

and the indoor temperature as output. Different disturbance

inputs are included in the model: the outdoor temperature,

the solar irradiation, and a daily consumer load pattern. As

presented in [15], [8], it is possible to capture the main

dynamics of the households. However in this study we also

conclude, that in certain time periods, it is difficult to capture

the house dynamics presumably because of local disturbances.

We illustrate this with a concrete example where we fit a

first order model that takes power and outdoor temperature as

inputs and the indoor temperature as output. The prediction

error method is utilized based on observations of the last

7 days to predict the behavior the 24 hours of the following

day; this is repeated each day. The result is illustrated in Fig. 1

showing both the predicted indoor temperature when the future

temperature and future power consumption is known and the

actual indoor temperature realization. As the figure shows, it

is in this case not possible to make a good model fit. Similar

results are obtained also when including other inputs such as

solar irradiation and also for higher order models.

To illustrate the difficulties that the individual modeling of

inhabited households can have we observe the figure more

closely. In the afternoon of the 25th of March (indicated

with a vertical dashed black line) the outdoor temperature is

dropping, the sun is setting (not visible from plot) and the heat

pump power is approximately constant; however, surprisingly

the indoor temperature is rising. The reason could be the use

of a wood-stove; however, we do not have access to this

kind of information. Consequently, we cannot capture this in

the system identification resulting in poor modeling for this

particular example.

C. Sub-conclusion on Individual Household Modeling

In this section we have showed that flexibility optimization

of heat pump flexibility based on individual models can be

computationally heavy. Further we have showed that individual

modeling of real inhabited households can be done, see for ex-

ample [15], [8]; however, large disturbances makes it difficult

to capture the house dynamics in certain time periods. These

disturbances are believed to be the effect of opening/closing
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Fig. 1. Data from 10 days in March 2013 showing the heat pump power
consumption, the indoor temperature and predicted indoor temperature, and
finally the outdoor temperature. The jumps in the predicted indoor temperature
every 24 hours occur because we predict for one full day at a time. The
vertical black dashed line represents a time instance where the behavior of
the household is particularly inexplicable: the indoor temperature is rising
although the outdoor temperature is decreasing and the power is constant.

of windows and doors, wood stove or other alternative heating

sources, use of electronic devices generating heat such as oven,

computers, etc.

We conclude that it is reasonable to consider if there are

alternatives to the individual modeling approach.

V. LUMPED MODELING OF HOUSEHOLDS

In this section, we show the concept of a lumped model of

a portfolio of heat pump heated houses and show how such

a model can be utilized for flexibility optimization. We are

not able to conduct the necessary experiments to verify the

proposed flexibility model altogether, instead we illustrate the

benefit of such a model by examining some historical heat

pump data.

A. Lumped Model and Flexibility Optimization

In the previous section it was concluded that it makes sense

to examine alternatives to the individual modeling approach.

Therefore, we propose to consider a much simpler approach:

namely to model an entire heat pump portfolio using a lumped

model. Obviously such a model will have its limitations as it is

not able to capture the different dynamics and constraints of

the individual heat pumps in the portfolio; on the contrary,

it will capture the main flexibility and make it possible

to optimize this flexibility towards a given objective. The

advantage of such a lumped model is the simplicity and the

low computational effort of optimizing the portfolio flexibility;

further, the many disturbances affecting the individual heat

pumps will to a large extend cancel out as the number of

houses increases.



The main idea is to consider the heat pump portfolio as

two parts: a baseline consumption (consumption when heat

pumps operate in default mode) superimposed with an ideal

storage. Let p(k) be the accumulated consumption of the

heat pump portfolio at time k, i.e. p(k) =
∑

i∈I
ui(k). Now

assume that the accumulated consumption p(k) consists of a

baseline consumption p(k) and a flexible consumption part

p̃(k); finally, let x(k) denote the energy stored in the ideal

storage. We can write this flexibility model as

p(k) = p(k) + p̃(k), pmin ≤ p(k) ≤ pmax (4)

x(k + 1) = x(k) + Tsαp̃(k), xmin ≤ x(k) ≤ xmax (5)

where pmin, pmax and xmin, xmax are power and energy limi-

tations, Ts is the sampling time, and α is a parameter that

performs a desired scaling of the power to energy. One method

of implementing this is to use the individual indoor temper-

atures as a measure of x(k) and the individual temperature

comfort limits to find xmin and xmax, see [19]. In this case, the

parameter α will describe the households’ thermal parameters

and the heat pumps’ COP. The power limitations pmin, pmax

can be set to the minimum and maximum power consumption

of the entire portfolio, possibly adjusted by some margin.

Obviously, the simple model presented in (4), (5) have many

limitations. An example is that the ideal storage model will

predict that the energy loss to the ambient is independent

of the indoor temperature. This obviously conflicts with the

physics, as the energy loss will increase with increasing indoor

temperature. It is, however, the authors’ opinion that the

presented model is a solid starting point when performing

real life optimization of the flexibility of inhabited houses.

The reason is that when dealing with real life inhabited

households, the local disturbances are so severe that what is

needed is a rough estimation of the available flexibility and not

a high fidelity model. For example, the disturbances illustrated

in Fig. 1 will be much larger than the increased loss to the

ambient that will occur if we increase the indoor temperature

one or two degrees from the set-point.

We consider the same small problem as presented in the

previous section to illustrate how this model can be used

for flexibility optimization. With the lumped model, we can

formulate the power tracking optimization problem as follows

min.
∑

k∈K

∣

∣pspot(k)− p̃(k)− p̂(k)
∣

∣

s.t. pmin ≤ p̂(k) + p̃(k) ≤ pmax, k ∈ K
x(k + 1) = x(k) + Tsp̃(k), k ∈ K
xmin ≤ x(k) ≤ xmax, k ∈ K

(6)

where the variables are x(k + 1), p̃(k), k ∈ K while the data

is the current storage level x(k) and the purchased electricity

and the baseline consumption predictions pspot(k), p̂(k).
Notice that solving Problem (6) can be done with low

computational effort independent on the number of households

due to the lumped model, i.e. we can easily optimize over

thousands of heat pumps. Further notice, that the solution

p̃⋆(k), k ∈ K will show the accumulated flexible consumption

over time. Therefore a so-called dispatcher must dispatch the

total consumption among the individual heat pumps, i.e. the

dispatcher must translate p(k) + p̃⋆(k) into u1(k), . . . , uI(k).
Such dispatch strategies can be implemented based on sorting

algorithms and thus require low computational effort and

easily handle thousands of units. For details on how this can

be achieved, see for example [19], [20].

Further notice that this optimization problem clearly illus-

trates some of the limitations of the lumped model: The fixed

limits on the power consumption assumes that none of the

heat pumps are saturated such that they all are available for

regulation. This is obviously a simplification and may cause a

performance loss. A solution is to reduce the limits pmin, pmax

with a given margin. Again we remind the reader that we do

not seek a high fidelity model; rather, we seek the most simple

model that can be used for flexibility optimization.

B. Lumped Modeling of Inhabited Households

In the subsection above we presented a lumped model of

a heat pump portfolio consisting of a baseline consumption

combined with an ideal storage. In the following, we show

how the power baseline p(k) can be estimated for a 24 hour

horizon. In this study we do, however, not estimate the energy

and power limits xmin, xmax as it requires active control of the

heat pumps, which is not possible in this study.

The baseline prediction is constructed as follows: The

hourly energy consumption of the heat pump portfolio and

the hourly outdoor temperature is collected for the previous

7 days and an affine transformation is made relating the

observed outdoor temperature and energy consumption. Other

parameters such as solar irradiation could be included, but for

simplicity this is left out in this study. Now, meteorological

predictions of the outdoor temperature the following day can

be converted to predicted energy consumption based on the

affine transformation.

This simple method is one out of many: higher order models

could have been used, additional inputs could have been

included, etc. However, we have implemented this very simple

model to emphasize how easily such baseline estimation can

be made. We test this method on data from 40 households from

1st of January until end of May 2013. The result is an average

prediction error of 140 W per heat pump corresponding to

an average prediction error of less than 11 % as the average

heat pump consumption is 1.3 kW. Again, 10 days data are

presented showing this predictor’s ability to capture the hourly

consumption of the portfolio, see Fig. 2.

Notice that the fit in Fig. 2 only shows the ability to

predict the hourly portfolio consumption; hence, it does not

show any dynamics of the portfolio and therefore does not

validate the proposed flexibility model an and can therefore

not be compared to the individual model fig in Fig. 1. For this

reason, Fig. 2 does not validate the proposed lumped model;

rather, it validates that we can predict the portfolio baseline

consumption and motivates our argument that the disturbances

will cancel out as number of households increases.
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Fig. 2. Predictions made every midnight for the 24 hours of the following
day for a total of 10 days for a portfolio of 40 heat pumps. The power is
scaled with a factor 40 and thus represents and “average” heat pump.

C. Sub-conclusion on Lumped Household Modeling

We illustrated that the lumped modeling approach reduced

the computational effort of flexibility optimization radically.

We were, however, not able to verify the proposed model

altogether as this would require extensive experiments. Instead,

we used historical data to illustrate the benefit of the lumped

modeling approach: that the disturbances on the individual

houses to a large extend will cancel out which enables us to

predict the baseline consumption with acceptable performance.

VI. DISCUSSION

A much debated issue within the smart grid community is

the use of flexible consumers to resolve grid congestion issues.

Here we notice that we cannot use a lumped model to resolve

local grid congestion issues: we do not know the geographical

location of the individual heat pumps as they are all lumped

into one model. One way to extend the presented method to

cover this is to construct a lumped model for each feeder

with issues; consequently we will have a number of lumped

models for example with hundreds of heat pumps in each.

Another approach is to incorporate the congestion alleviation

mechanism in the dispatcher.

VII. CONCLUSION

In this paper we discussed two different approaches of

modeling a heat pump portfolio: individual modeling and

lumped modeling. We proposed a simple lumped model ap-

proach where an entire heat pump portfolio was modeled

all together. This lumped model consisted of a baseline

consumption superimposed with an ideal storage of limited

energy capacity and with given power constraints. A clear

benefit of the lumped model was that low computational effort

required for flexibility optimization. Another advantage of the

lumped model was the smoothing of individual household

disturbances. We were not able to verify the mode altogether

but motivated the benefit of the approach by showing that the

portfolio baseline consumption could be predicted 24 hours

ahead with an acceptable accuracy.
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