
Chapter 11
Distributed MPC Via Dual Decomposition

B. Biegel, J. Stoustrup and P. Andersen

Abstract This chapter presents dual decomposition as a means to coordinate a num-
ber of subsystems coupled by state and input constraints. Each subsystem is equipped
with a local model predictive controller while a centralized entity manages the sub-
systems via prices associated with the coupling constraints. This allows coordination
of all the subsystems without the need of sharing local dynamics, objectives and con-
straints. To illustrate this, an example is included where dual decomposition is used
to resolve power grid congestion in a distributed manner among a number of players
coupled by distribution grid constraints.

11.1 Short Introduction

In this chapter we consider a number of dynamical subsystems; each subsystem has
local inputs and states, a local objective function, and local state and input con-
straints. Moreover, global state and input constraints make the subsystems mutually
dependent. The subsystems are not able (or willing) to share the local information;
hence optimization of the operation of the subsystems cannot be performed centrally
and a distributed approach is necessary.

We consider two small figurative examples to illustrate such global constraints
causing coupling of the subsystems. As a first example, consider a number of subsys-
tems that are dependent on the same shared limited resource: this could correspond
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to coupling input inequality constraints. In the second example, consider a number
of producing and consuming subsystems in a setup where balance must exist: this
could correspond to coupling state equality constraints. In both cases the optimiza-
tion problem is to minimize the total objective while honoring both local and global
constraints—without sharing local information.

This chapter presents an approach to solve this problem via dual decomposition:
by associating each coupling constraint with a price, the subsystems can be managed
by a central entity to reach the solution. This allows coordination of the individual
subsystems without sharing local dynamics, constraints or objectives. Further, the
final prices of the coupling constraints, the so-called shadow prices, will reveal
the marginal cost that each agent is willing to pay for the shared resources. This
allows the shadow prices to be used for economical settlement purposes between the
subsystems.

Dual decomposition is a huge area of research and there exists a large amount of
literature on the topic. Dual decomposition appeared already in 1960s where it was
used for solving large-scale optimization problems [6, 9]. Also within the area of
coordination of dynamic systems via dual decomposition, which is the topic of this
chapter, large amounts of literature exists; some references for this are [7, 10–12]. In
this chapter, we show the basic idea in using dual decomposition in the coordination
of coupled dynamic subsystems.

11.2 Boundary Conditions

We consider N subsystems each described by a discrete linear time-invariant state
space model. The states and inputs of subsystem i are denoted xi (k) ⊕ R

nx,i and
ui (k) ⊕ R

nu,i , respectively. The state space model is formulated as

xi (k + 1) = Ai xi (k)+ Bi ui (k) (11.1)

where Ai ⊕ R
nx,i×nx,i is the state matrix and Bi ⊕ R

nx,i×nu,i is the input matrix.
Each subsystem is subject to state and input constraints:

xi (k) ⊕ Xi , ui (k) ⊕ Ui (11.2)

where Xi and Ui are convex constraint sets with 0 ⊕ Xi , 0 ⊕ Ui . The stage cost
function of subsystem i is convex and denoted κi (xi (k), ui (k)) and κi (0, 0) = 0.

Taking a receding horizon control approach with a finite control horizon of Nc time
samples and a prediction horizon of Np = Nc time samples, a local control strategy
at subsystem i can be formulated as follows. Let K be a set containing the current
time sample k and the following Nc−1 time samples: K = {k, . . . , k+Nc−1}, and
let N denote the set of all N subsystems: N = {1, . . . , N }. Then we can formulate
a decentralized model predictive control algorithm for subsystem i as in Algorithm
11.1.
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Algorithm 11.1 Decentralized Model Predictive Control
1: Observe the current state xi (k) and solve the optimization problem

minimize
∑

κ⊕K
κi (xi (κ+ 1), ui (κ))

subject to xi (κ+ 1) = Ai xi (κ)+ Bi ui (κ), ∈κ ⊕ K
xi (κ+ 1) ⊕ Xi , ui (κ) ⊕ Ui , ∈κ ⊕ K

(11.3)

where the variables are xi (k + 1 : k + Nc), ui (k : k + Nc − 1) and xi (k) is data. The solution
is denoted xα

i (k + 1 : k + Nc), uα
i (k : k + Nc − 1).

2: Apply the first control input solution uα
i (k) to subsystem i .

3: Increase k by one and repeat from 1.

Algorithm 11.1 is presented to illustrate the concept of receding horizon control as
this control strategy forms the background for the method presented in this chapter.
However, this algorithm is not applicable to the subsystems we have in scope: the N
subsystems are not only subject to the local constraints 11.2, but also to global state
and input constraints. Consider the following compact notation for inputs and states:

x(k) =
[

x1(k)T, . . . , xN (k)T
]T

(11.4)

u(k) =
[

u1(k)T, . . . , uN (k)T
]T

(11.5)

where x(k) ⊕ R
nx , nx = ∑N

i=1 nx,i , and u(k) ⊕ R
nu , nu = ∑N

i=1 nu,i . With this
notation we can express the coupling constraints as

Cu(k) ∼ c, Du(k) = d, (11.6)

Ex(k) ∼ e, Fx(k) = f, (11.7)

where∼ denotes componentwise inequality; C ⊕ R
nc×nu , c ⊕ R

nc , and D ⊕ R
nd×nu ,

d ⊕ R
nd describe nc input inequality constraints and nd input equality constraints,

respectively, while E ⊕ R
ne×nx , e ⊕ R

ne and F ⊕ R
n f×nx , f ⊕ R

n f describe ne state
inequality constraints and n f state equality constraints, respectively. These types of
constraints can for example express the previously described resource couplings or
balancing couplings.

We illustrate this idea of coupled subsystems with a small figurative example.
Consider N = 4 subsystems where subsystems 1, 2, and 3 share a limited resource
while a production/consumption balance must exist between subsystems 3 and 4.
This example can be visualized as in Fig. 11.1: subsystems 1, 2 and 3 are intercon-
nected by a net of lines and subsystems 3 and 4 are interconnected by a single line
representing the coupling constraints. In dual decomposition, each coupling con-
straint (each interconnection) will be associated with a price. These prices will be
used to coordinate the subsystems to collectively honor the coupling constraints.
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Fig. 11.1 Illustration of cou-
pled subsystems: subsystems
1, 2, and 3 are coupled and
subsystems 3 and 4 are cou-
pled

SS1

SS2

SS3 SS4

Hereby the subsystems avoid sharing local information such as dynamics, objective
and constraints. Two prices exist in the small example presented in Fig. 11.1: one
for the coupling of subsystems 1, 2 and 3 and one for the coupling of subsystems 3
and 4.

Due to the coupling constraints 11.6 and 11.7, the subsystems depend on each
other and must coordinate their actions to reach feasibility. In the following sections
it will be shown that the subsystems can be coordinated via prices associated with the
coupled resources by letting an external agent adjust these prices. It is therefore nec-
essary to assume that each subsystems is able to establish a two-way communication
link with such an external agent.

11.3 Description of the Approach

We only consider coupling constraints on the form Cu(k) ∼ c, C ⊕ R
nc×nx , c ⊕ R

nc

in the following and neglect the three other constraints presented in 11.6 and 11.7.
This simplification is made to ease the notation. It is, however, straightforward to
follow the method presented in the following to include all four of the presented
constraints.

Let
κ(x(k), u(k)) =

∑

i⊕N
κi (xi (k), ui (k)) (11.8)

be the sum of the N convex objective functions of the subsystems and thereby itself a
convex function. Based on this, we formulate a Algorithm 11.2 as a control algorithm
using the receding horizon approach with a finite control and prediction horizon of
Nc = Np time samples. This algorithm can be applied if all information is available
centrally (which is not the case in our setup).

The centralized optimization problem 11.9 is completely separable except for the
last coupling constraint Cu(κ) ∼ c. As the coupling constraints are affine, we are
able to apply dual decomposition to eliminate the coupling (see, e.g., [5, 13]). This
is exactly what we will do in the following.

First, we relax the coupling constraints by introducing the associated Lagrange
multipliers; hereby the partial Lagrangian of problem 11.9 becomes
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Algorithm 11.2 Centralized Model Predictive Control
1: Observe the current states xi (k) for all subsystems i ⊕ N and solve the centralized optimization

problem
minimize

∑

κ⊕K
κ(x(κ+ 1), u(κ))

subject to xi (κ+ 1) = Ai xi (κ)+ Bi ui (κ), ∈κ ⊕ K, i ⊕ N
xi (κ+ 1) ⊕ Xi , ui (κ) ⊕ Ui , ∈κ ⊕ K, i ⊕ N
Cu(κ) ∼ c, ∈κ ⊕ K

(11.9)

where the variables are

βββ(k) =
[

x(k + 1 : k + Nc)
T, u(k : k + Nc − 1)T

]T

and βββ(k) ⊕ R
Nc(nx+nu ) is used as a compact representation of states and inputs in the following.

2: Apply the first control input solution uα
i (k),∈i ⊕ N to the N subsystems.

3: Increase k by one and repeat from 1.

L(βββ(k),γγγ(k)) =
∑

κ⊕K

(

κ(x(κ+ 1), u(κ))+ δδδ(κ)T (Cu(κ)− c)
)

(11.10)

where δδδ(κ) ⊕ R
nc are the Lagrange multipliers associated with the inequality con-

straint Cu(κ) ∼ c and γγγ(k) ⊕ R
Ncnc is a compact representation of the Lagrange

multipliers: γγγ(k) = δδδ(k : k + Nc − 1).
Define g(γγγ(k)) as the optimal value of the problem

minimize
∑

κ⊕K

(

κ(x(κ+ 1), u(κ))+ δδδ(κ)T (Cu(κ)− c)
)

subject to xi (κ+ 1) = Ai xi (κ)+ Bi ui (κ), κ ⊕ K, i ⊕ N
xi (κ+ 1) ⊕ Xi , ui (κ) ⊕ Ui , κ ⊕ K, i ⊕ N

(11.11)

where the variables are βββ(k). This problem is completely separable as both objective
and constraints can be separated among the i subsystems. We see this clearly by
separating the matrix C into blocks

C = [C1, . . . , CN ] (11.12)

where Ci ⊕ R
nc×nu,i such that

Cu(k) =
∑

i⊕N
Ci ui (k). (11.13)

Evaluating a subgradient of g(γγγ(k)) can be done as follows. Solve problem 11.11
and let u(κ) denote the optimal u(κ), ∈κ ⊕ K for a given realization of γγγ(k). By
differentiation of the objective of problem 11.11 with respect to γγγ(k) it is evident
that a subgradient of g(γγγ(k)) can be described as
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Fig. 11.2 Coupled subsys-
tems interact with master:
master broadcasts prices γγγ(k)

and subsystems respond by
reporting how much they
utilize the limited resources
Ci xi (κ),∈κ ⊕ K. The dashed
lines indicate the necessary
two-way communication links
between subsystems and mas-
ter SS1

SS2

SS3 SS4

Master

[

(Cu(k)− c)T, . . . , (Cu(k + Nc − 1)− c)T
]T ⊕ η(g)(γγγ(k)), (11.14)

where η(g)(γγγ(k)) denotes the subdifferential of g at γγγ(k).
We can formulate the dual of the original centralized problem 11.9 as

maximize g(γγγ(k))

subject to γγγ(k) ∀ 0
(11.15)

with variables γγγ(k). Based on the above, we are able to solve the original prob-
lem 11.9 in a distributed manner. The key idea is to solve the primal problem 11.9
by solving its dual problem 11.15 using a projected subgradient method. In the
subgradient method, steps of appropriate length are taken in the direction of a sub-
gradient of the dual problem which corresponds to iteratively updating the Lagrange
multipliers γγγ(k). We can do this in a distributed manner as a subgradient of the
dual problem 11.15 is given by 11.14 which is separable among the subsystems as
Cu(κ) =∑

i⊕N Ci ui (κ). Algorithm 11.3 illustrates this. Note that we use the term
Master to denote a centralized entity able to perform two-way communication with
all subsystems (an interpretation of this master entity is presented in the example in
the end of this chapter).

Figure 11.2 illustrates Algorithm 11.3: each interconnection of solid lines repre-
sents a coupling constraint while the dashed lines illustrate the necessary communi-
cation. This shows that the master needs information form each subsystem in order
to update the prices and communicate these prices to the subsystems. It is impor-
tant to note that the master needs no information of local subsystem constraints,
objectives or dynamics; it is sufficient that the master knows how much the limited
resources will be used at each subsystem under a sequence of different price real-
izations. Finally we note that the resulting algorithm using dual decomposition has a
straightforward interpretation: in step 5 the master observes if the shared resources
u(k : k + Nc − 1) are overutilized or underutilized. If the subsystems overutilize a
limited resource, the associated price is increased; if the subsystems underutilize a
shared resource, the associated price is decreased (while keeping it non-negative).
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Algorithm 11.3 Distributed Model Predictive Control
1: Master initializes the prices (Lagrange multipliers) γγγ(k) ∀ 0.
2: repeat
3: Master broadcasts the current prices γγγ(k) to all subsystems.
4: Problem (11.1) is solved under the current γγγ(k) distributedly by letting each subsystem i ⊕ N

locally solve the optimization problem

minimize
∑

κ⊕K

(

κi (xi (κ+ 1), ui (κ))+ δδδ(κ)TCi ui (κ)
)

subject to xi (κ+ 1) = Ai xi (κ)+ Bi ui (κ), ∈κ ⊕ K
xi (κ+ 1) ⊕ Xi , ui (κ) ⊕ Ui , ∈κ ⊕ K

(11.16)

where the variables are xi (κ+ 1), ui (κ),∈κ ⊕ K. The solution is denoted
xi (k+1 : k+ Nc), ui (k : k+ Nc−1) and the vectors Ci ui (κ) ⊕ R

nc ,∈κ ⊕ K are determined
locally at each subsystem and communicated to the master.

5: Master determines the violations s(κ) ⊕ R
nc of the coupling inequality constraints: s(κ) =

∑

i=1 Ci ui (κ) − c,∈κ ⊕ K; S(k) = s(k : k + Nc − 1) ⊕ R
Ncnc and assigns new prices via

projection: γγγ(k) := max (0,γγγ(k)+ αS(k)).
6: until max(S(k)) ≥ σ or maximum number of iterations reached.
7: Based on the final utilization of the input u(κ),∈κ ⊕ K, the master determines limits ci assuring

feasibility of the overall problem and communicates the limits to all subsystems.
8: Each subsystem locally solves problem (11.3) with the additional constraint Ci ui (κ) ∼ ci ,∈κ ⊕

K and applies the first control input solution.
9: Increase k by one and repeat from 1.

11.4 Theoretical Results Availability

In this section we briefly comment on the computational burden of the optimization
algorithm and describe under what circumstances the algorithm will converge.

First, we note that the optimization problem of each subsystem in the distrib-
uted algorithm (Problem 11.16) is only slightly more complex than if the subsystem
couplings were neglected problem (11.16). However, the complexity increases sig-
nificantly as we are required to solve the distributed optimization problem (11.16) a
number of times until convergence. Further we note that the update law of the master
(Algorithm 11.3 step 5) requires only a single addition and multiplication operation.
The computational burden of the master therefore scales well with the number of
subsystems N .

A requirement for Algorithm 11.3 to converge is that we have no duality gap, i.e.,
the value of the primal and the dual solutions are identical. If the primal problem is
convex, it often holds that the primal and dual solutions are identical but additional
conditions are necessary to guarantee this. One such condition is Slater’s condition [4,
p. 226] which states that the primal and dual solutions are identical if the primal
problem is convex and there exists a solution to the primal problem that is strictly
feasible. In the formulation of problem (11.16), Slater’s condition requires that a
solution exists such that
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xi (κ+ 1) ⊕ relintXi , ui (κ) ⊕ relintUi , ∈κ ⊕ K (11.17)

where relintXi denotes the relative interior of Xi and is a set that contains all points
which are not on the edge ofXi , relative to the smallest set in whichXi lies [1, p. 448].
Under this assumption, convergence can be guaranteed depending on the choice of
step size in the subgradient method, which will be discussed in the following.

In the presented algorithm, a projected subgradient method is used to solve the
constrained convex optimization problem 11.15. The subgradient method updates
γγγ(k) according to

γγγ(k) := P(γγγ(k)− αg) (11.18)

where P is a projection of γγγ(k) onto the feasible set {γγγ(k) ⊕ R
Ncnc |γγγ(k) ∀ 0}

and g is any subgradient to the dual problem and α is a (constant) step size. Using
such constant step size assures that we will converge to a value that lies within
some range of the optimum value. If the objective of problem 11.11 is differentiable,
i.e., κ(x(κ + 1), u(κ)),κ ⊕ K is differentiable, the subgradient method will indeed
converge to the optimum for sufficiently small α [3].

Another option is to let the step size vary with the iteration number j , hereby
convergence to the optimal value can be guaranteed also for the case of a non-
differentiable objective. One example is a non-summable diminishing step size

lim
j⊆∗α j = 0,

∗
∑

j=1

α j = +∗ (11.19)

whereα j is the step size at iteration i ; this will guarantee that the subgradient method
converges to the optimum [14, p. 215]. Other step size rules with same convergence
result exist.

It is important to note that the subgradient method is chosen due to the fact that this
allows us to decouple the problem. Other methods (such as second order methods)
can provide much faster convergence than the subgradient method presented here.
They are, however, not suitable for the type of decoupling presented in this chapter.

A final note concerns the convergence proofs of dual decomposition algorithms.
Dual decomposition algorithms rely on subgradient methods as presented above.
Generally, convergence proofs for gradient methods are based on the function value
decreasing at each iteration; however, for subgradient methods this is not the case. In
subgradient methods, the convergence proofs are generally based on the Euclidian
distance to the optimal set by showing under what circumstances this distance will
decrease at each iteration [3]. Therefore, the objective value can increase during the
iterates in the subgradient method used in the algorithm; however, the distance to the
optimal set will decrease at each iteration.
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11.5 Application Results Availability

In this section, an application of distributed model predictive control via dual decom-
position is presented. The example is taken from a smart grid setup where the basic
idea is to increase the sustainability and stability of the electrical grid by utilizing the
flexibility of the demand side (consumers) in the balancing efforts. Two main ideas
of the smart grid concept are

• balancing of production and consumption by moving load temporally,
• avoiding distribution grid congestion by moving load temporally or spatially.

In this example, we address these two topics at an overall level.
Consider a number of balancing responsible parties (BRPs) each responsible for

a number of consumers under their jurisdiction; each consumer belongs to exactly
one BRP. The BRPs buy energy at the day-ahead electricity market on behalf of the
consumers. In the following, we illustrate how BRPs can utilize the flexibility of the
consumers under their jurisdiction to minimize the imbalance between the purchased
energy and the consumed energy thereby avoiding trading compensating balancing
energy at unfavorable prices. Further, we show how the BRPs can be coordinated such
that distribution grid congestion is avoided. Due to the very competitive electricity
market, the BRPs are not willing to share local information such as objectives and
states; therefore we use the dual decomposition approach presented in this chapter to
resolve grid congestion. In this way, congestion management can be achieved without
information sharing between the BRPs. Finally, we show how the dual decomposition
method can be interpreted as a distribution grid capacity market. Throughout the
following, the notation from the previous section will be used to the extent possible.

Consider a star topology distribution grid (no loops) consisting of nf distribution
lines of limited capacity. A total of N BRPs are active in the distribution grid and
BRP number i is responsible for nx,i consumers. The setup is illustrated in Fig. 11.3
and discussed in detail in the sequel.

The nx,i consumers under BRP i are characterized by hourly energy consump-
tions ui (k) + ũi (k) where ui (k) ⊕ R

nx,i is the controllable (flexible) part of the
consumption and ũi (k) ⊕ R

nx,i is an uncontrollable base consumption assuming a
sampling time of 1 hour. Due to the flexible consumption, the devices are able to
store energy. We denote the amount of stored energy xi (k) ⊕ R

nx,i for the consumers
under BRP i ; this may be energy stored as either heat, cold, energy in a battery, or
similar. The stored energy depends on the controllable power consumption

xi (k + 1) = Ai xi (k)+ Bi ui (k), (11.20)

where Ai , Bi ⊕ R
nx,i×nx,i are diagonal with diagonal elements describing drain

losses of each energy storage. The consumers are limited by power and energy
constraints

0 ∼ ui (k)+ ũi (k) ∼ umax
i , xmin

i ∼ xi (k) ∼ xmax
i (11.21)
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Fig. 11.3 Interconnected consumers under the jurisdiction of different BRPs sharing the same
distribution grid (dotted lines indicate that only a small part of the total grid is shown)

where umax
i , xmin

i , xmax
i ⊕ R

nx,i describe these limits. Consumer models described
this way can be found for example in [8].

The consumers are powered through the distribution grid, as illustrated in
Figure 11.3. Each BRP will contribute to the loading of the distribution lines. Let
ri (k) ⊕ R

nf
+ denote the partial flow caused by BRP i to the nf distribution lines;

these partial flows can by flow conversation be described as

ri (k) = Ri (ui (k)+ ũi (k)) (11.22)

where Ri ⊕ R
nf×nx,i is given by

(Ri )pq =
{

1 if consumer q under BRP i is supplied through link p,
0 otherwise.

This simply states that the power to each consumer under BRP i must flow through
a unique path of distribution lines; these paths are indicated in the Ri matrix.

The distribution grid is protected from overcurrents by electrical fuses; hence,
the distribution lines are subject to constraints. The total flows f(k) ⊕ R

nf
+ over the

distribution lines and associated fuse limits can be expressed as

f(k) =
∑

i⊕N
ri (k), f(k) ∼ fmax (11.23)

where fmax(k) ⊕ R
nf
+ denotes the limits of the fuses and N is the set of all BRPs.

The BRPs buy energy at a day-ahead spot market for each hour of the following
day. We denote the energy bought by BRP i at the day-ahead spot market pi (k) ⊕ R;
this means that BRP i has bought the energy pi (k) for the time interval from hour
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Loads                Consumers BRPs DSO

State,prediction

State,prediction         Initial prices

Priceiterations

Clearing
Activation

Activation

Fig. 11.4 Market interpretation of congestion alleviation via dual decomposition

k to k + 1. The objective of each BRP is to minimize the imbalance between the
consumed energy 1T(ui (k)+ ũi (k)) and the purchased energy pi (k), i.e.,

κi (ui (k)) = ≡1T(ui (k)+ ũi (k))− pi (k)≡22, (11.24)

where it is chosen to minimize the imbalance in the two-norm sense and where 1
denotes a vector of appropriate dimension with all entries equal to one. By keeping
this imbalance small, the BPR minimizes the energy imbalances and thereby avoids
trading balancing energy possibly at very unfavorable price.

The modeling reveals that the optimization problem is completely separable
among the BRPs except for the coupling via the distribution line capacity con-
straints 11.23. We apply Algorithm 11.3 to the presented application example and
obtain the Algorithm 11.4 when performing receding horizon control with a control
horizon Nc and prediction horizon of Np = Nc samples.

Algorithm 11.4 shows that the congestion management via dual decomposition
can be interpreted as a new distribution grid market where each distribution line is
associated with a time-varying cost per unit flow. If the lines are not congested, the
BRPs are free to use the lines at no cost; however, if congestion occurs, the master
will adjust the price on the lines until the congestion is resolved.

The sequence diagram in Fig. 11.4 illustrates how this market can be imagined
in an electrical power system setup. First, the individual loads communicate their
flexibility (via states and predictions) to the individual consumers. Following, the
consumers communicate the flexibility of all their respective loads to the corre-
sponding BRP. Further, the BRPs are provided with initial prices on the distribution
grid from the distribution grid operator (DSO) which has the role of the master.
Based on this, a price iteration follows where the DSO adjusts the prices until all
grid congestions are resolved. When the iteration is completed, the DSO clears the
market by communicating final prices and line capacity limits for each BRP. Here
it is important to note that the prices at the moment of the market clearing are real
prices that will determine the economical settlement between the BRPs. From the
perspective of a BRP, the prices on the distribution lines reveal the cost that the BRP
will have to pay (or be paid) for using more (or less) of the line capacity.
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Algorithm 11.4 Congestion Management Example
1: Master initializes the prices γγγ(k) ∀ 0, γγγ(k) = δδδ(k : k+ Nc−1), whereδδδ(k) ⊕ R

nf andδδδ j (k)

is the price associated with the capacity limit of distribution line j at time sample k.
2: repeat
3: Master broadcasts the current prices δδδ(κ),∈κ ⊕ K to the subsystems.
4: Each BRP locally solves the price dependent problem

minimize
∑

κ⊕K

(

≡1T(ui (κ)+ ũi (κ))− pi (κ)≡22 + δδδ(κ)Tri (κ)
)

subject to xi (κ+ 1) = Ai xi (κ)+ Bi ui (κ), ∈κ ⊕ K
0 ∼ ui (κ)+ ũi (κ) ∼ umax

i , ∈ ⊕ K
xmin

i ∼ xi (κ) ∼ xmax
i , ∈κ ⊕ K

ri (κ) = Ri (ui (κ)+ ũi (κ)) , ∈κ ⊕ K

(11.25)

where the variables are xi (k+1 : k+Nc), ui (k : k+Nc−1), ri (k : k+Nc−1). The solution
is denoted xi (k + 1 : k + Nc), ui (k : k + Nc − 1), ri (k : k + Nc − 1).

5: Each BRP reports local partial flows ri (κ) to the master. The master centrally determines
line capacity violations s(κ) = ∑

i⊕N ri (κ) − fmax ⊕ R
nf ,∈κ ⊕ K where s j is the capacity

violation of line j and S(k) = s(k : k + Nc − 1) ⊕ R
Ncn f .

6: Master updates prices γγγ(k) via projection: γγγ(k) := max (0,γγγ(k)+ αS(k)). Again notice
that this corresponds to increasing the cost on congested lines and reducing the price on lines
where there is free capacity; however, always assuring non-negative line prices.

7: until max(S(k)) ≥ σ or maximum number of iterations reached.
8: Master determines limits ci ⊕ R

n f and communicates limits and final prices (shadow prices) to
the BRPs.

9: Each subsystem locally solves problem (11.25) with the additional constraint ri (κ) ∼ ci and
applies the first control input of the solution.

10: Increase k by one and repeat from 1.

Finally, we consider a small numerical example to illustrate the price iteration.
The example is kept at a conceptual level to clearly illustrate the concept. The details
of the simulation are not presented here but can be found in [2]. Consider two
BRPs responsible for one and two consumers, respectively, as presented in Fig. 11.5.
The example is constructed with dynamics and objectives fitting the structure of
Algorithm 11.4; we assume we are at time sample k = 1 and use a control horizon
and prediction horizon of Nc = Np = 10. Both BRP 1 and 2 desire to increase the
controllable consumption in the first hours, and decrease the consumption in the later
hours. If no action is taken, this will violate the capacity constraint on line 2: f2 ≥
fmax
2 . To remedy the problem without information sharing, Algorithm 11.4 is used.

The DSO starts by publishing the initial prices γγγ(1) = 0 where after the two BRPs
report back to the DSO how they will utilize the distribution grid under this price,
by respectively sending r1 and r2 to the DSO. The DSO discovers that congestion
will occur under the initial prices and therefore updates the prices according to
γγγ(1) := γγγ(1) + αS(1). The top plot of Fig. 11.6 shows the price adjustments,
converging to the shadow prices γγγα(1), optimally resolving the congestion (within
the given horizon). The solid line shows the primal objective when using feasible
flows, the dashed line is the dual objective, and the dotted line is the optimal value
within the control horizon. The lower plot shows the iteration of the prices associated
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Fig. 11.5 Three consumers under the jurisdiction of two different BRPs sharing the same distrib-
ution grid

 

Iterationnumber j

Pr
ic

es
2
(1

)

OptimalDualPrimal

O
bj

ec
tiv

ev
al

ue

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

0

20

40

7500

8000

8500

9000

9500

Λ

Fig. 11.6 Top: objective value progress. Bottom: convergence of δδδ2(1), . . . ,δδδ2(6) (solid lines)
towards the shadow prices (dashed lines)

with capacity constraint at line 2 from time sample k = 1 to k = 6; the prices at time
k = 7 to k = 10 remain at zero as there is no congestion at these hours.

The large benefit of resolving congestion management by prices is that the global
economical optimum is reached within the control horizon Nc without the need of
a centralized optimization. In the presented example, consumer 3 under PRB 2 is a
storage of high quality (low drainage) while consumer 2 under BRP 1 is a storage
of low quality (high drainage). In this market approach, this results in consumer 3
being the main user of the shared distribution line because BRP 2 is willing to pay a
higher price for the line utilization due to the fact that he can profit much from this
high quality storage. BRP 1, on the other hand, is willing to decrease the use of his
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low quality storage by receiving a payment from BRP 2 as he is not able to profit
much from his poor storage.

To illustrate the benefit of using the distribution grid market approach to resolve
grid congestion, consider an alternative very simple strategy: congestion is simply
resolved by splitting the capacity of the shared line equally among the players sharing
the line. In this case, the high quality storage would be used less and the low quality
storage would be used more. As a result, a larger amount of energy would be lost
due to the higher utilization of the low quality storage; hence, we would not have
reached the global economical optimum.
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