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Abstract—This paper is focusing on active fault detection (AFD)
for parametric faults in closed-loop systems. This auxiliary
input applied for the fault detection will also disturb the
external output and consequently reduce the performance of
the controller. Therefore, only small auxiliary inputs are used
with the result that the detection and isolation time can be long.
In this paper it will be shown, that this problem can be handled
by using a modification of the feedback controller. By applying
the YJBK-parameterization (after Youla, Jabr, Bongiorno and
Kucera) for the controller, it is possible to modify the feedback
controller with a minor effect on the external output in the
fault free case. Further, in the faulty case, the signature of
the auxiliary input can be optimized. This is obtained by
using a band-pass filter for the YJBK parameter that is only
effective in a small frequency range where the frequency for
the auxiliary input is selected. This gives that it is possible to
apply an auxiliary input with a reduced amplitude. An example
is included to show the results.

Keyword: Active fault detection, parametric faults, feedback
controllers, YJBK parameterization, controller modification.

I. INTRODUCTION

The area of fault diagnosis (FD) includes various methods
based on passive observation of the systems and methods
based on active excitation of the systems.
The passive faults diagnosis (PFD) approach have been
investigated in a numbers of papers and books, see e.g. the
books [3], [4], [7], [8] and the references herein. The active
fault diagnosis (AFD) has not been investigated in the same
level. The first AFD approach was developed by Zhang, [17].
Later a number of other approaches have been developed for
both open-loop as well as closed-loop systems, [1], [2], [5],
[10], [11].
In AFD, an auxiliary input is injected in the system. The
residual output (or another output) from the residual gener-
ator is then investigated with respect to a signature from the
injected auxiliary input. The investigation can be derived in
different ways as e.g. using statistical test methods, [13].
One of the advantages by using AFD compared with PFD is
a fast and more reliable fault diagnosis. A disadvantage with
AFD is that an auxiliary input is injected into the system.
The auxiliary input will in general affect the performance
of the system in a negative way, especially in the fault free
case.

The time for diagnosis (detection and/or isolation) in the
AFD concept depends on a number of things. The key issue
is how fast it is possible to detect and analyze the signature
from the auxiliary input in the residual output. The detection
time can be reduced by e.g. increasing the amplitude of the
auxiliary input. It can also be reduced by applying one of
the design methods as suggested in [5].
Another possibility is to modify the system with respect to
fault diagnosis (FD). This will in general only be possible
when a closed-loop setup approach is applied. Here, the
controller can be changed with respect to FD. A preliminary
result have been given in [15]. In this approach, the applied
controller is modified such that it will destabilize the closed-
loop system when faults have occurred. However, it is only
relevant to use such a controller when the system is placed in
test bench. Instead of destabilizing the system, the controller
can be designed such that the residual outputs get more
sensitive to parametric faults. Such a modification of the
feedback controller will in general result in a performance
degradation of the overall system. It is also here a trade-
off between fast fault detection and minor performance
degradation of the nominal closed-loop system.
However, it can still be relevant to modify the feedback
controller in connection with active fault diagnosis (AFD).
It will give an extra freedom in the design of the AFD and
the associated auxiliary input. It will be shown in this paper
that it is possible to reduce the closed-loop performance
degradation caused by the auxiliary input in the nominal case
and without increasing the fault detection time.
The focus in this paper will be at first to give an analysis
of the consequence of modifying the feedback controller
in connection with active fault diagnosis. Based on this
analysis, the fault detection problem is investigated. It is
shown that modifying the feedback controller by including a
YJBK parameter, it is possible to minimize the performance
reduction in the fault free closed-loop system due to the
applied auxiliary input and at the same time reduce the
time for detection of parametric faults when they occur in
the system. This can be obtained by selecting the YJBK
parameter as band-pass filters. The fault free closed-loop
system will only be changed in a small frequency band
and not in the whole frequency range. Further, the center

2014 American Control Conference (ACC)
June 4-6, 2014. Portland, Oregon, USA

978-1-4799-3274-0/$31.00 ©2014 AACC 1963



frequency in the band-pass filter is also a design parameter.
This has to be selected such that the closed-loop performance
reduction is minimized in the fault free case. An example
is included to illustrate the approach for fault detection
using controller modification in connection with active fault
diagnosis.
The rest of this paper is organized as follows. In Section
II, the system set-up is given together with some prelim-
inary results. Passive and active fault diagnosis is shortly
considered in Section III followed by an analysis of using
controller modification in connection with AFD in Section
IV. The design problem of band-pass filters for the controller
modification with respect to AFD is considered in detail in
Section V followed by an example in Section VI. The paper
is closed with a conclusion in Section VII.

II. SYSTEM SET-UP

In this paper we assume the system to be given by:

ΣP :

{
e = Ged(θ)d + Geu(θ)u

y = Gyd(θ)d + Gyu(θ)u
(1)

where d ∈ Rrd is an external disturbance input vector, u ∈
Rm the control input signal vector, e ∈ Rq is the external
output signal vector to be controlled and y ∈ Rp is the
measurement vector.
The parametric (or multiplicative) faults are modeled by θi,
i = 1, · · · , k, where k is the number of possible parametric
faults. Further, let θ represent all the k parametric faults. θ
can be either a vector or a diagonal matrix. θ = 0 represent
the fault free case. The single transfer functions in (1) will
depend on the faults given by θ.
The above fault modeling with parametric faults gives a
quite broad number of different types of faults. For further
description of the fault modeling, see e.g. [11].
Further, let the system be controlled by a stabilizing feedback
controller given by:

ΣC :
{
u = Ky (2)

A. The YJBK Parameterization

Let a coprime factorization of the nominal system Gyu =
Gyu(0) from (1) and the stabilizing controller K from (2)
be given by:

Gyu = NM−1 = M̃−1Ñ , N,M, Ñ , M̃ ∈ RH∞

K = UV −1 = Ṽ −1Ũ , U, V, Ũ , Ṽ ∈ RH∞

(3)
where the eight matrix transfer functions in (3) are stable
proper rational functions that must satisfy the double Bezout
equation given by, see [16]:(

I 0
0 I

)
=

(
Ṽ −Ũ

−Ñ M̃

)(
M U
N V

)

=

(
M U
N V

)(
Ṽ −Ũ

−Ñ M̃

) (4)

Based on the above coprime factorization of the system Gyu

and the controller K , we can give a parameterization of
all controllers that stabilize the system in terms of a stable
transfer function Q, i.e. all stabilizing controllers are given
by [16]:

K(Q) = (Ṽ +QÑ)−1(Ũ +QM̃), Q ∈ RH∞ (5)

Using the Bezout equation, the controller given either by (5)
can be realized as an LFT (linear fractional transformation)
in the parameter Q:

K(Q) = Fl

((
UV −1 Ṽ −1

V −1 −V −1N

)
, Q

)
= Fl(JK , Q)

(6)
The YJBK parameterization is shown in Fig. 1.
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Fig. 1. The YJBK parameterization of all stabilizing controllers K(Q) for
a given system Gyu.

The YJBK parameterization will be applied in connection
with controller modification for fault detection in the fol-
lowing sections.
In the same way, it is possible to derive a parameterization
in terms of a stable transfer function S of all systems
that are stabilized by one controller, i.e. the dual YJBK
parameterization. The parameterization is given by [16]:

Gyu(S) = (M̃ + SŨ)−1(Ñ + SṼ ), S ∈ RH∞ (7)

An LFT representation of (7) is given by:

Gyu(S) = Fl

((
NM−1 M̃−1

M−1 −M−1U

)
, S

)
= Fl(JG, S)

(8)

Further, S is given by, [16]:

S = Fu(JK , Gyu(S)) (9)

The dual YJBK transfer function S will be a function of
the system variations. Here we will consider parametric
variations in terms of the parametric faults described by θ,
i.e. S = S(θ). The connection between S and θ have been
considered in details in [9]. Assuming that θ = 0 is the
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nominal value of θ, then there exist the following simple
relation, [9]:

S(θ) = 0, for θ = 0

This relation is the central element in the active fault diagno-
sis approach described in [10], [11], [13]. By testing if S(θ)
is zero or non-zero, parametric faults can be detected.

III. FAULT DIAGNOSIS

The YJBK set-up described in Section II-A can directly be
applied in connection with fault diagnosis. This diagnosis can
be derived in different ways, either by using passive methods
[6], [7], active methods, [5], [10] or by using controller based
methods. The controller based fault diagnosis methods will
be described in the following.
Let us use the closed-loop set-up shown in Fig. 1 with Q = 0.
The closed-loop transfer functions from inputs d and η to the
outputs e and ε are given by:

ΣP,K :

{
e = Ped(S)d + Peη(S)η

ε = Pεd(S)d + Sη
(10)

where (S = S(θ))

Ped(S) = Ged(θ) +Geu(θ)(M + US)ŨGyd(θ)

Peη(S) = Geu(θ)(M + US)

Pεd(S) = (M̃ + SŨ)Gyd(θ)

Equation (10) can be derived by using the dual YJBK param-
eterization of Gyu(θ) together with the coprime factorization
of the feedback controller.
In connection with fault diagnosis, the dual YJBK transfer
function is also named the fault signature matrix, [10], [11],
[13].
It has been shown in [10] that the vector ε in (10) is a
standard residual vector as used in connection with (passive)
fault diagnosis. In the case where the coprime factorization
is based on a full order observer based feedback controller,
ε is the output estimation error vector and the innovation
vector in the case of using a Kalman filter.

A. Passive Fault Diagnosis

In passive fault diagnosis η = 0. The output vector ε in (10)
is a residual vector, [6], [7], as pointed out above.
For the system without parametric faults (θ = 0 or equiv-
alently with S = 0), the transfer function from disturbance
input d to the residual vector ε is given by:

ε = M̃Gydd (11)

When parametric faults are included θ �= 0, the residual
vector ε is now given by:

ε = (M̃ + SŨ)Gyd(θ)d (12)

Assume that d = 0, then ε will be zero. Consequently, it will
not be possible to detect parametric faults in the system. It is
therefore relevant to consider active fault diagnosis methods.

B. Active Fault Diagnosis

AFD is derived by injection of an auxiliary input η. The
diagnosis is then derived by considering the signature from
the auxiliary input in an output vector or in a residual vector,
[5], [10]. Here, let us use the AFD set-up described in [10].
The residual vector ε is now given by:

ε = (M̃ + SŨ)Gyd(θ)d+ Sη (13)

Let the auxiliary input η be a periodic input given by:

η = Aη sin(ω0t) (14)

where Aη is constant vector, ω0 is the frequency for the
periodic excitation. The frequency ω0 and Aη are free design
parameters. Using the above auxiliary input, the residual
vector given by (13) is then given by:

ε = S(ω0)Aη sin(ω0t) + (M̃ + SŨ)Gyd(θ)d (15)

In the normal situation the noise component in the residuals ε
will be white noise. This can be obtained either by a filter on
the residual or by incorporate a Kalman filter in the coprime
factorization.
Fault detection and isolation based on a periodic auxiliary
input vector have been investigated in [13].

IV. CONTROLLER BASED FAULT DIAGNOSIS

In this section, a preliminary analysis is given with respect
to fault diagnosis when the feedback controller is changed.
Instead of a direct modification of the feedback controller K ,
K is modified by including a feedback loop by Q using the
YJBK parameterization. The advantage with this is that the
nominal controller is unchanged and it is easy to return to
the nominal controller. By using this concept, it is possible
to apply different controllers for detection and isolation
of the faults. Controller modification based on the YJBK
parameterization have been considered in [12] in details.
Let us close the loop between ε and η by a suitable stable
Q, i.e. the new input η is given by:

η = Qε+ η̄ = ηQ + η̄ (16)

This is shown in Fig. 2.
Using η given in (16) in general equation for the residual
vector ε from (10) gives:

εQ(Q) = (I − SQ)−1((M̃ + SŨ)Gyd(θ)d+ Sη̄)

= (I − SQ)−1εQ(0)
(17)

where εQ(0) = ε given by (10).
The residual vector in (17) is unchanged when the controller
is changed by including a non-zero Q in the fault free case
(θ = 0), i.e. it is equal to the residual given by (11). The
reason is that the fault signature matrix S is zero. When θ
is non-zero, the residual vector will change due to a non-
zero S. This gives a simple method to detect parametric
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Fig. 2. Setup for controller modification in connection with fault diagnosis.
η̄ is the auxiliary input for AFD. The system ΣP include parametric faults
θ.

faults. Further, in this case, the controller modification can
be applied for isolate parametric faults from the effect of
input disturbance on the residual vector.
To summarize, we have the following results. In the fault
free case, the residual vector εQ(Q) is given by:

εQ(0) = M̃Gyd(0)d

εQ(Q) = M̃Gyd(0)d, Q �= 0
(18)

In the faulty case, the residual vector is given by:

εQ(0) = (M̃ + SŨ)Gyd(θ)d+ Sη̄

εQ(Q) = (I − SQ)−1εQ(0), Q �= 0
(19)

It is clear from (18) and (19) that the residual vector is only
changed in the faulty case. This result can also be used for
fault detection, but will not be used directly in the following.

V. ACTIVE FAULT DETECTION WITH CONTROLLER
MODIFICATION

Now, let us consider the closed loop system ΣP,K given
by (10). Further, applying the feedback controller from (16)
gives the closed loop setup shown in Fig. 3.

Σ̄P,K

Q �

�
�
�

�

�

εQ

e

ηQ

η̄
d

Fig. 3. The closed loop feedback system Q as the feedback controller.

The system Σ̄P,K in Fig. 3 is given by (modification of (10)):

Σ̄P,K :

⎧⎨
⎩

e = Ped(S)d + Peη(S)η̄ + Peη(S)ηQ

εQ = Pεd(S)d + Sη̄ + SηQ
(20)

Closing the loop around Σ̄P,K with Q gives

Σ̄P,Q :

{
e = P̄ed(Q,S)d + P̄eη̄(Q,S)η̄

εQ = P̄εd(Q,S)d + S̄(Q)η̄
(21)

where
P̄ed(Q,S) = Ped(S) + Peη(S)Q(I − SQ)−1Pεd(S)

P̄eη̄(Q,S) = Geu(θ)(M + US)(I −QS)−1

P̄εd(Q,S) = (I − SQ)−1(M̃ + SŨ)Gyd(θ)

S̄(Q) = (I − SQ)−1S

where Ped(S), Peη(S) and Pεd(S) are given by (10).
It is here important to note that the transfer function from
auxiliary input η̄ to the external output e in (21) is indepen-
dent of Q in the nominal case. This mean that Q can now
be included in the feedback controller for optimizing the
fault detection speed without increasing the effect from the
auxiliary input vector on the external output. It is clear from
(21) that the transfer function from d to e will change by the
introduction of Q in the feedback controller. Assume that the
nominal feedback controller have been designed with respect
to optimizing this transfer function. Including a non-zero Q
will reduce this optimality of the transfer function from d
to e. It is therefore important that including a Q will only
change the transfer function from d to e as little as possible.
From (19) we have that the YJBK parameter Q can be used
to detune the feedback controller and in this way increase the
sensitivity from η̄ to the residual output εQ. Using a periodic
auxiliary input as given by (14) as applied in e.g. [10], [11],
[13], this detuning only needs to be done in the frequency
range around the frequency for the auxiliary harmonic input.
This can be done by using a band-pass filter given by (for
the SISO case but can be generalized to the MIMO case)

Q(s) = Kq

ζs

s2 + 2ζωqs+ ω2
q

(22)

where ωq is the center frequency and ζ is the reciprocal
quality factor.
Including a band-pass filter given by (22) in the fault free
closed loop system will only have an effect around the center
frequency ωq in the band-pass filter. ζ can then be used for
tuning the filter with respect to minimize the effect on the
fault free closed loop system.
It is clear from the above that the center frequency ωq and the
frequency ω in the auxiliary input given by (14) should be the
same. Following the line from [10], [11], [13], the frequency
in the auxiliary input is selected in the frequency range where
the fault signature matrix S(θ) has its maximal amplitude.
Analysis in [10], [13] show that S(θ) will normally have
a maximum around a certain frequency range for a given
fault θi in a certain interval given by [θi,min, θi,max]. It is
therefore naturally to select the auxiliary harmonic input with
a frequency around the maximum of S(θ) for maximizing the
effect of the signature from this input to the residual output
εQ. Following the same line here, we can design Q with
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respect to where S(θ) has maximal amplitude. This gives that
it will be possible to reduce the amplitude of the auxiliary
input without reducing the detection time or reducing the
detection time.
The fault signature matrix S(θ) will not in general have
maximal amplitude for all faults θi in the same frequency
range. Therefore, we will in general need at number of YJBK
parameters designed with respect to one or more faults. In the
fault detection, we will need to change between a numbers
of YJBK parameters with associated auxiliary inputs.
The design of the single YJBK parameters Qi can be
done with respect to a specified interval for the associated
parametric fault θi given by [θi,min, θi,max]. Based on
this, the center frequency ωq in the band-pass filter can be
selected. The auxiliary input η̄ need to be selected such that
the effect on the external output e is limited in the nominal
case. The norm of the effect on e from η̄ is given by:

‖e‖ = ‖Geu(0)Mη̄(ωp)‖ (23)

From (23) the gain of the auxiliary input can be selected
such that it satisfy the limitation on ‖e‖.
The ζ parameter in Q is then selected such that the change
in the fault free case is minimal in P̄ed(Q, 0) and that the the
detection is done in a reasonable time. This mean that the
gain of (I−S(θi)Qi)

−1S(θi) is reasonable at the frequency
for the auxiliary harmonic input. It is a condition that Qi does
not destabilize the closed loop system. Qi will not destabilize
the closed-loop system if, [16]

(I − S(θi)Qi)
−1 (24)

is stable. Using the small gain theorem, [14], on this problem,
we get the following condition on Qi:

‖S(θi)Qi‖ < 1, ∀θi ∈ [θi,min, θi,max] (25)

This will guarantee that the closed-loop is not destabilized
by including Qi. It is here assumed that both S(θi) and Qi

are stable.
Instead of selecting the frequencies for the auxiliary inputs
based on where the fault signature matrix has maximal
amplitudes, it can be selected from the nominal closed-
loop system and the external disturbance. Based on this, a
frequency range can be defined where the auxiliary input will
have no effect or only a minimal effect on the external output
e. Based on this frequency interval, the frequency for the
auxiliary input can then be selected as the frequency where
the fault signature matrix has maximal amplitude. Based on
this selection the selection of the gain of η̄ and ζ in Q is
done in the same way as done above.
At last, let us summarize the two approaches for design of
the YJBK parameters with respect to modifying the feedback
for obtaining a better fault detection of parametric faults.

1) For every single parametric fault θi, select the relevant
interval for the fault given by [θi,min, θi,max].

2) Select the frequency range for the frequency of the
periodic auxiliary input η̄.

3) For every single fault, calculate the maximal amplitude
and the associated frequency of the fault signature
matrix S(θi) for θi ∈ [θi,min, θi,max] in the
selected frequency range. This can be done based
on the amplitude of the fault signature matrix or by
considering the nominal closed-loop system.

4) Based on this analysis, select a minimal number of
YJBK parameters for the controller modifications, such
that it is possible to detect all parametric faults.

5) Based on the selected frequency for the auxiliary input
η̄, the gain is selected with respect to give a maximal
effect on the external output e in the nominal case, see
(23).

6) Select ζ for the single YJBK parameters with respect
to reasonable performance degradation of the nominal
closed-loop and reasonable detection time for the as-
sociated faults. Further, the design needs to satisfy the
closed-loop stability condition.

If the design result in more than one YJBK parameter, the
apply the YJBK parameters in a sequence with a single
parameter Qi and the associated auxiliary input η̄ at the time.

VI. EXAMPLE

To illustrate the methodology presented in this paper, we
shall present a simple example. The system considered is
given by the transfer function:

G(s) =
s2 + 1

(s+ 1)(s+ 2)(s+ 3)

It is assumed that the pole in −3 can change subject to a
fault, such that its value changes to −4, i.e.:

Gf (s) =
s2 + 1

(s+ 1)(s+ 2)(s+ 4)

It can be seen that the both systems G(s) and Gf (s) has an
imaginary pair of zeros at ±j.
For the nominal system, a standard LQG controller K(s) is
designed. The state feedback gain F and the Kalman gain L
are given by:

F =
[
−0.4808 −0.9071 −2.5511

]

L =

⎡
⎣ −5.7405

4.1245
−0.6956

⎤
⎦

This means that the YJBK parameterization can be imple-
mented as an observer based controller with Q(s) feeding
back from the estimation error to the joint input for system
and observer, see e.g. [18].
The band-pass filter Q(s) given by (22) is designed such that
it emphasizes the loop gain around the frequencies where
S(θ) is maximal in the presence of the above mentioned
fault.
The reciprocal quality factor ζ can be used as a trade-off
between on one hand minimizing the effects of defining
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and on the other hand limiting potential adverse effects in
terms of robustness issues caused by the significant phase
lag (although unobservable from the nominal system). In the
simulation described below, ζ = 0.1 was found as a good
compromise between these objectives.
The resulting effect of the detuning in terms of the ability of
the system is depicted in Fig. 4. It can be seen that the ability
to suppress high frequency disturbances have been slightly
decreased.

0 50 100 150 200 250 300 350 400 450 500
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03
Disturbance attenuation with/without detuning

Time [s]

y(t
)

Original CL system
CL system with detuning

Fig. 4. Simulation showing disturbance attenuation at output both with
and without the detuning parameter Q. It can be seen that the detuning
causes a slight decrease in performance. This performance loss can be made
arbitrarily small by controlling the quality factor of the bandpass filter of
Q.

On the other hand, the introduction of the Q parameter has
increased the sensitivity for the active fault diagnosis signal
significantly as seen in Fig.5.

0 50 100 150
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10−3 Fault residual with/without detuning

Time [s]

ε(t
)

Original CL system
CL system with detuning

Fig. 5. Simulation showing the response of the fault residual to a parametric
fault occurring at t = 25s. It can be seen that the detuning sensitizes the
fault residual with approx. a factor of 30 compared to the situation without
Q.

In this case, an active diagnosis signal in terms of a harmonic
signal with ω = 1.66 rad/s was applied. With the design
parameters mentioned above, the sensitivity was improved
with a factor of approximately 30. This means that the
probability of detection given a certain signal-to-noise ratio
will improve significantly. Alternatively, the amplitude of the
active fault diagnosis signal can be reduced correspondingly,
so as to avoid adverse spill-over effects on the output.

VII. CONCLUSION

The concept of using active fault detection (AFD) for detec-
tion of small parametric faults have been considered in this
paper. It have been showed that using the YJBK controller
architecture will allow a modification of the controller with
a minor effect on the external output in the fault free case.
In the faulty case, the effect of the auxiliary input on the
residuals can be optimized. This is obtained by using a band-
pass filter for the YJBK parameter that is only effective in a
small frequency range where the frequency for the auxiliary
input is selected. This gives that it is possible to apply
auxiliary inputs with a smaller gains.
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