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Abstract: Reliability and sustainability of wind turbines increase in importance as wind
turbines contribute with increasing power generation to the world’s power grids. One possible
way to achieve this is by using advanced fault detection and isolation methods in wind turbines
based on the measurements provided to the control system. In this paper a Karhunen-Loeve
basis approach is designed for detecting changes in frequency response from rotating parts
like a gearbox. The potential of this method is shown by applying it to an established Wind
Turbine FDI and FTC Benchmark model. These faults are industrial wind turbines detected
using auxiliary condition monitoring systems, which uses their own sensors etc. Usage of the
existing control system including sensors will thereby provide a potential cost reduction of the
wind turbine.
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1. INTRODUCTION

Wind turbines play a rapidly increasing role in the world’s
power grids. Consequently reliability of these turbines are
of increasing importance both from a grid stability point-
of-view and from a cost of energy perspective. Usages
of modern fault detection, isolation and accommodation
methods are one of the approaches which can be used to
achieve this.

The predominant industrial approach for fault detection
and accommodation in wind turbines is at present to use
simple fault detection methods applied to the available
control system sensor signals, like thresholds on measure-
ments, and as well condition monitoring systems used on
some of the expensive rotating parts like gearboxes and
bearings. These condition monitoring systems are using
additional, often expensive measurements of accelerations
and vibrations or sound. More information on wind turbine
condition monitoring can be found in Hameed et al. [2010]
and Yang et al. [2010]. It is consequently an expensive
add-on to the control system. Reviews of wind turbine
condition monitoring can be found in Amirat et al. [2009],
Hameed et al. [2009] and Garcia Marquez et al. [2012]. It
would clearly be beneficial if one could use the measure-
ments available in the control system to detect changes
in the condition of e.g. the gearbox in a wind turbine. To
facilitate research for this problem a friction change in the
drive train gearbox was included in the wind turbine fault
detection, isolation and accommodation benchmark model
proposed by the same authors in Odgaard et al. [2009], in
which the parameters in the 3 state gearbox model change
slightly both in frequency and damping coefficient.

A wind turbine converts wind energy to electrical energy.
The state-of-the-art wind turbine is an up wind three

bladed turbine. Three blades are mounted on a rotor
shaft and the wind force are converted into torque on the
rotor shaft by acting on the blades. This torque can be
controlled by pitching the blades or by controlling the gen-
erator torque. In between the rotor axis and the electrical
generator, normally a gearbox is mounted, converting the
low speed high torque rotor side with the high speed low
torque generator side. For more details on turbines consult
Bianchi et al. [2007] and Burton et al. [2008]. The gen-
erator speed measurement will contain a frequency com-
ponent due to the gearbox resonance frequencies. These
might be lowered with the usage of a drive train damper,
which will move a part of this component to the generator
torque control signal. An example of a drive train damper
can be seen in Licari et al. [2012]. It could consequently
be relevant to detect condition changes in the gearbox by
monitoring changes in frequency content of the generator
speed measurement and/or the generator torque control
signal. A number of published approaches have been ap-
plied to the previously mentioned benchmark model. Some
of these contributions are evaluated in Odgaard et al.
[2013]. Others of these contributions can be seen in Chen
et al. [2011], Laouti et al. [2011], Ozdemir et al. [2011],
Svard and Nyberg [2011], Zhang et al. [2011], Pisu and
Ayalew [2011], Blesa et al. [2011], Dong and Verhaegen
[2011], Kiasi et al. [2011], Simani et al. [2011a], Simani
et al. [2011b] and Stoican et al. [2011]. To the knowledge
of the authors none of these or other contributions to
wind turbine fault detection and isolation have taken the
approach of detecting frequency change in the generator
speed sensor signal to detect condition changes in the
gearbox, or did not have any success using other methods
for detecting this. In Odgaard and Stoustrup [2013] a
frequency based scheme for detecting this gearbox fault is
presented. This approach detects changes in the gearbox



resonance frequency by using a band pass filter at the
gearbox resonance frequency.

Since the involved signals have both temporal and fre-
quency characteristics, this problem requires a time-
frequency basis solution in which there is support in both
time and frequency. A simple first approach would be check
if the frequency spectrum has changed. It is especially
important to notice that the entire frequency spectrum
does not require to be assessed, but only the part in which
the drive train dynamics are present. It might not be so
simple that a resonance frequency just changes to the
fault or the amplitude of a resonance change. In this work
a basis approximating the general trends of the original
fault free frequency spectrum is found by extracting a
Karhunen-Loeve basis from a windowed FFT of fault free
data. Details on the Karhunen-Loeve basis can be found in
Wickerhauser [1994] and Mallat [1999]. Examples of using
Karhunen-Loeve basis for fault detection can be found
in Odgaard et al. [2006] and Odgaard and Wickerhauser
[2007]. This approximating basis supports the general
trends in the frequency spectrum. The gearbox fault can
subsequently be detected by comparing relative energy
content in the component supported by the approximating
basis relatively to the entire energy content in the given
window at which the FFT was performed.

In Sec. 2 the system and fault in question are described,
which is the gearbox resonance frequency change in the
FDI wind turbine benchmark model presented in Odgaard
et al. [2009]. The proposed scheme is presented in Sec. 3,
followed by simulations and evaluations of the proposed
scheme in Sec. 4. The paper is finalized by a conclusion in
Sec. 5.

2. SYSTEM DESCRIPTION

This paper considers a generic wind turbine of 4.8 MW
described in Odgaard et al. [2009]. The benchmark model
contains 9 different faults, of which the gearbox fault is
one. In this paper only the gearbox fault is considered. This
turbine is a variable speed three blade pitch controlled
turbine, with a front horizontal axis rotor.

2.1 Wind Turbine Model

The used wind turbine model is a benchmark model pre-
sented originally in Odgaard et al. [2009] and in additional
details in Odgaard et al. [2013]. The details can be found
in the mentioned paper, and are not described in full in
the present paper. An overview of the model can be seen
in Fig. 1, in which vw denotes the wind speed, τr denotes
the rotor torque, ωr denotes the rotor speed, τg denotes
the generator torque, ωg denotes the generator speed,
βr denotes the pitch angle control reference, βm denotes
the measured pitch angles, τw,m denotes the estimated
rotor torque, ωr,m denotes the measured rotor speed, τg,m
denotes the measured generator torque, ωg,m denotes the
measured generator speed, Pg denotes the measured gen-
erated electrical power, τg,r denotes the generator torque
reference, and Pr denotes the power reference. The figure
shows the relationship between the different model parts,
which are described in the following text. They are Blade
and Pitch System, Drive Train, Converter and Generator,

and Controller. In addition the wind and sensors are mod-
eled.
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Fig. 1. This figure shows an overview of the benchmark
model. It consists of four parts: Blade and Pitch
Systems, Drive Train, Generator & Converter, and
Controller. The variables in the figure are defined in
text.

Each element of the model is shortly described in the
following.

Wind Model The wind speed is given by a wind model
including mean wind trends, turbulence, wind shear and
tower shadow.

Aerodynamic and Pitch Actuator Model Aerodynamics
and pitch actuators are modeled in the Blade and Pitch
System model. The pitch actuator is modeled as a second
order transfer function with constraints. The aerodynam-
ics are modeled by a static mapping from the pitch angle,
rotor and wind speeds to the torque acting on the wind
turbine rotor.

Drive Train Model The drive train, which is used to
increase the speed from rotor to generator, is modeled with
a flexible two-mass system. The drive train model includes
the inertia of the rotor (which includes blades and the main
shaft) and generator.

Converter Model The converter which controls the gen-
erator torque is modeled by a first order system with
constraints. This model covers both the electrical behavior
of the generator and converter.

Sensor Models This part of the model is not shown on
the figure, since models of each sensor in the figure are
included in the relevant part model. The model contains a
number of sensors, generator and rotor speed, pitch angles,
wind speed, converter torque, electrical power. All the
sensors are modeled as the measured variable added with
random noise.

Controller The wind turbine operates in principle in
4 regions: Region 1 in which wind speeds are too low
for the wind turbine to operate, Region 2 in which the
turbine operates up to a nominal wind speed (partial load),
Region 3 between nominal and rated wind speed, where
the nominal power can be produced, Region 4 above rated
wind speed, where the wind turbine is closed down in order
to limit extreme loads on the wind turbine.

The controller is active in Region 2 & 3. In Region 2,
the optimal rotor speed is obtained by using the converter
torque as control signal. In Region 3 the rotor speed is
kept at a given reference value by pitching the blades, (the



converter keeps the power at the reference taking care of
fast variations in the speed). The basic controller in the
different regions is described in Johnson et al. [2006].

3. KARHUNEN-LOEVE BASIS BASED DETECTION
SCHEME

The Karhunen-Loeve basis provides a basis with basis
vectors ordered in respect to their approximating capacity
of a given data set. The basis vectors are generated
and sorted in such a way that the first basis vector
supports much of the energy in the data set. This means
the remaining basis vectors supports the differences from
each sequence in the data set, see Wickerhauser [1994].
Consequently this basis can be used to compare the general
trends in different data sequences. In this approach the
trends approximated are found in the frequency domain,
and consequently an FFT algorithm is applied to the data
set before the Karhunen-Loeve basis is computed. This
formed basis can be used to detect changes in the general
trends in the frequency domain.

Define a matrix X of u column vectors in Rm, where
u > m, the Karhunen-Loeve basis minimizes the average
linear approximation error of the column vectors in X.
In this scheme X is constructed by vectors, xi , with
the absolute values of the FFT of the data vectors of
length m. The low frequency part of the FFT is not of
interest since it contains dynamics from the rotation of
the wind turbine and other resonances like the tower. The
high frequency part is not if interest, since it does not
contain the relevant resonances. Consequently only a part
of the frequency range in the FFT is included in the xi

vector. The frequency range used is bounded by the lower
frequency denoted as fl and the upper frequency denoted
as fu.

A given vector xi can be found from the measured data
vector, yi as follows.

• Compute the FFT of yi, yfft,i(f) = fft(yi)

• Set xi as xi = [yfft,i(fl) · · · yfft,i(fu)]
T
.

The Karhunen-Loeve basis K is defined as

K = {v1, · · · , vm}, (1)

which is an orthonormal basis of eigenvectors of XXT ,
ordered in such a way that vn is associated with the
eigenvalue λn, and λi ≤ λj for i ≤ j. This means that
a basis, KL of the the l most approximating basis vectors
can be defined as

KL = {vm, vm−1, · · · , vm−l+1}. (2)

Now the approximating Karhunen-Loeve is found, the
coefficients, κi, for these vectors can be found for a given
data vector yi.

• Compute the FFT of yi, yfft,i(f) = fft(yi)

• Set xi as xi = [yfft,i(fl) · · · yfft,i(fu)]
T
.

• Compute κi as κi = xT
i ·KL.

The approximation of xi, denoted as x̄i is subsequently
computed as

x̄i = KL · κT
i . (3)

The last part of this detection scheme is to determine the
ratio, γ[n], of energy supported by the KL basis relatively
to the energy in yfft,i.

γ[n] =
x̄T
i · x̄i

yT
fft,i · yfft,i

. (4)

γ[n] is computed for each sample n, and this ratio will drop
if relative energy content in the approximated frequencies,
at which it is expected that the gearbox will have an energy
content, are decreasing due to a changed dynamic behavior
of the drive train.

This proposed scheme is somewhat computationally de-
manding since a FFT is required to be computed for each
time each of a window length, L, where L should be so
large that a reasonable frequency resolution in the interval
between fl and fu is present. It is not necessarily a prob-
lem that this scheme is computationally demanding, since
changes in the gearbox resonance will occur slowly over
time, so the computations do not have to be executed for
each sample. Instead they can be computed with a much
slower frequency, but using data with the original sample
frequency in order to obtain a high enough frequency
resolution.

4. SIMULATION AND EVALUATION OF THE
PROPOSED SCHEME

The Karhunen-Loeve basis is computed based on data
from the benchmark model without gearbox fault present.
The proposed detection scheme presented in Sec. 3, in-
cludes a number of parameters which can be adjusted in
the tuning process. The window length used in the FFT
computation is set to 2000, the frequency range for which
the Karhunen-Loeve basis is found is given by fl = 2 Hz
and fu = 6 Hz, and since the sample frequency is 100
Hz, the frequency resolution in the KL basis is equal to
100 Hz

2000
= 0.05 Hz.

In these simulations the wind speed sequence from the
benchmark model is used, and this wind sequence is
plotted in Fig. 2.

The five most approximating basis vectors, {vm−4, · · · , vm},
can be seen in Fig. 4. The coefficients in these vectors,
{κm−4, · · · , κm} are shown in Fig. 4. This shows that the
best potential for detection is by using the fourth most
approximating basis vector, i.e. l = 3. This also means
that γ[n] is computed based on κm−3[n] only.

Fault 9 which changes the gearbox resonance frequency
occurs from 4000 s. The computed value of γ[n] is plotted,
see Fig. 5 for the time interval from 3400 s to 4300 s in
order to ensure that the wind turbine is operating in the
full power mode, and that the fault is present in a part of
the interval.

From Fig. 5 it can be seen that γ[n] clearly drops when the
gearbox resonance frequency changes at 4000s with a delay
on approximately 10 s. Based on the same test sequence
the value of σ can be found. It seems that σ = 0.25
provides the best tradeoff between detection delay and
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Fig. 2. Plot of wind speed sequence used in the benchmark
model.

avoidance of false positive detections. The detection can
be seen in Fig. 6 for the time interval 3400s-4300s.

It can be seen from test that the proposed scheme has a
clear detection of the gearbox fault, it is a bit slow but
quite robust to different operational conditions, in terms
of avoiding potential false positive detections since the γ[n]
has a clear distinctive reaction during the fault. These
initial tests clearly shows a potential of detecting gearbox
faults using existing rotational speed measurements from
the wind turbine control system, and thereby a possible
cost reduction by monitoring the gearbox condition from
the control system without additional sensors.

4.1 Further Work

The next natural step would be to test the proposed
scheme on a more detailed model of the wind turbine
gearbox without and with faults, which is operated in a
realistic wind turbine simulation. Examples on such model
and simulations can be seen in Nejad et al. [2012] and
Nejad and Moan [2012].

It would also be relevant to perform this scheme on
multiple sensors and actuator signals, e.g. it is relevant to
include the generator torque reference in the drive train
resonance frequency case considered in this work, since
this would suppress variations in the generator speed in
partial load operations, and thereby dampen the gearbox
forces.

5. CONCLUSION

In this paper a scheme for detecting changes in a wind
turbine gearbox is presented. This scheme is applied to
the generator speed measurement from a benchmark wind
turbine model, and the scheme is based on a Karhunen-
Loeve basis which supports the general trends in the
generator speed in frequency domain. Since the frequency
domain of the generator speed changes during a gearbox
fault, this can be detected using this trend approximating
basis. The proposed scheme is tested on a known wind
turbine FDI and FTC Benchmark Model. This test shows
a potential of the proposed scheme for detecting gearbox
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Fig. 3. Plot of the five most approximating Karhunen-
Loeve basis vectors, vm−4 - vm.
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Fig. 5. A zoom on γ[n] for the time interval 3400s to 4300s.
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Fig. 6. A zoom on the detection based on γ[n] < σ for the
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faults. This enables the possibility of using generator and
rotor speed measurements for gearbox fault detection in
wind turbines, and thereby reducing costs by removing the
need for expensive auxiliary condition monitoring systems.
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