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Abstract: In this work, control strategies for aggregation of a portfolio of supermarkets towards
the electricity balancing market, is investigated. The supermarkets are able to shift the power
consumption in time by pre-cooling the contained foodstuff. It is shown how the flexibility of
an individual supermarket can be modeled and how this model can be used by an aggregator
to manage the portfolio to deliver upward and downward regulation. Two control strategies
for managing the portfolio to follow a power reference are presented and compared. The first
strategy is a non-convex predictive control strategy while the second strategy consists of a
PI controller and a dispatch algorithm. The predictive controller has a high performance but
is computationally heavy. In contrast the PI/dispatch strategy has lower performance, but
requires little computational effort and scales well with the number of supermarkets. Two
simulations are conducted based on high-fidelity supermarket models: a small-scale simulation
with 20 supermarkets where the performance of the two strategies are compared and a large-
scale simulation with 400 supermarkets which only the PI/dispatch controller is able to handle.
The large-scale simulation shows how a portfolio of 400 supermarkets successfully can be used
for upward regulation of 900 kW for a two hour period.
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1. INTRODUCTION

The growing demand on fossil fuel independence and focus
on climate related issues is leading to a larger penetration
of renewable energy sources throughout the developed
world (Department of Energy (2008)). The European
Commission has set a target of 20 % renewables by 2030
(European Commision (2010)) and China has doubled its
share of wind power production every year since 2004 (Yan
et al. (2010)), while Denmark has set a goal of 50 %
wind power in the energy sector by 2020 and 100 % by
2050 (Danish Ministry for Climate and Buildings (2012)).

One of the challenges arising when relying on renewable
sources is a destabilization of the power grid as production
from e.g., wind turbines or photovoltaics can vary greatly
according to the weather. In traditional setups the grid
is balanced by central power plants, which not only de-
liver power, but also ancillary services such as upward-
and downward regulation, primary frequency reserve, etc.
When these conventional power plants are replaced by
renewables, the ability to provide such services will disap-
pear, as these systems typically will utilize all the available
power. It should be mentioned that recent research into
how wind turbines can offer certain type of services has
been investigated in (Juelsgaard et al. (2012)).

It is therefore evident that to ensure a reliable future power
grid, new methods and alternative ways of delivering these
services must be found. One of the main approaches for
doing this is known as smart grid, where the flexible
consumption of demand side devices is utilized in the
balancing effort (Palensky and Dietrich (2011)). In this
balancing effort, different technologies such as controlling
flexible devices by informing them of future power prices,
have been investigated in (Hovgaard (2013)). Further,
Biegel et al. (2013b) details how flexible devices can
be modeled and aggregated such that their accumulated
response can enter into the markets on same terms as
conventional generators. Biegel et al. (2013a) describes
how a portfolio of ON/OFF demand side devices can be
controlled to offer upwards and downwards regulation.
Moreover, Biegel et al. (2013c) investigates how the flexible
consumption of demand side devices in cooperation with
production units can be used to stabilize the grid.

This work presents a method for harnessing significant
volumes of consumption flexibility of supermarket systems
in a simplistic manner. The basic concept is to construct a
simple interface between the supermarkets and an aggre-
gator. This is achieved by characterizing each supermarket
by two distinct operation modes denoted ON and OFF, or
collectively as the storage mode state (SMS). In the OFF



mode, the supermarket can run in its default operation
mode which for example could be to minimize power
consumption. However, in the ON mode, the supermarket
is asked to increase the overall power consumption, which
is effectively done by lowering the temperatures in the dis-
play cases. This simple interface is chosen for a number of
reasons. First of all, the supermarket is still in full control
of its primary process and there is no risk the aggregator
will cause the foodstuff to exceed the maximum allowed
temperature. Secondly, the method is easy to implement
and requires no additional hardware. Furthermore, the
proposed method does not require any complex modeling
or adaption of each supermarket, no complex interface
is needed, only an ON/OFF signal received from the
aggregator and a feedback of power consumption. This
makes it possible to implement the method on already
existing supermarket refrigeration systems and use them
as providers of regulating services. With properties that
to some extent can be compared to the current secondary
and tertiary reserves. Finally, this method makes the
contracting of flexibility simple and transparent without
need for consumption baselines etc; the aggregator could
for example provide compensation simply based on the
duration and number of ON-activations which significantly
simplifies the contractual setup (Harbo and Biegel (2012)).

The paper structure is as follows. In Sec. 2, the system
architecture is presented. Following, in Sec. 3 the role of
the local supermarket supervisor is explained. In Sec. 4 the
flexibility and power response of a supermarket is modeled.
Next, Sec. 5 shortly explains how the aggregator interfaces
the portfolio to the electricity markets, followed by Sec. 6
on how a virtual power plant (VPP) controls the portfolio
to ensure that a power reference is followed. Simulation
examples demonstrating the strategies is presented in Sec.
7. Finally, Sec. 8 concludes the work and the results are
discussed in Sec. 9.

2. SYSTEM ARCHITECTURE

In this section, an overview of the general system architec-
ture is given and the relation from supermarket through
aggregator to electricity markets is explained. The setup
is depicted in Fig. 1 and illustrates the basic idea in the
Danish smart grid setup, where the aggregator manages
a portfolio of flexible demand-side devices and utilizes
the accumulated flexibility in the unbundled electricity
markets on equal terms with conventional generators (En-
erginet.dk and Danish Energy Association (2012)). In the
following, the main players of this architecture are intro-
duced.

2.1 Regulating Power Markets

Suppliers can place bids of upward regulation (increasing
production or lowering consumption) or downward reg-
ulation (lowering production or increasing consumption)
in the regulating power market. The transmission system
operator (TSO) utilizes these reserves for grid stabilization
by activating upward/downward regulation according to
the system imbalances in the delivery hour (Energinet.dk
(2007)).

In this paper the focus is on the technical aspects of how
a portfolio of supermarkets can be managed to deliver
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Fig. 1. Illustration of the interconnection between elec-
tricity markets and supermarket portfolio. The ag-
gregator is bidding into the markets by managing
n supermarkets through a VPP and an ON/OFF
interface.

such upward or downward regulation services. Therefore,
topics such as bidding strategies, flexibility contracts, or
the economical aspects for the supermarkets for delivering
these services, are not considered – these issues are outside
the scope of this paper.

2.2 Aggregator & VPP

The aggregator is a legal entity in charge of contracting
flexibility from the flexible consumers, in this case the
supermarkets. By these contracts, the aggregator is al-
lowed to utilize the flexibility of each device, thus enabling
the aggregator to accumulate and utilize the flexibility of
an entire portfolio of devices. The devices are managed
through what is known as a virtual power plant (VPP).
The objective of the VPP is to ensure that the services
sold by the aggregator to the regulating power market are
indeed delivered.

2.3 Supermarket Portfolio

The supermarket is capable of offering flexible consump-
tion by utilizing the thermal mass contained in its display
cases. Decreasing display case temperatures will automati-
cally result in an increase in power consumption. When the
temperatures are below the upper bound it is thus possible
to decrease the power consumption until the temperatures
again reach this upper bound.

By utilizing this ability of numerous supermarkets and
aggregating them, the collected power consumption profile
can be used for bidding into the regulating power markets.

3. LOCAL SUPERMARKET SMART GRID
CONTROL

A local supervisor controller must be implemented at the
supermarket refrigeration system. The controller ensures
that the supermarket reacts to the VPP ON/OFF signal
and feeds back the total power consumption, as illustrated
in Fig. 1. The functionality of this supervisor controller is
illustrated in Fig. 2 and described in the following.
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Fig. 2. Placement of the supermarket supervisor according
to the local display case controllers and the refrigera-
tions system, for one supermarket in the portfolio.

When the SMS of a supermarket for example is switched
from OFF to ON, the strategy is to store energy quickly
by changing the temperature references of all local display
case controllers to their lower bounds, thus activating the
system, and thereby increasing the power consumption,
as much as possible. This will offer the largest amount
of flexibility within a smaller time span. When the SMS
is switched from ON to OFF the strategy is reversed
and all temperature references are changed to their upper
bounds. By offering flexibility in this way, and under the
assumption of well tuned local temperature controllers, it
is possible to manage a significant volume of the flexibility,
without jeopardizing foodstuff safety; further, there is no
need for new hardware on the individual display cases.
As previously described, these are some of the reasons for
choosing this simple ON/OFF interface.

4. MODELING

In order for the aggregator to use the flexibility of the
portfolio in its bidding strategy, a model of the flexibility of
each supermarket is needed. Furthermore, a model of the
power profile of each supermarket, is required to enable
the VPP to deliver the required upward or downward
regulating power.

4.1 Flexibility

To describe flexibility, a subset of the power node modeling
framework introduced by Heussen et al. (2011) is used to
construct a bucket model, see e.g., Pedersen et al. (2013)
for an example of this bucket model fitted to a refrigeration
system. The relation between energy storage and power
consumption is described by the following constrained
discrete time equation

E(k + 1) = adE(k) + TsP (k) (1)

E ≤ E(k) ≤ E (2)

P ≤ P (k) ≤ P, (3)

where E(k) ∈ R+ is the energy stored at sample k,
P (k) ∈ R+ is the power consumed at sample k, ad ∈ R

is the discrete time drain rate, Ts ∈ R+ is the sampling
time, E and E ∈ R+ are constraints on energy level, P
and P ∈ R+ are constraints on power consumption.

The objective is to fit this model to a supermarket sys-
tem only based on knowledge of the SMS and power

consumption measurements. This means that the size of
the supermarket refrigeration system and specific setup
are unknown factors. However the assumption of a known
coefficient of performance (COP) is made in order to
normalize the power and thereby decouple the disturbance
of outdoor temperature from the following model. The
COP describes the amount of electrical energy converted
to cooling energy by the refrigeration system. There are
ways to estimate this value, e.g., (Hovgaard et al. (2013)),
and an affine approximation can be made (Shafiei et al.
(2013a)). Fig. 3 illustrates a sketch of the evolution of
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Fig. 3. Sketch of the power response when supermarket is
switched between ON and OFF. Estored denotes the
stored energy, which is equal to the released energy
Ereleased and Edrain denotes the increased energy
drainage from increasing the energy level.

power consumption and energy level when the SMS is
switched between ON and OFF. The SMS is started in
OFF and the energy level is at its lower bound, E(k) = E.
Let P (k) = PE denote the steady state power required
to keep the energy level at E. When the SMS is switched
to ON, P (k) rapidly increases to P . As the energy level
rises to E, P (k) will decrease until steady state where
P (k) = P

E
. Similar reasoning applies when switching

the SMS from ON to OFF. It should be noted that the
model also accounts for the increased loss that occur, due
to the increased temperature difference, when the energy
level is increased. Furthermore, the notion of storing en-
ergy in refrigeration systems by lowering temperatures is
technically incorrect, as decreasing temperatures is the
same as lowering energy level. However, the ability to
shift consumption in this manner is effectively the same
as storing energy from an aggregator point of view.

To describe such a model, the parameters ad, P , P , E and
E must be identified. This can be accomplished directly via
measurements. To find the constraints on energy, Eq. (1)
can be rewritten into Eq. (4) and (5), given that the



system is in steady state running at its energy bounds,
i.e. E(k) = E or E(k) = E.

E = adE + TsPE ⇒ E =
TsPE

1− ad
(4)

E = adE + TsPE
⇒ E =

TsPE

1− ad
. (5)

Knowing that E(k′) = E, see Fig. 3, the sequence of
equations starting from sample k′ and back to the sample
where the switch to ON occurred, E(1) = E, k = 1, . . . , k′,
can be written as

E = adE(k′ − 1) + TsP (k′ − 1) ⇒ (6)

E(k′ − 1) =
E − TsP (k′ − 1)

ad
⇒ (7)

E(k′ − 2) =
E(k′ − 1)− TsP (k′ − 2)

ad
(8)

...

E(1) = E = [((E − TsP (k′ − 1))/ad

− TsP (k′ − 2))/ad · · · − TsP (0)]/ad. (9)

Assuming that Ts is known as well as the time sequence
of measurements P (0), . . . , P (k′), Eqs. (4)-(5) can be in-
serted into Eq. (9), thereby reducing the problem to one
equation in one unknown, namely ad, which can be solved
in a deterministic way. In the following the continuous
time model of energy is used to describe the power profile,
where the continuous counterpart of ad is easily found as
ac = ln(ad)/Ts. The continuous time model is given as

dE(t)

dt
= acE(t) + P (t). (10)

4.2 Power Profile

The high fidelity supermarket model developed by Shafiei
et al. (2013b) is utilized to examine an actual power
response from a supermarket system when switching the
SMS between ON and OFF. Such a response is depicted
in Fig. 4.

The fluctuations in power consumption are caused by sev-
eral factors such as: hysteresis control of the display case
temperatures and the compressors occasionally switching.
It is thus evident that the simulated power consumption
of the model does not look exactly like the sketch in
Fig. 3. However, the zero phase filtered version resembles
the general behavior. Furthermore, notice that when the
number of supermarkets in the portfolio increases, these
fluctuations in the individual supermarket’s power con-
sumption will have less impact on the collective power
response. Therefore, it is only the general behavior of each
supermarket’s power response which is of interest, i.e. the
filtered version.

To describe this behavior the power profile is split into
two parts. One part handles the power consumption due
to drain from increasing the energy level, indicated by
the slowly ascending/descending dashed lines in Fig. 3.
The second part describes the extra consumption from
storing energy. Given that the behavior when switching
between the two modes are similar, they are modeled in
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Fig. 4. Power response of high fidelity supermarket re-
frigeration system model. (Blue) is simulated power
consumption and (Red) is a zero phase filtering over
60 minutes of it.

the same way. The power consumption at time t, can thus
be expressed as

P (t) = P̃ (t) + P̂ (t), (11)

where P̃ (t) ∈ R describes the power consumption due to

loss and P̂ (t) ∈ R describes the power consumption due
to storing/releasing energy. Due to conservation of energy,
dE(t)
dt

= 0; thus, the power loss is modeled as

P̃ (t) = −acE(t). (12)

To evaluate how P̃ (t) evolves, Eq. (12) is differentiated
with respect to t

dP̃ (t)

dt
= −ac

dE(t)

dt
(13)

= −a2cE(t)− acP̃ (t)− acP̂ (t). (14)

The power storage is modeled by a system of linear
equations describing both the steep ascent/descent and
slow ascent/descent. Furthermore, the input, u(t), to the
system is binary. The system is as follows

P̂ (t) =
dx1(t)

dt
(15)

dx1(t)

dt
= b1x1(t) + c1x2(t) (16)

dx2(t)

dt
= b2x2(t) + c2u(t), (17)

where x1(t) ∈ R describes the slow ascent/descent, x2(t) ∈
R describes the fast ascent/descent, i.e. |b2| >> |b1|,
bi ∈ R−, ci ∈ R+ are parameters of the model and
u(t) ∈ {0, 1} is the binary ON/OFF control input. To

model the dynamic behavior of P̂ , its derivative with
respect to t is found

dP̂ (t)

dt
=

d2x1(t)

dt2
(18)

= b21x1(t) + (b1c1 + b2c1)x2(t) + c1c2u(t). (19)

4.3 Combined Model

The flexibility and power profile model is collected to
form the following state space system, representing a



supermarket:

dx(t)

dt
= Ax(t) +Bu(t) (20)

y(t) = P (t) = Cx(t), (21)

where

x(t) =




E(t)

P̃ (t)

P̂ (t)
x1(t)
x2(t)



, A =




ac 1 1 0 0
−a2

c
−ac −ac 0 0

0 0 0 b21 b1c1 + b2c1
0 0 0 b1 c1
0 0 0 0 b2




B =




0
0

c1c2
0
c2


 , C = [0 1 1 0 0] ,

and with parameter ac known from the flexibility modeling
and the parameters bi, ci are found using prediction error
method (PEM) (Ljung (1999)). The results of fitting the
model to the response depicted in Fig. 4, is seen in
Fig. 5. The model can not describe the high peak when
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Fig. 5. Comparison between filtered power response (blue)
and linear model (red).

switching the SMS from OFF to ON and the lower peak
when switching the SMS from ON to OFF. However, it
describes the general behavior between switches well. The
discrepancies could be handled by a more complex model,
but as this model is intended for large scale VPP control
it is kept simple, leaving these discrepancies to be handled
by the VPP control algorithm.

4.4 Portfolio Model

To obtain a model for the entire portfolio, the individual
systems are concatenated as:

Asmp = diag(A1, . . . , An) (22)

Bsmp = diag(B1, . . . , Bn) (23)

Csmp = diag(C1, . . . , Cn), (24)

where Asmp ∈ R
5n×5n, Bsmp ∈ R

5n×n, Csmp ∈ R
n×5n,

n is the number of supermarkets in the portfolio, and
diag(X,Y,...) is a block diagonal matrix with X,Y, . . .
as diagonal blocks.

5. AGGREGATOR

The purpose of the aggregator is to interface the portfolio
of supermarkets to the various electricity markets and
through knowledge of flexibility be able to plan power
consumption according to these markets. This makes the
aggregator responsible for providing the power reference
for the VPP to track. In this setup the aggregator can use
the supermarket portfolio model describing the power pro-
file and energy flexibility to form the optimal daily power
reference, based on e.g. estimates of future power prices.
For such a day ahead cost optimization, the objective will
be very similar to the economic MPC approach suggested
by Hovgaard et al. (2011) scaled to multiple supermarkets.

The setup is, however, different when offering regulating
services. Because of the ON/OFF interface the regulating
services offered by a single supermarket have specific char-
acteristics. When the SMS of the supermarket is set to ON
for downward regulation; upward regulation will immedi-
ately follow upon switching to OFF. For the aggregated
portfolio though, this behavior can be compensated by the
large number of supermarkets and thus the ability to track
a reference is achieved. Therefore, the following sections
will focus on a generic notion of load shifting applicable in
many different setups.

6. VIRTUAL POWER PLANT

The VPP must ensure that the power reference created
by the aggregator is tracked. This section, presents two
methods for doing this; following, the performance of the
two methods is compared.

6.1 Predictive Solution

The first method follows directly from the supermarket
portfolio model and the objective previously described.
This can be reformulated in a receding horizon fashion
leading to the following optimization problem which must
be solved at each sample k.

min.

k+N−1∑

κ=k

(Pref(κ)−
n∑

i=1

Pi(κ))
2

s.t. x(κ+ 1) = Asmpx(κ) +Bsmpu(κ)
P (κ) = Csmpx(κ)
u(κ) ∈ {0, 1}n,
κ = k, . . . , k +N − 1,

with variables x(k+1), . . . , x(k+N), P (k), . . . , P (k+N−
1), u(k), . . . , u(k + N − 1) and data x(k), Asmp, Bsmp,
Csmp, Pref(k), . . . , Pref(k + N − 1) and Pi(κ) denotes the
i’th entry in the P (κ) vector, P (κ) ∈ R

n. It can be seen
that the decision variables in the vector u(κ) are binary.

While it is possible to solve this problem for few super-
markets and a small horizon, it grows exponentially with
the length of the horizon and the number of supermarkets
in the portfolio. As a result, it is not practical to find the
solution for hundreds of supermarkets over a horizon of
even just tens of samples.

Therefore, a dispatch solution is introduced in the follow-
ing.



6.2 Dispatch Algorithm

In this section an algorithm is designed, inspired by Pe-
tersen et al. (2013), that decides on activation by means
of sorting the set of supermarkets in the portfolio denoted
S.

The control structure is depicted in Fig. 6 and is comprised
of a standard PI controller with a dispatcher inserted
between controller and plant to handle the conversion of
a continuous scalar to a vector of binary variables.

PI Dispatch

Portfolio

u

n

Pref Perr Pctrl P

-
Σ

Fig. 6. Illustration of the dispatch strategy. The PI con-
troller acts on the error Perr to form the control signal
Pctrl for the Dispatcher. The Dispatcher translates
the control signal Pctrl to ON/OFF signals for the
portfolio.

The dispatch algorithm is summarized below, where ε is
a tolerance band, the subsets of available supermarkets
to switch ON, SON ⊆ S, or OFF, SOFF ⊆ S, can be
obtained in different ways, see e.g., Biegel et al. (2013a)
for an example with ON/OFF time constraints. Here, the
subsets are sorted by best power response first, meaning
that the supermarket capable of offering a response closest
to the error, e, is (de)activated first.

(1) Initialize by obtaining Pctrl(k).
(2) if Pctrl(k) > 0.

(a) Generate SON.
(b) Simulate response of SON according to (22)-(24).
(c) Set e = Pctrl(k).
(d) while SON 6= ∅ and |e| > ε

• Choose Si from SON to switch ON, accord-
ing to best response first.

• Update SON by removing Si.
• Update e = e − Pi.
• Switch supermarket ON: ui(k) = 1.

(e) Apply u(k) to portfolio.
(3) else if Pctrl(k) ≤ 0.

(a) Generate SOFF.
(b) Simulate response of SOFF according to (22)-(24).
(c) Set e = Pctrl(k).
(d) while SOFF 6= ∅ and |e| > ε

• Choose Si from SOFF to switch OFF, ac-
cording to best response first.

• Update SOFF by removing Si.
• Update e = e − Pi.
• Switch supermarket OFF: ui(k) = 0.

(e) Apply u(k) to portfolio.
(4) Increase k by one and go to step 1.

7. SIMULATION EXAMPLES

Two simulations are presented in this section: a small-scale
example where the predictive strategy and the dispatch
strategy are compared and a large scale example where
only the dispatch solution is applicable. A sampling time
Ts = 5 minutes is used.

Method Tracking Error (RMSE) Computation
Power [kW] % Time [sec] %

Predictive 2.15 100 5051 100
Dispatch 3.5 163 24·10−3 47·10−3

Table 1. Comparison between the different
VPP control methods, both simulated on a

portfolio of 20 supermarkets.

7.1 Small-Scale Example

The two different approaches are compared on a scenario
consisting of n = 20 linear supermarket models following
a power reference. For now, the linear models are used
to examine the two methods performance under idealized
circumstances. The Predictive solution is implemented
with a horizon of 12 hours. The results are summarized
in Table 1 and can be seen in Fig. 7. This simulation
example is carried out to evaluate the tracking abilities
of the dispatch solution when compared to the predictive
solution.
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Fig. 7. Plot of the two different controlled methods ability
to follow a power reference, when controlling a port-
folio of 20 linear supermarket models.

A number of interesting results is observed. As expected,
the predictive solution performs best with regards to
RMSE because of its ability to reach the peaks, however
with the cost being a high computation time. The dispatch
solution on the other hand is capable of tracking the same
power reference, with an increase in RMSE of 63 %. Fur-
thermore, the computation time is reduced with a factor
210 · 103. This further motivates the dispatch strategy for
large scale implementation.

7.2 Large-Scale Example

This simulation is based on n = 400 supermarkets. Only
the dispatch algorithm is examined as the predictive con-
troller cannot handle this large number of devices. To
enhance the reliability of the results, the simulations are
based on the nonlinear, high-fidelity supermarket model
presented by Shafiei et al. (2013b). Further, a hetero-
geneous portfolio with between 5 and 10 medium tem-
perature cabinets and between 2 and 6 low temperature
cabinets corresponding to typical Danish supermarkets, is
considered. Additionally, the parameters of the model is
uniformly distributed between ±20 % of the original pa-
rameter values to mimic different types of foodstuff, length



of piping and different display case models. To further
increase the credibility of the simulation, 30-minute run-
time and stop-time constraints, are imposed. Hereby the
SMS of each supermarket cannot be switched between ON
and OFF more often than each 30 minutes. This constraint
is included as rapid switching may cause excessive wear on
the refrigeration components, in particular the compressor.

The result of the performed simulation is illustrated in
Fig. 8, where also the uncontrolled consumption of the
portfolio is shown to illustrate the potential of shifting
consumption. First the power reference is constructed,
based on a strategy of increasing the overall consumption
of the portfolio during the low cost night hours and keep-
ing this level in order to offer upward regulation, during
two afternoon peak hours. First, the consumption of the
portfolio is brought up to a level of 2800 kW. This is not
optimal with respect to minimizing the power consump-
tion of the supermarkets, however it enables the activation
of 900 kW upward regulation for a two hour period during
the afternoon peak hours. After the regulation period the
consumption is regulated to a level of first 2100 kW and
then down to 2050 kW. When the upward regulation is
activated, it has 15 minutes to reach the new level and
the transitions after the regulation period can be chosen
freely.

This simulation shows the behavior of the controlled port-
folio where supermarkets first are switched between modes
to maintain a mean consumption close to the referenced
2800 kW; following, when activated for the upward regula-
tion period, the SMS of many supermarkets are switched
to the OFF mode lowering the mean consumption with
900 kW. This is followed by an increase in activation of
supermarkets to again reach the higher reference of first
2100 kW and then 2050 kW. Controlling the portfolio in
this manner will result in an overall increased consumption
of 7018 kWh, which is a 13.5 % increase. However, the peak
consumption during the two hours of upward regulation
has been lowered by 985 kWh, which is a 24.7 % decrease.
Furthermore, when activated for upward regulation, the
system reaches the new level within the specified 15 min-
utes.

8. CONCLUSION

In this work, a simple interface that allowed an aggrega-
tor to access a large share of the consumption flexibility
in supermarket systems, was presented. The presented
method allowed for simple flexibility contracts between su-
permarket owners and aggregator; moreover, the interface
ensured that the primary process of the supermarkets was
ensured such that foodstuff safety was guaranteed. Based
on this interface, a method for modeling the supermarket
flexibility was proposed along with two control strategies
for regulating the accumulated power consumption of a
portfolio of supermarkets towards a power reference. The
first control strategy was based on solving a mixed integer
problem (MIP) to find the optimal solution within a given
control horizon. The second approach was based on a PI
controller combined with a dispatch algorithm, leaving out
explicit optimization completely.

While the predictive control strategy showed the best
tracking abilities, its complexity grew exponentially with
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Fig. 8. 24 hour simulation of a portfolio of 400 supermar-
kets activated for 2 hours of upward regulation and
the same portfolios power consumption when uncon-
trolled. The variations in uncontrolled consumption
is caused by a disturbance in form of varying outdoor
temperature.

portfolio size and was therefore computationally infeasible
for larger portfolios. Moreover, it was shown that the
dispatch solution had a decrease in tracking ability of
63 % with regards to RMSE, but reduced computation
time with a factor 210 ·103, even for a small portfolio size.

The dispatch strategy was able to follow a power refer-
ence simulating an upward regulation of 900 kW for two
afternoon peak hours, where the new reference level was
reached within 15 minutes. The simulation was carried out
on a large portfolio of supermarkets based on a high fidelity
nonlinear model. The simulation results was compared
with the uncontrolled consumption of the same portfolio.
The controlled portfolio showed an overall increase in
consumption of 13.5 %, whereas the peak consumption
was decreased by 24.7 % for the two hours of upwards
regulation.

9. DISCUSSION

The large-scale simulation result should be seen in a
broader perspective, where e.g., a large number of super-
markets and other consumers are uncontrolled and will all
have peak consumption in the same time period. By con-
trolling a subset of these supermarkets, it is thus possible
to lower the overall peak consumption and by offering such
regulating service generate additional revenue.

The high fluctuations in power consumption of each su-
permarket, makes it difficult for the portfolio to follow the
power reference precisely, however the mean evolves closely
around the reference. It is expected that an even larger
portfolio size would increase the overall systems tracking
abilities.
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