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Abstract: In this paper, we propose a dynamic market mechanism that converges to the
desired market equilibrium. Both locational marginal prices and the schedules for generation
and consumption are determined through a negotiation process between the key market
players. In addition to incorporating renewables, this mechanism accommodates both consumers
with a shiftable Demand Response and an adjustable Demand Response. The overall market
mechanism is evaluated in a Day Ahead Market and is shown in a numerical example to result
in a reduction of the cost of electricity for the consumer, as well as an increase in the Social
Welfare.
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1. INTRODUCTION

Two dominant features of a smart grid are a high penetra-
tion of renewable energy resources (RERs) and Demand
Response (DR), the flexibility to adjust power consump-
tion (see Annaswamy et al. [2013]). The introduction of
both renewable energy sources as well as efforts to in-
tegrate DR-compatible consumption brings in a set of
dynamic interactions between the major components of a
smart grid. Electricity markets, the entity that carries out
power balance by scheduling power using bids from various
generating companies, are crucial components that can
facilitate such dynamic interactions. This paper proposes
a dynamic market mechanism in a smart grid that includes
the behavior of key market players such as generators, con-
sumers, and Independent System Operator (ISO), together
with DR-compatible participants.

Demand Response consists of systems, services, and strate-
gies that enable demand resources to adjust their con-
sumptions in response to economic signals from a com-
petitive wholesale market. Given these varied flexibilities,
DR can be grouped into two major categories, DRa, which
corresponds to DRs that adjust their consumption (see for
example, Sioshansi, Short [2009], Staff [2008]) and DRs

that shift their consumption (see for example, Roscoe,
Ault [2010]), both in response to wholesale energy prices.
Both types of consumption can provide relief from capacity
constraints and promote more economically efficient uses
of electrical energy. In Kiani, Annaswamy [2011], a market
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model was proposed that only included DRa. In this paper,
an extension is proposed to include the second category
DRs, where the demand is shiftable.

Various methods have been proposed in the literature
to determine market models, based on market equilib-
rium, Equilibrium Programming with Equilibrium Con-
straints (EPECs), Variational and Complementarity Prob-
lem (CP) formulation, and game theory (see for example,
Yao et al. [2008], Ruiz, Conejo [2009], Hu, Ralph [2007],
Morales et al. [2009], Klemperer, Meyer [1989], Visud-
hiphan, Ilic [1999], Alvarado et al. [2000], Cunningham
et al. [2002]). In contrast to the above, a dynamic ap-
proach has been proposed in Kiani, Annaswamy [2011],
Kiani, Annaswamy [2012] where iterative negotiations are
proposed between the key market players so as to arrive
at the desired market equilibrium. Similar to, Arrow et al.
[1958], the idea is to use gradient approach to determine
these iterative strategies. And similar to Alvarado et al.
[2000], price is used as a feedback control input for power
balance.

The approach in, Kiani, Annaswamy [2011], Kiani, An-
naswamy [2012] included Demand Response that was as-
sumed to be directly responsive to prices; that a propor-
tional increase or decrease was assumed to occur for a
decrease or increase in the price. This class is expanded
much further in this paper to include DR that is shiftable
over a 24-hour interval rather than adjustable at each
instant. This introduces a significant challenge of integral
constraints. A two-step approach is proposed to address
this challenge; in the first, a desired demand profile is
generated that accommodates the integral constraint over



a period of interest and in the second, a dynamic mar-
ket mechanism is proposed, similar to Kiani, Annaswamy
[2011], which suitably allows the flexible demand to con-
verge to the desired demand profile. Using the resulting
model, conditions of stable convergence are defined.

This paper has been organized as follows: In Section 2 the
desirable demand response profile for DRs is presented.
In Section 3, a wholesale energy market structure is in-
troduced, and the underlying dynamic model is presented
including both DRa and DRs. In Section 3.6 stability
properties are derived and the region of attraction is es-
tablished. In Section 4 numerical studies of an IEEE 4-bus
are reported and finally in Section 5, we provide summary
and concluding remarks.

2. A DESIRABLE DEMAND PROFILE

The main goal of electricity markets is to ensure efficient
power balance. A dominant factor that may impede this
is the variation in demand. Given the paradigm shift that
is occurring at present with Demand Response, and the
possibility of a shiftable demand (see Roscoe, Ault [2010]),
we discuss the optimal demand profile in this section, and
introduce constraints to represent the shiftable compo-
nent.

Denoting the shiftable and non-shiftable demand com-
ponents as PDs and PDf , respectively, we represent the
shiftable demand at a consumption unit using the follow-
ing constraints:∑

t∈T
PDst = P tot

Ds (1a)

0 ≤ PDst ≤ Pmax
Dst , ∀t ∈ T (1b)

where PDst is the shiftable demand at time t, T denotes the
time period of interest, P tot

Ds is the total shiftable demand
over T , and Pmax

Dst
is the maximum allowable shiftable

demand at time t.

One can then generate the desired demand profile by
constructing an objective function∑

t∈T
(PDst + PDft)

2, (2)

where PDft is the fixed demand component at time t,
and then pose the overall problem as the minimization
of (2) subject to constraints in (1). The resulting solution,
denoted as P ref

Dst
, can be seen to be one where the demand

is more uniform over T .

Fig. 1 illustrates a desired demand profile using typical
consumption data 1 over a 24-hour period where it is
assumed that 10% 2 of the power consumption is shiftable
at each hour t. That is, PDst = 0.1(PDst + PDft) for
t ∈ [1, 24]. With the constraints presented in (1) chosen
as P tot

Ds = 117.1 MWh and Pmax
Dst

= 60 MWh, the solutions

P ref
Dst

(blue) and P ref
Dft

(black) at each t of (2) subject to

(1) are determined. For t ∈ [9, 23] peak reductions (gray)
are achieved.

1 From ISO New England at http://www.iso-ne.com/markets/ with
a scaling factor of 0.01.
2 Such a percentage is within projected DR penetration found in
studies of demand (Milligan, Kirby [2010]).
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Fig. 1. 90% of hourly demand distribution (black), re-
maining 10% optimally distributed as shiftable con-
sumption (blue) and peak reduction (gray) from the
original distribution in NEMASSBOST on 07/19/13.

3. WHOLESALE ENERGY MARKET STRUCTURE

The electricity market that we consider in this paper is
wholesale and is assumed to function as follows: First, each
consumer (ConCo) submits the bidding stacks of each of its
demands to the pool. Similarly, each generating company
(GenCo) submits the bidding stacks to the pool. Then,
the ISO clears the market using an appropriate market-
clearing procedure resulting in prices and consumption and
production schedules. In what follows, we model each of
the components (ConCo, GenCo and ISO) together with
their constraints and the overall optimization goal.

In the modeling, the following nomenclature will be used.
N , Nt, ND, NGc and NGw denote the total number of
buses, transmission lines, consuming units, dispatchable
generating units and non-dispatchable generating units,
respectively. Further, θn, ϑn and φn denote the set of
indices of dispatchable generating units, non-dispatchable
generating units and consuming units at node n, respec-
tively. Ωn denote the set of indices of nodes connected
to node n and finally, Dq, Gc and Gw denote the set of
indices of consuming units, dispatchable generating units
and non-dispatchable generating units, respectively.

3.1 Consumer Modeling

For consumer company j ∈ Dq = {1, 2, . . . , ND} the
consumption is divided into three classes: fixed, adjustable
and shiftable, denoted PDfj , PDaj and PDsj , respectively.
Each consumer company is assumed to consist of one unit
of each class of consumption and the total consumption
PDj

= P ′Daj + PDsj where P ′Daj = PDfj + PDaj . The
value of using each class of electricity for the consumer is
represented by the associated utility functions in which the
marginal utilities are decreasing linear functions of power
consumption. The utility functions are

UDaj (P ′Daj ) = bDajP
′
Daj +

cDaj
2

P ′
2

Daj (3a)

UDsj (PDsj ) = bDsjPDsj +
cDsj

2
P 2
Dsj , (3b)

where bDaj , bDsj , cDaj and cDsj are consumer utility coef-
ficients. The utility of the total consumption UDj (PDj ) =
UDaj (P ′Daj ) + UDsj (PDsj ).

The consumption values are constrained; P ′Daj and PDsj
must evolve such that in equilibrium, they reach a value no
smaller than the derived reference and reach the derived
reference, respectively, where both references are deter-
mined as in Section 2.



3.2 Generator Modeling

The generating companies are separated into conventional
dispatchable units e.g. coal plants, and non-dispatchable
renewable energy resource units e.g. wind energy, and
modeled separately. It is assumed that all GenCos bid their
marginal cost, rather than performing strategic biddings.
The non-dispatchable generator companies are further-
more assumed to submit their bids to the market like
conventional GenCos.

Conventional Dispatchable GenCos Each dispatchable
generator company i ∈ Gc = {1, 2, . . . , NGc} is assumed
to consist of one generating unit and the production of
each generator company is denoted PGci . The costs of
operation are assumed quadratic functions of generated
power, implying a linear marginal cost i.e. cost of changing
production one unit. The operating cost of dispatchable
GenCo i is given by

CGci(PGci) = bGciPGci +
cGci

2
P 2
Gci ,

Pmin
Gci ≤ PGci ≤ P

max
Gci (4)

where bGci and cGci are generator cost coefficients and
Pmin
Gci

and Pmax
Gci

are lower and upper bounds on GenCo i,
respectively. Rate constraints, startup and shutdown costs
on the dispatchable generation are not included in this
model.

Non-Dispatchable RER GenCos Each non-dispatchable
generating company l ∈ Gw = {1, 2, . . . , NGw} is assumed
to consist of only one generating unit and the production
of each generator company is denoted PGwl

. The costs of
operating are given by

Ctot
Gwl

(PGwl
) = CGwl

(PGwl
) + Crwl

(∆wl
), (5)

where

CGwl
(PGwl

) = bGwl
PGwl

+
cGwl

2
P 2
Gwl

(6)

Crwl
(∆wl

) = bwl
∆wl

+
cwl

2
∆2
wl
. (7)

Coefficients bGwl
and cGwl

are generator cost coefficients,
bwl

and cwl
are reserve cost coefficients. CGwl

(PGwl
) de-

notes the traditional generation cost, which is very close
to zero. Crwl

(∆wl
) denotes the cost of committing specific

generators as reserves due to the wind uncertainty and
∆wl

is given by

∆wl
= PGwl

∆Gwl
, (8)

where 0 < ∆Gwl
< 1 corresponds to overestimated

wind energy which implies the assumption that the power
can be purchased elsewhere or demand can be adjusted.
Underestimation is present when −1 < ∆Gwl

< 0 which
implies a surplus in power that is assumed to be handled
alternatively.

The non-dispatchable generation is constrained by

0 ≤ PGwl
≤ Pmax

Gwl
, (9)

where Pmax
Gwl

is the maximum achievable generation of non-
dispatchable unit l, limited by external factors e.g. wind
speeds. Rate constraints, startup and shutdown costs on
the non-dispatchable generation are not included and the
reserve market is assumed cleared independently of the
energy market.

3.3 ISO Market-Clearing Model

The ISO clears the electricity market optimizing a cost
function subject to network constraints. Generally, the
most significant constraints in the network are due to net-
work losses and line capacity limits. Technical limitations
are constraining the power flow through lines, which is
said to be congested when approaching these upper limits.
Congestion is explicitly included in the model, whereas
ohmic losses are not modeled.

The market-clearing procedure acts on behalf of ConCos
and GenCos by maximizing the utility of consumption for
the ConCos and minimizing the cost of generation for the
GenCos. The cost function to optimize is often termed
Social Welfare and is defined as

SW =
∑
j∈Dq

UDj (PDj )−
∑
i∈Gc

CGci(PGci)

−
∑
l∈Gw

Ctot
Gwl

(PGwl
). (10)

Expressed as an optimization problem, the market-clearing
procedure is given by

Maximize SW = Minimize − SW (11)

subject to

−
∑
i∈θn

PGci −
∑
l∈ϑn

(PGwl
+ ∆wl

) +
∑
j∈φn

PDj

+
∑
m∈Ωn

Bnm [δn − δm] = 0; ρ′n ∀n ∈ N (12a)

Bnm [δn − δm] ≤ Pmax
nm ; γnm ∀n ∈ N, ∀m ∈ Ωn (12b)

PDsj − P ref
Dsj = 0;λj ∀j ∈ Dq (12c)

P ref
Dfj ≤ P

′
Daj ; ζj ∀j ∈ Dq (12d)

PGwl
≤ Pmax

Gwl
; ξl ∀l ∈ Gw (12e)

where δn is the voltage angle of node n, Bnm is the sus-
ceptance of line n to m, Pmax

nm is the power capacity limit
of line n to m and P ref

Dsj
and P ref

Dfj
are the references for

shiftable and fixed demand, respectively, defined in Section
2. Power balance and capacity limits are respected through
constraint (12a) and (12b), respectively. Constraint (12c)
and (12d) dictates the desired profile for the shiftable and
fixed demand, respectively. Constraint (12e) corresponds
to the limit on RERs. The associated Lagrange multipliers,
ρ′n, γnm, λj , ζj and ξl are indicated for each constraint.

3.4 Game-Theoretical Dynamic Model of Wholesale
Market

As argued in Kiani, Annaswamy [2011], an optimization
problem as in (11)-(12) behaves as a game between the
ConCos, GenCos and the ISO where each player seek
maximization of their own benefit. The solution to this
state-based game can be arrived at using gradient play,
which leads to differential equations describing the path
of (PGci , PGwl

, P ′Daj , PDsj , δn, ρ′n, λj , γnm, ζj , ξl) from
a perturbed state to the equilibrium (P ∗Gci , P

∗
Gwl

, P ′∗Daj ,
P ∗Dsj , δ∗n, ρ′∗n , λ∗j , γ

∗
nm, ζ∗j , ξ∗l ) and is given by

τGci ṖGci = ρ′n(i) − cGciPGci − bGci (13a)

τGwl
ṖGwl

= ρ′n(l) − (cGwl
+ cwl

∆2
Gwl

)PGwl

−(bGwl
+ bwl

∆Gwl
)− ξl (13b)

τDaj Ṗ
′
Daj = cDajP

′
Daj + bDaj − ρ′n(j) + ζj (13c)



τDsj ṖDsj = cDsjPDsj + bDsj − ρ′n(j) − λj (13d)

τδn δ̇n = −
∑
m∈Ωn

Bnm [ρ′n − ρ′m + γnm − γmn] (13e)

τρ′n ρ̇
′
n = −

∑
i∈θn

PGci −
∑
l∈ϑn

PGwl
(1 + ∆Gwl

)

+
∑
j∈φn

PDj
+
∑
m∈Ωn

Bnm [δn − δm] (13f)

τλj
λ̇j = PDsj − P ref

Dsj (13g)

τγnm γ̇nm = Projγnm
(Bnm [δn − δm]− Pmax

nm , dγnm , ε)(13h)

τζj ζ̇j = Projζj

(
P ref
Dfj − P

′
Daj , dζj , ε

)
(13i)

τξl ξ̇l = Projξl
(
PGwl

− Pmax
Gwl

, dξl , ε
)
, (13j)

where all τ ’s are associated time constants. In (13) an
interpretation of λj as the incentive price for reaching
the shiftable consumption reference, ζj as the incentive
price for reaching the fixed consumption reference and
ξl as the shadow price for keeping the non-dispatchable
power generation below maximum becomes evident. The
solution P ∗Gci is the power to be generated by dispatchable
generator i, P ∗Gwl

is the power to be generated by the
non-dispatchable generator l, P ′∗Daj is the adjustable and
fixed consumption by consumer j, P ∗Dsj is the shiftable
consumption by consumer j, and γ∗nm is the congestion
price. The slack variable ρ′n is defined as a manipulated
locational marginal price (LMP),

ρ′n = ρnµt (14)

where ρn is the true LMP and µt is a scalar that will be
suitably defined later. Additionally, with d′y = dy − ε,

Projy(f(x), dy, ε) =



d2
y − y2

d2
y − (d′y)2

f(x) if

[
d′y ≤ y ≤ dy,
f(x) > 0

]
y2

ε2
f(x) if

[
0 ≤ y ≤ ε,
f(x) < 0

]
f(x), otherwise

(15)

ensures non-negativity of γnm, ζj , and ξl as required by
the KKT conditions and bounds them by dγnm , dζj , and
dξ, respectively, as stated in Lemma 1.

Lemma 1. If ẏ = Projy(f(x), dy, ε) then 0 ≤ ‖y(t0)‖ ≤ dy
implies 0 ≤ ‖y(t)‖ ≤ dy for all t ≥ t0.

Proof. Let V (y) = 1
2y

2 such that V̇ (y) = yf(x). It is

easily seen that if f(x) ≤ 0 then V̇ ≤ 0 and if f(x) > 0

then (15) ensures that V̇ will graduatly decrease towards
zeros when y approaches dy. �

One can view the dynamics in (13) as a market mecha-
nism with the evolution of the differential equations rep-
resenting a continuous negotiation process between market
players. The time it takes to complete this negotiation is
shown in Fig. 2 with an overall market mechanism time
scale where Tneg denotes the interval over which negotia-
tions take place and Tdpc denotes the period over which
the desired demand profile is calculated. The premise of
our dynamic market mechanism is that once the desired
demand profile is calculated within the time frame Tdpc,
continued negotiations take place between the market
players over a period Tneg, with these periods chosen such
that Tdpc + Tneg < T , the period of interest. For example,
T = 24 hours in a Day Ahead Market (DAM) and T = 5

time
t− T t t+ T

... Tdpc Tneg T ...

Fig. 2. Overall market mechanism structure where T
specifies the time period of interest as in Section 2,
Tdpc is the desired demand profile calculation time
slot and Tneg is the time for the overall negotiation of
the market equilibrium.

minutes in a Real-Time Market (RTM). This implies that
the time-scales of the negotiations are faster than other
events and hence we represent the underlying interactions
using a differential equation as in (13).

The remaining problem that should be addressed is if
these negotiations are well-behaved, i.e. if the underlying
dynamic model is stable and all solutions converge to the
desired equilibrium. This is analyzed in the next section.

3.5 Equilibrium of Wholesale Market

Using the market mechanism proposed in (13), a dynamic
model can be written compactly as[

ẋ1(t)
ẋ2(t)

]
=

[
A11 A12 A2

0 0

] [
x1(t)
x2(t)

]
+

[
[b11 b12]

T

b2

]
(16)

where

x1(t) =
[
PGci PGwl

P ′Daj PDsj δn ρ
′
n λj

]T
(17)

x2(t) = [γ1 · · · γNt
ζj ξl]

T
(18)

A11 =



−τ−1
gc cgc 0 0 0
0 −τ−1

gw (cgw + cw∆2
gw) 0 0

0 0 τ−1
da cda 0

0 0 0 τ−1
ds cds

0 0 0 0
−τ−1

ρ′ Agc −τ
−1
ρ′ Agw(I + ∆gw) τ−1

ρ′ Ad τ−1
ρ′ Ad

0 0 τ−1
λ 0


(19)

A12 =



0 τ−1
gc A

T
gc 0

0 τ−1
gwA

T
gw 0

0 −τ−1
da A

T
d 0

0 −τ−1
ds A

T
d −τ−1

ds

0 −τ−1
δ ATr BlineA 0

τ−1
ρ′ A

TBlineAr 0 0
0 0 0


(20)

A2 =

0 0 0 0 −τ−1
δ BlineAr 0 0

0 0 τ−1
da 0 0 0 0

0 −τ−1
ξ 0 0 0 0 0

T (21)

b11 =
[
−bTgcτ−1

gc −(bgw + bw∆gw)T τ−1
gw bTdaτ

−1
da bTdsτ

−1
ds

]
(22)

b12 =
[
0 0 −P ref

ds τ
−1
λ

]
(23)

b2 =

τ
−1
γ Projγnm

(Bnm [δn − δm]− Pmax
nm , dγnm , ε)

τ−1
ζ Projζj

(
P ref
Dfj − P

′
Daj , dζj , ε

)
τ−1
ξ Projξl

(
PGwl

− Pmax
Gwl

, dξl , ε
)

 .
(24)

A denotes the Nt × N bus incidence matrix and Ar is
the Nt × N − 1 reduced bus incidence matrix with the
column corresponding to the reference bus removed. Ad



denotes the N × ND consumers incidence matrix, where
Adij = 1 if the jth consumer is connected to the ith bus

and Adij = 0 if the jth consumer is not connected to the

ith bus. Similarly, Agc denotes the N ×NGc dispatchable
generator incidence matrix and Agw denotes the N ×
NGw non-dispatchable generator incidence matrix. Bline
denotes the Nt×Nt diagonal line admittance matrix, Pmax

is the vector of maximum capacity limits Pmax
nm , P ref

df is

the vector of fixed demand references P ref
Dfj

, Pmax
Gw is the

vector of maximum available non-dispatchable power Pmax
Gwl

and P ref
ds is the vector of shiftable power references P ref

Dsj
.

I denotes a NGw × NGw identity matrix, ∆gw denotes
the diagonal matrix of wind uncertainties ∆Gwl

and let
R1, R2 and R3 denote rotation matrices which make
R1x1 = [δ1 · · · δN−1]T , R2x1 = [P ′Da1 · · · P

′
DaND

]T and

R3x1 = [PGw1
· · · PGwNGw

]T . Further b’s denote vectors
of corresponding b coefficients and c’s denote diagonal
matrices of corresponding c coefficients. Finally, τ ’s denote
diagonal matrices of corresponding time constants. Let

[A11 A12] be referred to as A1, [b11 b12]
T

as b1 and denote
the columns of A2 as A21, A22 and A23, respectively.

Defining the equilibrium set of the wholesale market under
the game stated in (13) as

E = {(x1, x2)|A1x1 +A2x2 + b1 = 0 ∧ b2 = 0} , (25)

then (x∗1, x
∗
2) is an equilibrium point if (x∗1, x

∗
2) ∈ E.

3.6 Stability of Wholesale Market

The stability property of the equilibrium is now estab-
lished with the Lyapunov approach. It is assumed that
strong duality holds and (x∗1, x

∗
2) ∈ E exists.

We first introduce a few definitions. Let P be the sym-
metric solution of the equation AT1 P + PA1 = −I.
Let ‖PA21‖ ≤ β1, ‖PA22‖ ≤ β2, ‖PA23‖ ≤ β3,

y2 = [y21 y22 y23]
T

, Ωmax ≡ {(y1, y2) | ‖y21‖ ≤
dγ , ‖y22‖ ≤ dζ , ‖y23‖ ≤ dξ}, Ωmin ≡ {(y1, y2) | V (y1) ≤
λmin(P )α2, ‖y21‖ ≤ dγ , ‖y22‖ ≤ dζ , ‖y23‖ ≤ dξ}, and

α = 2dγβ1 + 2dζβ2 + 2dξβ3. (26)

With y1 = x1 − x∗1, y21 = γ − γ∗, y22 = ζ − ζ∗ and
y23 = ξ − ξ∗, Lemma 1 establishes boundedness of y2 and
Theorem 2 establishes the stability and region of attraction
around the equilibrium (x∗1, x

∗
2) ∈ E.

Theorem 2. Let strong duality hold. Then the equilibrium
(x∗1, x

∗
2) ∈ E of the market defined by the dynamic game

in (16) is stable for all initial conditions in Ωmax if A1 is
Hurwitz. In addition all trajectories will converge to Ωmin.

Proof. Differentiating a positive definite Lyapunov func-
tion V (y1) = yT1 Py1 along its trajectories we get

V̇ ≤ yT1
(
PA1 +AT1 P

)
y1 + yT1 P

(
A21y21 +A22y22

+A23y23

)
+
(
A21y21 +A22y22 +A23y23

)T
Py1. (27)

The right-hand side of (27) can be rewritten using the
definitions of β1, β2, and β3 above as

yT1
(
P1A21

)
y21 ≤ β1‖y1‖‖y21‖ (28)

yT1
(
P1A22

)
y22 ≤ β2‖y1‖‖y22‖ (29)

yT1
(
P1A23

)
y23 ≤ β3‖y1‖‖y23‖. (30)

Using (28)-(30), the projection bounds dγ , dζ , and dξ
on ‖y21‖, ‖y22‖ and ‖y23‖, respectively, and since A1 is

Table 1. Results for 24-hour period.

Case 1 Case 2 Unit

D1 Consumption 2354.8 2336.8 MWh

D2 Consumption 2913.5 2886.3 MWh

D1 Cost 92815.4 89410.9 $

D2 Cost 113193.7 108610.1 $

Total Cost 206009.1 198021.0 $

Cost pr. Unit 72.2 70.6 $/MWh

Social Welfare 84047.3 85067.5 $

Hurwitz, we obtain that

V̇ ≤ −‖y1‖2 + 2‖y1‖
(
β1dγ + β2dζ + β3dξ

)
,

and by using (26), we can get

V̇ ≤ −‖y1‖
(
‖y1‖ − α

)
. (31)

Boundedness of y1 and the convergence of all trajectories
to Ωmin follow from (31). �

4. ILLUSTRATIVE EXAMPLE

We illustrate the dynamic market mechanism with a
shiftable demand response proposed in Sections 2-3 using
a 4-bus network (see Kiani, Annaswamy [2010]). The
network consists of three generating units located at Bus
1 and 2. G1 is a base-load dispatchable generator with low
cost coefficients and slow dynamic response. G2 is a peak-
load dispatchable generator acting like a spinning reserve
with high cost coefficients and fast dynamic response.
G3 is a non-dispatchable generator with very low cost
coefficients and fast dynamic response. Power consumption
is at Bus 3 and 4. All cost coefficients and time constants
for both generating and consuming units and transmission
line data, namely, susceptance Bnm and capacity limit
Pmax
nm are given in Section 4.1.

In the following, two cases are considered, named Case 1
and Case 2. Case 1 is the base case which incorporates
zero DRs i.e. includes only fixed and adjustable demand,
PDfj and PDaj , respectively. Case 2 incorporates fixed
demand, DRa and DRs i.e. PDfj , PDaj and PDsj . As
in Section 2, the amount of shiftable demand is set to
10% of the total demand. It is assumed that P ref

Dsj
and

P ref
Dfj

are computed as shown in Fig. 1. With this profile,

and the cost and utility coefficients as in Section 4.1 the
dynamic market model in (13) was simulated. A µt =
[1 1.02 1.03 1.03 1.02 1.01 1 0.90 0.85 0.8 0.72 0.66 0.64
0.63 0.64 0.66 0.72 0.8 0.85 0.90 0.97 1 1]T was chosen
as this resulted in the corresponding LMP profile to
match a typical LMP profile as in ISO New England (see
http://www.iso-ne.com/markets/). The resulting Social
Welfare and total consumer costs are shown in Table 1.

Table 1 demonstrates an increase in Social Welfare and
a decrease in cost per unit of consumption and hence a
positive effect of introducing DRs. The distribution of the
demand profile between fixed, adjustable, and shiftable
demand is shown in Fig. 3 for each hour of a 24-hour
period. This figure also show the LMPs at the consumer
nodes. From Fig. 3 we see that PDaj adjusts according
to the utility function and as a result, in hours with
a large quantity of low-cost RERs, i.e. low LMP, the
amount of adjustable power demand rises. Furthermore,
it is apparent that in hours with high LMP no adjustable



power is consumed. A comparison between Case 1 and
Case 2 shows a more even distribution of demand which
is preferable since this aids in lowering the prices for
consumers as a direct result of the ability to shift power
from high demand hours to low demand hours.

4.1 Coefficients

The generator cost and demand utility coefficients are

bGc = [47.2 48.2]
T $/MWh, cGc = [0.25 0.53]

T $/MW2h,
bGw1

= 1 $/MWh, bw1
= 50 $/MWh, cGw1

= 0.02 $/MW2h,

cw1 = 0.7 $/MW2h, ∆Gw1 = 0 $/MW2h, bDa = [67 67]
T $/MWh,

bDs = [60 60]
T $/MWh, cDa = [−0.21 −0.21]

T $/MW2h,

cDs = [−0.41 −0.41]
T $/MW2h, τGc = [2.8 0.7]

T $/MW,

τGw1 = 0.7 $/MW and τDa = τDs = [0.8 0.8]
T $/MW.

The transmission line coefficients are Pmax
13 = Pmax

24 =
50.5 MW, Pmax

14 = Pmax
23 = 50 MW, B13 = B24 =

0.0372 p.u and B14 = 0.0504 p.u, B23 = 0.0336 p.u.

5. SUMMARY

Increasing demand for electrical power generation and
the current energy crisis have created an urgent need in
incorporating RERs into the power grid. In this paper, we
begin with the model of the players including dispatchable
and RER GenCos, ConCo, and ISO, together with their
constraints and the optimization goal and then capture
the dynamics of the RTM using an interactive framework
which introduces a state-space structure to the static
market. A gradient play is used to derive the dynamic
evolution of the actions for players and underlying states of
the game as dual variables to reach the optimum solution
of the RTM. In addition to the dynamic model this paper
includes the incorporation of shiftable demand response
evaluated over 24 hours. The stability of the resulting
dynamical model of the RTM is investigated and the region
of attraction around the equilibrium is established.

Numerical results are included that validate the theoret-
ical results using a IEEE 4-bus system. The simulation
results show that for a 10% shiftable demand, an 4% cost
reduction to the consumer and a 1% increase in the Social
Welfare is possible.
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