
Model-Based Predictive Control Scheme for
Cost Optimization and Balancing Services
for Supermarket Refrigeration Systems

H.H.M. Weerts ∗ S. E. Shafiei ∗∗ J. Stoustrup ∗∗

R. Izadi-Zamanabadi ∗∗∗

∗ Department of Electrical Engineering, Eindhoven University of
Technology, Eindhoven, Netherlands, (e-mail:

h.h.m.weerts@student.tue.nl).
∗∗ Automation and Control, Department of Electronic Systems, Aalborg

University, Aalborg, Denmark, (e-mail: {ses, jakob}@es.aau.dk)
∗∗∗ Danfoss A/S, 6430 Nordborg, Denmark, (e-mail:

roozbeh@danfoss.com)

Abstract: A formulation of model predictive control for supermarket refrigeration systems
is proposed to facilitate the regulatory power services as well as energy cost optimization
of such systems in the smart grid. Nonlinear dynamics existing in large-scale refrigeration
plants challenges the predictive control design. It is however shown that taking into account
the knowledge of different time scales in the dynamical subsystems makes possible a linear
formulation of a centralized predictive controller. A realistic scenario of regulatory power services
in the smart grid is considered and formulated in the same objective as of a cost optimization
one. A simulation benchmark validated against real data and including significant dynamics of
the system is employed to show the effectiveness of the proposed control scheme.

1. INTRODUCTION

Stability of the electricity grid is threatened by the increas-
ing amount of intermittent energy sources such as wind
power as stated by Milligan and Kirby [2010]. The trans-
mission system operator (TSO) will have to utilize more
and more ancillary services such as spinning reserves to
keep the grid balanced. A smart grid, where both produc-
tion and consumption will be efficiently managed, would
greatly facilitate the grid stability reserve by incorporating
the demand side management services. Equipping energy
consuming applications with smart control algorithms can
modify electricity consumption profiles to meet grid re-
quirements.

According to Heffner et al. [2007] ancillary services can be
divided into 3 main types: normal services, contingency
services and other services. Normal services are mainly
used to compensate minute to minute fluctuations. Con-
tingency services are used to compensate for unpredicted
drops or rises in power consumption or production. The
latter service is addressed in the present paper.

Dynamic Demand Response (DDR) is a control strategy
used to manage the electricity consumption profile. The
first way to implement DDR is to optimize consumption
based on real-time electricity prices. The second way is to
directly manage the consumption profile. Both strategies
consist of 2 levels of design: a high level to pass grid
requirements on to the application, and a low level to
locally provide the requested balancing services. This
paper focuses on the low level for both real-time pricing
and direct management.

A good candidate for DDR implementation needs to
have the ability to store large amounts of energy to
shift electricity consumption in time. Heat capacity is
a natural energy storage available almost anywhere, but
rarely exploited as such. The potential of several types
of thermal storage possibilities (Heat storage, ventilation,
refrigeration) is shown in Stadler [2008]. Refrigeration
systems have a large potential for storing energy and
shifting loads as shown in Goli et al. [2011].

An excellent choice for predicting future plant behavior
and handling input and state constraints is Model Predic-
tive Control (MPC), Maciejowski [2002]. Optimal power
consumption or storage of energy is achieved by minimiza-
tion of a cost function over a prediction horizon, Rawlings
and Amrit [2009]. A strategy where an MPC is used as
a supervisory controller to generate references for local
controllers is shown by Shafiei et al. [2013b] for operating
cost minimization in refrigeration systems. Hovgaard et al.
[2012] presents an MPC algorithm to optimize cost of
operation as well as providing normal ancillary services,
where a non-convex optimization problem is put forward.
Direct control implementation of single vapor compression
cycle (VCC) is presented in Pedersen et al. [2013] where
a simple bucket model is introduced for energy modeling
of the system. It is shown that how the flexible power
consumption of refrigeration systems can be employed for
minimization of the fossil fuel production sources in a small
grid.

The problem of operating cost minimization and grid
balancing services for refrigeration systems are mainly in-
vestigated separately in different researches. In this paper
a formulation of MPC is proposed to meet both of the



above objectives simultaneously in a realistic scenario.
Balancing services are provided in the framework of in-
stantaneous contingency reserves, Heffner et al. [2007], by
reducing power consumption during contingency events
after optimally pre-cooling the cold reservoirs. The cost of
operation is reduced by taking a price signal into account
in the cost optimization function. It is shown that the
power consumption of the SRS can be highly reduced (even
close to zero consumption) for an hour without violating
food temperature constraints. At the same time, cost of
operation is reduced by 6.3% for a day of operation.

2. SUPERMARKET REFRIGERATION SYSTEMS

2.1 Booster configuration

The fridge and freezer display cases are cooled by evapo-
rators where refrigerant ( CO2 in this particular system)
evaporates and absorbs thermal energy. A schematic view
of an SRS with booster configuration is shown in Figure 1.
The configuration includes medium and low temperature
(MT and LT) cooling sections each contains several display
cases and a rack of compressors. Starting at the receiver
(REC), both liquid and vapor forms of the refrigerant flow
into the system. Vapor flows through the bypass valve
(BPV) directly to the compressor rack. Liquid flows to
the expansion valves EV MT and EV LT, where local
controllers control the flow to regulate the temperature
in low and medium temperature display cases. Refriger-
ant absorbs heat from the cold room when evaporating
(EVAP MT, EVAP LT). A compressor rack (COMP LO)
increases the pressure of the LT units. All refrigerant
(EVAP MT, BPV, COMP LO) is sucked into the suction
manifold at point 5.Pressure is increased by the high stage
compressor rack (COMP HI). The refrigerant condenses in
the condenser losing the absorbed heat to the surround-
ings. Liquid refrigerant is collected by the receiver, closing
the circle.

2.2 System dynamics

Inside the display cases heat is transferred from the food
to cooled air (Q̇food), and from the cooled air to the

evaporator (Q̇e), where the latter is also known as the
cooling capacity. A heat load caused by the supermarket
indoor temperature is formulated as a disturbance (Q̇load).
We assume that air and food temperatures are homoge-
nous and we use energy balances to derive the dynamical
equations.

MCpfood
dTfood
dt

= −Q̇food (1)

MCpair
dTair
dt

= Q̇load + Q̇food − Q̇e (2)

Q̇food = UAfood(Tfood − Tair) (3)

Q̇load = UAload(Tindoor − Tair) (4)

Q̇e = UAe(Tair − Te) (5)

where MCp denotes mass multiplied with heat capacity,
UA is the overall heat transfer coefficient, and Te is the
evaporation temperature which is a function of the suction
pressure. The heat transfer coefficient of the evaporator

Condenser

CMP_MT

CMP_LT

BPV

REC

EV_MT

EV_LT EVAP_LT

EVAP_MT

1 2

2´ 

3

3´ 

4´ 

4 

1b 2b 5

6

7

8

Pr
es
su
re
(×
10
5
Pa
sc
al
)

Enthalpy(kJ/kg)

0 100 200 300 400 500 600

10

20

40

80

30

50

5

1 1b

2´ 

2
3

3´ 

4´ 
2b

4

5

67

8

CV_HP

Fig. 1. schematic view of the SRS system

depends on the refrigerant mass in the evaporator is
described as a linear function of the latent mass as

UAe = kmMr (6)

dMr

dt
= ṁr,in − ṁr,out (7)

where km is a constant, and the latent mass in the
evaporator is restricted to 0 ≤Mr ≤Mr,max.

ṁr,in = OD ·KvA
√
ρsuc(Prec − Psuc) (8)

Inflow of mass is determined by opening degree of the ex-
pansion valve (OD) and suction pressure. Outflow depends
on cooling capacity and suction pressure.

ṁr,out =
Q̇e

∆hlg
(9)

where KvA is the valve constant, Prec is the receiver pres-
sure assumed constant here and ρsuc and ∆hlg nonlinear
functions of the suction pressure (or equivalently the evap-
oration temperature). The suction pressure is regulated by
a local controller, and we assign a fixed set-point to it in
this work.

Electrical power consumption from the compressor racks
depends on the enthalpy difference at the inlet and outlet.

Ẇc =
1

ηme
ṁ(ho,c − hi,c) (10)

where ηme is the efficiency of mechanical/electrical conver-
sion, ṁ the massflow through the compressor. , and hi,c
and ho,c are the inlet and outlet enthalpies, respectively.
The nonlinear thermophysical properties of the refrigerant
(e.g. enthalpies) are calculated by the software package
“RefEqns” Skovrup [2000]. The coefficient of performance
(COP) is a measure of efficiency of the cooling system,
where a higher COP means less electricity is required to
provide the same cooling capacity.

COP =
Q̇e,tot

Ẇtot

(11)



The system is obviously non-linear and later on we will
show how we can formulate a linear MPC from these
dynamics.

3. PROBLEM STATEMENT

Stability of wind powered electricity grids is threatened
by either sudden increased loads or drops in power gener-
ation according to Milligan and Kirby [2010]. Increases in
generation or drops in load are less of a stability threat,
but they are an economically unattractive situation. Since
the former is more of a concern and a more challenging
problem, we will focus on that situation in this paper.
Immediate reaction to these contingency events without
prior knowledge of these happening can be achieved when
constantly pre-cooling the SRS. Continuous lower temper-
atures will result in more losses and therefore a higher
cost. Pre-cooling right before the event happens would
be cheaper, but predicting the exact time of the event
is difficult and not the goal of this research. We therefore
assume that either a TSO or aggregator can predict a time
interval with a high probability of a contingency event
happening, based on weather models and load history
data. The SRS will only pre-cool before these intervals
and therefore waste less energy. The drawback is that an
event might happen and not be predicted beforehand, the
SRS will then not be able to provide service.

The most important characteristics of load response are
response speed, duration and cost. Since we are aiming
for the system to be used for instantaneous contingency
reserves, we need a fast response speed. The duration of
the load response should be long to give more support to
the grid. Optimizing the cost of pre-cooling and standby
time is always important and could go hand in hand with
cost optimization of the whole system. It could be called
optimal if not more energy is stored than needed, seen by
the temperatures to reach normal levels when the event
ends.

An example of the behavior we want to see is shown in Fig-
ure 2. The upper plot shows the air and food temperatures,
and the lower plot shows the power consumption. In this
example there is a 4 hours notice before the high likelihood
interval where the food is cooled in an optimal way. The
food temperature remains almost unchanged during the
standby interval. During the standby, the air temperature
is controlled in order to maintain the food temperature at
a predefined constant level. The power consumption drops
to a low level when the contingency event actually happens
(unpredicted) and the temperatures rise subsequently. The
constraints imposed on the food temperature are fully
respected.

4. COST MINIMIZATION

In order to minimize the cost of operation we have to
multiply the electricity price with the power consumption
and find the minimum of an objective function over the
horizon N . The objective function is subject to the plant
dynamics and constraints which will be elaborated in the
sequel.

J =

N∑
i=1

ep(i)Ẇtot(i) (12)
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Fig. 2. Example of an favorable SRS behavior during the
imbalance management.

where ep(i) is the electricity price and Ẇtot(i) is the total
power consumption of the compressor racks. We can model
the power consumption by using (11) to replace power
consumption by cooling capacity, however it is divided by
the COP. In Shafiei et al. [2013b], it is explained that
for the case where the condenser fan is fixed in a speed
(usually close to maximum), the average value of the
COP is highly correlated with the value of the outdoor
temperature. Outdoor temperature predictions are fairly
accurate and can be used to predict the COP in (13).

Other influences on the COP are evaporation temperature
and mass flow out of the evaporators as stated by Shafiei
et al. [2014]. The evaporation temperature is constant
in this work due to the constant suction pressure. The
COP changes caused by the mass flow are mainly higher
frequencies than the MPC sample frequency, and the
amplitude is relatively small compared to the outdoor
temperature dynamics. Making the COP dependant on
the mass flow would result in a non-convex problem and
is not done in this work.

J =

N∑
i=1

ep(i)
Q̇e,tot(i)

COP (i)
(13)

Calculating the cooling capacity using (5) and (6) is both
non-linear and requires the state Mr to be known, which
is however not measurable. The latent mass dynamics
described by (7), (8) and (9) reach steady state after
around 4 minutes. We can fairly assume the latent mass in
steady-state when the sampling time is chosen longer than
4 minutes. Equation (16) shows the linear relation between
the valve opening degree and the cooling capacity.

ṁr,out = ṁr,in (14)

Q̇e

∆hlg
= OD ·KvA

√
ρsuc(Prec − Psuc) (15)

Q̇e = OD ·KvA · c1 (16)

where c1 =
√
ρsuc(Prec − Psuc)∆hlg represents all the

terms we assumed constant. The steady-state model re-
sults in a linear relation between cooling capacity and
opening degree which we use in the objective function.



J =

N∑
i=1

ep(i)

∑nc

j=1ODj(i) ·KvAj

COP (i)
c1 (17)

where nc is the number of cooling units.

4.1 System dynamics

The plant dynamics are the temperatures of food and air.
The continuous state-space representation of the dynamics
of the jth display case is shown below.[

Ṫfood,j
Ṫair,j

]
= Ac

[
Tfood,j
Tair,j

]
+Bc

[
Tindoor
ODj

]
(18)

The disturbance Tindoor is formulated as an input for
simplicity, and the matrices Ac and Bc are calculated using
(1), (2), (3), (4) and (16). The objective function is for-
mulated in discrete time and needs discretized dynamics.
The matrices Ac and Bc are discretized by a zero order
hold method, giving (19).[

Tfood,j(i+ 1)
Tair,j(i+ 1)

]
= Ad

[
Tfood,j(i)
Tair,j(i)

]
+Bd

[
Tindoor(i)
ODj(i)

]
(19)

4.2 Constraints

For the sake of food safety, the following constraints are
imposed on the food temperatures.

0 < Tfood,MT (i) < 3.5 (20)

−26 < Tfood,LT (i) < −18 (21)

These constraints have to be satisfied in the prediction of
the MPC even during an event where no cooling is applied.
This forces the MPC to start pre-cooling before an event
which is an optimal strategy due to cost optimization.

The system has physical limitations in the opening degree
of the valves and the amount of mass that can be stored
in the evaporators. The mass in the evaporators is not a
state in the system so we found a way to restrict the input
such that the evaporators do not overflow. Using (5), (6)
and (16) the input constraint is given by

0 < OD < min

(
1,
kmMr,max(Tair − Te)

KvAc1

)
(22)

5. REGULATING POWER SERVICES

Using the SRS to counteract supply and demand imbal-
ances can be done by manipulating the power consumption
of the compressor racks. Surplus electricity can be counter-
acted by increasing the consumption without a beforehand
preparation like precooling. Electricity deficit requires the
compressor racks to reduce the power consumption at an
unknown moment. Note that, only the interval where the
contingency event might happen is assumed known. Pre-
cooling the food is needed to not violate the temperature
constraints during the event.

We want to reduce the power consumption of the system
during a contingency event. Introducing a constraint on
the power consumption during this event would be a
simple solution. It means that the system is able to deliver
at least some agreed kWh of energy during the event. This
constraint is set in the control horizon so the system can

precool the display cases. As time passes this constraint
will shift through the horizon to the first point and become
smaller while the event is taking place.

Ẇtot(ievent) < Ẇmax (23)

ievent =

[
tstart − t

Ts
,
tstart − t

Ts
+ 1, · · · , tend − t

Ts

]
(24)

where tstart and tend are the start and end of the con-
tingency event. Ts is the sampletime of the controller
and t is the current time. The result is that ievent is a
sequence of integers which is updated at every time step
for the receding horizon implementation. The MPC will
automatically store energy before the event happens in an
optimal way.

In order to manage the electrical power consumption
by controlling the thermal dynamics of the system, we
can rewrite (23) in terms of the opening degrees of the
expansion valves as:∑nc

j=1ODj(ievent) ·KvAj

COP (ievent)
c1 < Ẇmax (25)

Not knowing when exactly the event will happen changes
things to some extent. The energy has to be stored before
the start of the interval to be ready all the time, a different
ievent is used for this in (26). During the interval before
the event has happened, the system will be in standby and
hold the achieved temperatures. When the event actually
happens, energy will be released like before.

ievent =

[
tint − t
Ts

,
tint − t
Ts

+ 1 · · · tint + tlength − t
Ts

]
(26)

where tint is the starting time of the interval and tlength is
the duration of the event.

6. SIMULATION RESULTS

Simulations are performed on a benchmark system devel-
oped in MATLAB using a validated model described in
Shafiei et al. [2013a]. The benchmark features 7 medium
temperature display cases and 4 low temperature display
cases. Both food and air temperatures are measured in
each display case, and the input we control is the opening
degrees of the expansion valves. The compressor racks are
modeled as a big virtual variable speed compressor to
simplify the setup.

The benchmark simulates 24 hours of operation with 1
event, where the interval starts at 10:00 and the duration
of the event is 1 hour. The MPC uses a 24 hour horizon
and 15 minute sampling time. Outdoor temperature is a
sinusoid that varies between 6 and 16 degrees celcius.

The optimization problem that should be solved at each
time step for the MPC implementation includes the objec-
tive function (17) together with:

— 22 state variables representing the air and food tem-
peratures, (19),

— 11 input variables representing opening degrees of the
expansion valves,

— 11 state constraints on the food temperatures, (20)
and (21),

— 11 input constraints, (22),
— 11 output constraints that are only activated during

the regulating power service, (25),



— predicted signal of the outdoor temperature,
— predicted signal of the electricity price, and
— estimated signal of the system COP.

Moreover, in order maintain the above constrained opti-
mization problem feasible, two sets of slack variables are
introduced to soften the state output constraints. Note
however that the problem dimension is scaled by the value
of the prediction horizon.

The first simulation uses no COP or price optimization.
Temperatures of medium and low temperature units are
shown in Figures 3 and 4. The system has the interval in
the prediction horizon and starts storing thermal energy
slowly. Thermal storage is finished at the start of the
interval at 10:00. The contingency event happens at 10:45
and lasts until 11:45. Figure 5 shows the total power
consumption of the system, the power is close to 0 during
the event. The temperatures respond by rising and are
close to the permitted value at the end of the event which
shows the optimal amount of the thermal energy storage.

One could ask what the price of this event was, we will
use the price signal in Figure 6 for analysis. The baseline
operational cost for 1 day is 185.04DKK, the operational
cost with an event is 183.87DKK. The event actually
reduced the cost compared to the baseline. The electricity
price while storing energy was relatively low, and the price
while releasing was relatively high which caused this drop
in operational cost compared to the baseline. It is also
possible that there is a price peak while storing energy
which would cause a high cost of an event. The conclusion
is that there is no ’fixed price’ of an event since it is related
to the electricity prices during storage and release.
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Fig. 3. Temperature response of medium temperature
units

The second simulation uses COP and price optimalization,
where the price signal used is the same as before. Every-
thing else is the same as in the first simulation. Figure 7
shows the power consumption of the second simulation in
red compared to the first simulation in green. The second
simulation stored energy during the first 8 hours because
the electricity price is low. The price is higher during the
day which is when the energy is released. The total cost of
the energy for this day is 172.22DKK which is a reduction
of 11.65DKK or 6.3%.
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7. DISCUSSION

The simulations show that it is possible to store and
recover energy in the products in the SRS. In reality the
thermal masses and heat transfer coefficients will not be
constant, because products are sold or refilled during the
day. Selling the products does not change the temperatures
in the display cases, but the products might increase in
temperature more rapidly due to the lower thermal mass.
The sold products could be pre-cooled and this energy then
can’t be recovered anymore which results in additional
losses. Only a small part of the products will be sold
during the interval and event so these issues are likely to
be small. On the other hand refilling display cases with
products could change the temperatures in the display
case. But products will increase slower in temperature due
to the extra thermal mass, making this issue likely small.
Making realistic selling and refilling scenarios, and making
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a suitable robust controller is needed, but outside of the
scope of the project and is therefore left to future work.

8. CONCLUSIONS

Utilization of supermarket refrigeration systems for grid
imbalance management under contingency reserve service
was presented. Since the service is limited to the specific
hours during a day, there is still more rooms for energy
cost optimization for the off-service periods. A new MPC
scheme was proposed to deal with both the balancing
services and cost optimization as a central controller at the
local plant level. A realistic scenario is simulated using a
large-scale refrigeration benchmark. The proposed control
method successfully provided the required services as well
as reducing the operating cost by 6.3%.
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