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SUMMARY

This paper proposes a new fault-tolerant control (FTC) method for discrete-time linear parameter varying
(LPV) systems using a reconfiguration block. The basic idea of the method is to achieve the FTC goal
without redesigning the nominal controller by inserting a reconfiguration block between the plant and the
nominal controller. The reconfiguration block is realized by an LPV virtual actuator and an LPV virtual
sensor. Its goal is to transform the signals from the faulty system such that its behavior is similar to that
of the nominal system from the viewpoint of the controller. Furthermore, it transforms the output of the
controller for the faulty system such that the stability and performance goals are preserved. Input-to-state
stabilizing LPV gains of the virtual actuator and sensor are obtained by solving LMIs. We show that separate
design of these gains guarantees the input-to-state stability (ISS) of the closed-loop reconfigured system.
Moreover, we obtain performances in terms of the ISS gains for the virtual actuator, the virtual sensor,
and their interconnection. Minimizing these performances is formulated as convex optimization problems
subject to LMI constraints. Finally, the effectiveness of the method is demonstrated via a numerical example
and stator current control of an induction motor. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There is an increasing demand for safety, reliability, and performance of modern industrial systems.
A fault in the system might deteriorate the performance of the system or lead to the loss of the
system functionality or stability. In some instances, it might result in hazardous events. Therefore,
it is very important to design control systems that can tolerate occurrence of some faults during the
operation while guaranteeing stability and functionality of the system and maintaining an acceptable
performance. Such controllers are called fault-tolerant. The area of fault-tolerant control (FTC)
has attracted a lot of attentions in the past two decades; see review papers [1–3], and books [4]
and [5].

Broadly speaking, FTC systems are divided into two categories: passive (PFTC) and active
(AFTC). In PFTC, the FTC system does not react to the occurrence of a fault in the sense that the
structure and parameters of the controller are predesigned and fixed such that it can tolerate a set of
faults without any change in the controller. This means that the FTC provides a common solution
to the problem of control design for the normal system as well as the faulty system. Therefore, the
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PFTC solution is usually a conservative solution. Moreover, when some severe faults are taken into
account, a common solution may not always exist, and if it exists, it usually yields a low perfor-
mance. On the other hand, in AFTC, the controller reacts to the occurrence of faults and changes
the parameters and/or the structure of the controller. A fault detection and estimation module is used
to detect and estimate the fault when it occurs. Then, based on the information about the occurred
fault, a supervisory controller changes the control law or the structure of the controller, in the case
of severe faults, such that the faulty system with the new controller is stable and provides an accept-
able performance. AFTC can usually provide a better performance because it changes or modifies
the controller based on the characterizations of the occurred fault.

In most of the AFTC methods developed in the literature, a specific controller is designed for
each faulty case. When the fault is detected and estimated, the controller is switched to the controller
designed specifically for the system subject to the detected fault. In this paper, the idea is to keep
the nominal control in the loop and design a reconfiguration block, which is inserted between the
faulty system and nominal system such that the overall stability of the closed-loop is preserved. This
idea is depicted in Figure 1. The idea of control reconfiguration using a virtual sensor and actuator
was first proposed in [6] and later in [7] for linear systems. The goal of the reconfiguration block
is to transform the output of the faulty plant to an appropriate signal such that from the nominal
controller’s viewpoint, its behavior is similar to that of the nominal plant. The reconfiguration block
is realized, respectively, by a virtual sensor, a virtual actuator, or a series connection of both a virtual
sensor and a virtual actuator in case of a sensor fault, an actuator fault, and a simultaneous sensor
and actuator fault.

The main advantage of the proposed approach is in practical applications where another supplier
provides the controller and because of the complexity of the control systems as such as well as
insurance or legal reasons, we do not have access to or information about the inside of the controller
box. The proposed method helps us to achieve fault tolerance in these situations without any change
to the nominal controller.

A control reconfiguration method using an observer for sensor faults and its dual for actuator
faults based on loop transfer recovery design is proposed in [6]. In [7], virtual actuators and vir-
tual sensors for linear systems are investigated. In [8], it is shown that control reconfiguration of a
linear system after an actuator fault is equivalent to disturbance decoupling. A fault-tolerant control
method using virtual actuator combined with set-separation method fault detection for linear sys-
tems subject to actuator faults is proposed in [9]. Control reconfiguration using virtual actuators and
sensors for piecewise affine systems and Hammerstein–Wiener systems are proposed in [10–12],
and [13]. FTC for Lur’e systems with Lipschitz continuous nonlinearity subject to actuator fault
using a virtual actuator is presented in [14], where it is assumed that the state of the faulty system is
measurable. FTC for a system with additive Lipschitz nonlinearity subject to actuator faults using
a virtual actuator is presented in [15]. Virtual actuator for Lur’e systems based on absolute stability
theory is proposed in [16]. The method is applied to control reconfiguration of local controllers in a
power system to preserve stability of the power system in case of failures in local stabilizers.

Figure 1. Fault-tolerant control using a reconfiguration block: (a) nominal loop, (b) faulty plant with nominal
controller, (c) reconfigured plant with nominal controller.
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De Oca and Puig [17] proposes using virtual sensors for fault-tolerant control of polytopic linear
parameter varying (LPV) systems subject to sensor faults. The structure of the nominal controller is
assumed to be known. It is assumed that the nominal controller consists of a state feedback controller
combined with an LPV observer. When a sensor fault occurs, a virtual sensor is used to hide the
fault. In [18], an FTC method using virtual sensor for polytopic LPV systems subject to sensor faults
is proposed where the fault is detected using robust fault detection based on invariant-set methods.
In a previous work [19], we considered the problem of control reconfiguration for continuous-time
LPV systems where both sensor and actuator faults were considered, and only input-to-state stability
(ISS) properties of the reconfigured system were investigated.

In this paper, we consider the problem for discrete-time LPV system. We address both actuator
and sensor faults. We do not assume any specific structure for the nominal controller. It is only
assumed that the nominal controller is designed such that the nominal closed-loop system is ISS.
Then, we show that if we design the virtual actuators and the virtual sensor separately such that each
of them is ISS, we can guarantee that the closed-loop reconfigured system is also ISS. We derive
sufficient conditions in terms of LMIs for designing input-to-state stabilizing virtual actuator and
sensors. We also obtain performance in terms of ISS gains for the virtual actuator and virtual sensor
as well as the their interconnection, that is, the reconfiguration block. We formulate minimizing the
performance of the virtual actuator and virtual sensor as a convex optimization problem with LMI
constraints. Finally, we obtain the performance of the reconfiguration block in terms of ISS gains of
the virtual actuator and the virtual sensor.

In contrast to [17] and [18], we consider both actuator and sensor faults. Also, we do not make
any assumption about the structure of the controller. This is important in practical cases where
another supplier provides the controller and we do not have information about the structure or the
parameters of the controller. We prove the stability properties of the systems in the ISS paradigm.
Moreover, we consider the performance in terms of ISS gains, and we discuss how to optimize the
performance. Stability in the ISS sense turns out to be very practical because it is a global notion,
and it implies robust stability as showed in [20].

This paper is organized as follows. In Section 2, preliminaries and some basic definitions are
given. In Section 3, LPV systems and faults are introduced, and the reconfiguration problem for
LPV systems is defined. Control reconfiguration of LPV systems using a virtual actuator and a
virtual sensor is discussed in Section 4. In Section 5, the method is demonstrated on a numerical
example as well as on stator current control of an induction motor. Finally, conclusions are given
in Section 6.

2. PRELIMINARIES

The field of real numbers, the set of nonnegative reals and the set of nonnegative integers are,
respectively, denoted by R;R>0;N. For any x 2 Rn, xT stands for its transpose, and kxk D

p
xT x

denotes its Euclidean norm. Also, the i-th entry of x is denoted by xi . The infinity norm of x
denoted by kxk1 is given by maxi jxj. Given a sequence ¹v.k/ºk2N , its supremum norm, that is,
supk2N kv.k/k is denoted by kvk1.

A function � W R>0 ! R>0 is a class K function if it is continuous, strictly increasing, and
�.0/ D 0. � is a class K1 function if it is a class K function, and also it satisfies �.s/ ! 1 as
s !1.

A function ˇ is a class K L function if for each fixed k 2 R>0, the function ˇ.�; k/ 2 K ,
and for each fixed s 2 R>0, the function ˇ.s; �/ is decreasing and ˇ.s; k/ ! 0 as k ! 1. In
the following, we recall definitions of ISS for nonlinear discrete-time system [21]. Consider the
following nonlinear discrete-time system:²

x.k C 1/ D f .x.k/; v.k//;
y.k/ D h.x.k//;

(1)

where x.k/ 2 Rn is the state and v.k/ 2 Rd is an unknown input disturbance.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
DOI: 10.1002/rnc



S. M. TABATABAEIPOUR, J. STOUSTRUP AND T. BAK

Definition 1
The zero-input nonlinear system (1), that is, x.k C 1/ D f .x.k/; 0// is globally asymptotically
stable if there exist a K L�function ˇ such that for each initial condition x.0/ 2 Rn, all solutions
of the system satisfy the following:

kx.k/k 6 ˇ.kx.0/k; k/: (2)

In case ˇ can be chosen as ˇ.s; k/ D ds�k for some d > 0 and 0 6 � < 1, then the system (1) is
called globally exponentially stable.

Definition 2
The nonlinear system (1) is called ISS with respect to (w.r.t.) the input v if there exists K L function
ˇ and a class K function � such that for each initial condition x.0/ 2 Rn and all inputs ¹v.k/ºk2N ,
all solutions of the system satisfy the following:

kx.k/k 6 ˇ.kx.0/k; k/C �.kvk1/: (3)

The function � is called the ISS gain of (1) with respect to the input v.
When v.k/ is zero then (3) reduces to kx.k/k 6 ˇ.kx.0/k; k/, which implies that zero-input

system x.k C 1/ D f .x.k/; 0/ is asymptotically stable. Also, ˇ.kx.0/k; k/ ! 0 as k ! 1.
Intuitively speaking, this means that for large k the size of the state is bounded by the amplitude of
the input (possibly in a nonlinear way). At the other hand, for small k the term ˇ.kx.0/k; k/ may
dominate �.kvk1/, which determines the transient behavior of the system [22].

Definition 3
The nonlinear system (1) is called input-to-output stable (IOS) with respect to the input v if there
exist a K L function ˇ and a class K function � such that

ky.k/k 6 ˇ.kx.0/k; k/C �.kvk1/: (4)

Theorem 1 ([21], [23])
Let V W Rn ! R>0 be a continuous function. If there exist a class K1 functions ˛1 and ˛2
such that

˛1.kxk/ 6 V.x/ 6 ˛2.kxk/;8x 2 Rn (5)

and if there exist a class K1 function ˛3 and a K function � such that

V.f .x; v// � V.x/ 6 �˛3.kxk/C �.kvk/;8x 2 Rn;8v 2 Rd ; (6)

then, the system (1) is ISS with respect to the input v.

A function V that satisfies (5) and (6) is called an ISS Lyapunov function (LF) for the system (1).

Theorem 2
ISS of cascaded systems: (see [21]) consider the following interconnected systems:

8̂<
:̂
x2.k C 1/ D f2.x2.k/; y1.k/; u.k//;
y2 D h2.x2/;
x1.k C 1/ D f1.x1.k/; v.k//;
y1 D h1.x1/

(7)

Assume that the first system is IOS w.r.t the input v and output y1, and the second system is IOS
w.r.t the input .y1; u/ and the output y2. Then, the interconnected system is IOS w.r.t the input .u; v/
and output .y1; y2/.
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3. LINEAR PARAMETER VARYING SYSTEMS

We consider the following LPV system:

†P W

²
x.k C 1/ D A.�.k//x.k/C Buc.k/C Bdd.k/;
y.k/ D Cx.k/;

(8)

x.0/ D x0

where x.k/ 2 Rn is the state, u.t/ 2 Rm is the control input, y.k/ 2 Rp is the output, and
d.k/ 2 Rd is the disturbance. The matrixA 2 Rn�n is a function of a time-varying parameter vector
� 2 Rn� . It is assumed that the parameter � is bounded in a given compact set‚ i.e � 2 ‚ 8k 2 N.
Matrix A can have different forms of dependence on the time-varying parameter � . Among these
forms, affine dependence and polytopic dependence are more appealing for synthesis and analysis
purposes. Here, we consider the polytopic dependence. In the polytopic dependence form, A is
written as

A.�.k// D

NX
iD1

pi .�.k//Ai ; (9)

where pi is a continuous function pi W ‚! R andAi are matrices in Rn�n. Moreover, it is assumed
that pi belongs to the compact set:

P D

´
p D Œp1; : : : ; pN � 2 RN jpi > 0; i D 1; � � � ; N;

NX
iD1

pi D 1

μ
: (10)

Therefore, for all � 2 ‚, we have that A.�.k// is in the convex hull of A1; � � � ; AN . In the rest of
the paper, for the sake of simplicity, we omit the dependence of pi on the �.k/ and use the notation
pi .k/ instead of pi .�.k// whenever it is necessary. We also mention that the affine dependence and
polytopic dependence can be easily converted to each other.

Remark 1
In the aforementioned model, we assume that B and C are independent of the varying parameter
� . This is because we aim at obtaining conditions in terms of LMIs to design the gains of virtual
actuator and sensor that are scheduled based on � . It is possible to let the input and output matrices
to be dependent on the varying parameter but design fixed gains for the virtual actuator and sensor.
In both cases, we can derive LMI conditions. In the following, we choose the first case where B and
C are independent of � . Obtaining the conditions for the second case is very similar.

3.1. Control design

We assume that a nominal controller †C is designed for the nominal system with the internal state
xc 2 Rnc , and the reference input r.t/ 2 Rp , which generates the control input uc . It is assumed
that the nominal closed-loop system .†P ; †C / is stable. We do not make any assumption about the
structure of the controller. It could be, for example, a dynamic or static output feedback controller.

Assumption 1
Input-to-output stable of the nominal closed-loop system. The nominal closed-loop system
.†P ; †C / is IOS w.r.t the inputs .r; d/ and the output .uc ; x/.

3.2. Faults

We consider both actuator and sensor faults. Actuator faults are modeled as events that change the
input matrix of the LPV system from B to Bf . In the same way, sensor faults are modeled as events
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that change the measurement matrix from C to Cf . Therefore, the model of the faulty plant is
given by

†Pf W

²
xf .k C 1/ D A.�.k//xf .k/C Bf uf .k/C Bdd.k/;
yf .k/ D Cf xf .k/;

(11)

xf .0/ D x0:

3.3. Reconfiguration problem

In most of AFTC approaches, when a fault is detected and estimated a new controller †Cr
is designed and replaces †C such that the stability of the closed-loop system that consists of
.†Pf ; †Cr / is guaranteed, and it provides an acceptable performance. In this paper, we use the
paradigm proposed in [6] in which instead of changing the nominal controller with a new controller
designed for the faulty system, the nominal controller is kept in the loop, and a reconfiguration block
is inserted between the nominal controller and the faulty system; see Figure 1(c). The reconfigura-
tion block receives as its input, the output of the nominal controller uc and the output of the faulty
system yf and generates as its outputs, the input signal for the faulty system uf and the input to the
nominal controller yc .

The LPV reconfiguration block is an LPV system with the internal state ´:

†R W

8<
:
´.k C 1/ D Ar.�/.k/´.k/C Br.�/uc.k/CEr.�/yf .k/;
yc.k/ D Cr.�/´.k/C Fr.�/yf .k/;
uf .k/ D Gr.�/´.k/CHr.�/uc.k/;

(12)

´.0/ D ´0;

The reconfiguration block must be designed such that the overall closed-loop system
.†Pf ; †R; †C / is stable, and some closed-loop performance requirements are satisfied. The series
connection of the plant with the reconfiguration block .†Pf ; †R/ is called the reconfigured plant,
and the series connection of the nominal controller and the reconfiguration block .†Pf ; †R/ is
called the reconfigured controller. Different goals in the design of the reconfiguration block may be
considered, and based on them different reconfiguration problems are defined. Here, we consider
the following problem.

Problem 1
Stability recovery for LPV systems. Consider the nominal LPV systems†P (8) and the faulty LPV
system †Pf (11), find, if possible, a reconfiguration block †R such that for all †C that .†C ; †P /
is ISS w.r.t the input .r; d/, we have .†Pf ; †R; †C / is ISS w.r.t the input .r; d/.

4. RECONFIGURATION BLOCK DESIGN

In this work, the reconfiguration block, †R is realized by a virtual sensor, †S and a virtual actuator
†A as depicted in Figure 2. The virtual sensor estimates the state of the faulty system Oxf based on
a model of the faulty plant and feedback of an injection of the output of the faulty system through
gain L. The virtual actuator uses a reference model that is the same as the model of the nominal
plant to generate a reference state Qx. The estimate of state of the faulty system Oxf is compared with
the reference state Qx. The difference between the estimate of the state of the faulty system and the
state of the reference model, x�; is then fed back through the gain M . The output injection gain L
and the gain M are designed such that the estimation error goes to zero, and at the same time, the
difference state (x�) goes to zero. Consequently, states of the faulty system approach to the states
of the reference model. In the following, we describe the virtual actuator and sensor in details.

The virtual actuator block has the following structure:

†A W

8<
:
Qx.k C 1/ D A.�/ Qx.k/C Buc.k/;
uf .k/ D �M.�/x�.k/ �Ruc.k/;
yc.t/ D C Qx.k/;
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Figure 2. Linear parameter varying (LPV) virtual sensor and actuator in the closed-loop system.

Qx.0/ D Oxf 0; (13)

where x�.k/ D Qx.k/ � Oxf .k/ is the difference state and M is a time-varying gain matrix that
depends on � , which is defined as

M.�.k// D

NX
iD1

pi .k/Mi : (14)

The virtual sensor is defined as follows:

†S W

²
Oxf .k C 1/ D Aı.�/ Oxf .k/C Bf uf .k/ � L.�/yf .k/;
uf .k/ D uc.k/;

(15)

Oxf .0/ D Oxf 0;

where Aı.�/ D A.�/ C L.�/Cf and L is a time-varying gain matrix that depends on � that is
defined as

L.�.k// D

NX
iD1

pi .k/Li : (16)

To analyze the reconfigured plant, we introduce the observation error defined as e D Oxf �xf , and
the difference state defined as x� D Qx � Oxf and associated with them the observation error system
†e and the difference system †�, which are defined as follows. The observation error system is
defined as

†e W e.k C 1/ D Aı.�/e.k/C v.k/;

e.0/ D Oxf 0 � x0;
(17)
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where

v.k/ D �Bdd.k/; (18)

and the difference system is defined as

†� W x�.k C 1/ D .A.�/C BfM.�//x�.k/C L.�/Cf e.k/C B�uc.k/; x�.0/ D 0; (19)

where B� D B C BfR.
Dynamics of the system in terms of Qx and the new introduced variables e and x� are given by2

4 Qx.k C 1/e.k C 1/
x�.k C 1/

3
5 D

2
4A.�/ 0 0

0 A.�/C L.�/Cf 0

0 L.�/Cf A.�/C BfM.�/

3
5
2
4 Qx.k/e.k/

x�.k/

3
5

C

2
4 B

0

B�

3
5uc.k/C

2
4 0

�Bd
0

3
5 d.k/;

(20)

yc.k/ D
�
C 0 0

�24 Qx.k/e.k/

x�.k/

3
5 ;
2
4 Qx.0/e.0/

x�.0/

3
5 D

2
4 Oxf 0
Oxf 0 � x0

0

3
5 : (21)

We can see in (20) that the reference state Qx is decoupled from the observation error e and the
difference state. Also, the observation error is decoupled from the reference state, the difference
state, and the input uc . The difference state is decoupled from the reference state. In the following,
we find sufficient conditions in terms of LMIs for the observation error and the difference system
to be ISS, and then we show that these conditions also guarantee the stability of the overall closed-
loop system. In Theorem 3, we give the conditions for designing the virtual sensor gains Li , and in
Theorem 4, we give the conditions for designing the virtual actuator gainsMi such that they are ISS,
respectively. Then, in Theorem 5, we show that separate design of these gains results in the stability
of the overall closed-loop system that consists of

�
†Pf ; .†S ; †A/; †C

�
. In other words, separate

design of the virtual actuator and virtual sensor gains yields stability of the overall closed-loop
system.

4.1. Virtual sensor design

In the following, we give LMI conditions for designing gains of virtual sensor and discuss how we
can minimize its ISS gain and peak-to-peak gain.

Theorem 3
Consider the faulty LPV system (11). If there exist symmetric matrices Pi D P Ti , matrices Gi and
Ui ; i D 1; � � � ; N and a scalar �d > 1 such that the following set of LMIs are satisfied:2

664
Pj �Gi �G

T
i 0 GiAi C UiCf Gi

� �I I 0

� � �Pi 0

� � � ��dI

3
775 < 0 8i; j D 1; � � � ; N; (22)

then, the virtual sensor†S is an observer for the LPV system such that the observation error system
(17) is globally exponentially stable for d.k/ D 0. Moreover, the error dynamics (17) is ISS w.r.t
the disturbance d with ISS gain �d .s/ D kBdk�d s. The observer gain is given by

L.�/ D

NX
iD1

pi .k/Li ; Li D G
�1
i Ui : (23)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
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Proof
See Appendix A.1. �

To minimize the ISS gain, the following optimization problem is solved:

min
Pi ;Gi ;Ui ;�d

�d

s:t .22/
(24)

The aforementioned optimization problem is a convex optimization problem with a set of LMI
constraints, which can be solved efficiently using available softwares such as YALMIP/SeDuMi or
YALMIP/LMILAB [24].

Link to peak-to-peak gain:
The peak-to-peak gain of the observation error is defined as

sup
0<kdk1<1

kek1

kdk1
: (25)

Corollary 1
If the LMIs (22) are satisfied, then the error system (17) with the observer gain (23) admits a peak-
to-peak gain smaller than kBdk�d .

The proof is straightforward from (64) by taking the limit of � to infinity and assuming e.0/ D 0.
Note that according to the corollary, by minimizing the ISS gain, we are also minimizing the upper
bound on the peak-to-peak gain.

4.2. Virtual actuator design

In the following theorem, we give conditions for the design of stabilizing gains for the virtual
actuator such that the difference system is stable.

Theorem 4
Consider the faulty LPV system (11). If there exist symmetric matrices Qi D QT

i and matrices Yi
for i D 1; � � � ; N and scalars �a > 1 and such that2

64
�Qj 0 AiQi C Bf Yi I

0 �I Qi 0

� � �Qi 0

� � � ��aI

3
75 < 0 8i; j D 1; � � � ; N; (26)

then, the difference system (19) associated with the virtual actuator is ISS with respect to the input
.uc ; e/. The virtual actuator gain is given by

M.�.k// D

NX
iD1

pi .k/Mi ; with Mi D YiQ
�1
i : (27)

The ISS gain w.r.t. e is �e.s/ D �ac1kCf ks where c1 D max16i6N kLik and the ISS gain w.r.t. uc
is �akB�k. The ISS gain w.r.t. .uc ; e/ is max.�ac1kCf k; �akB�k/.

Proof
See Appendix A.2. �

Note that the gain w.r.t. uc is proportional to kB�k, and also the gain w.r.t. e is proportional to
c1kCf k, which is sensible because the difference state is affected by e through the matrix L.�/Cf
and by the control signal uc through the matrix B�.

Minimization of the ISS gain of the virtual actuator can be formulated as the following
optimization problem:

min
Qi ;Yi ;�a;

�a

s:t: .26/
(28)
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The aforementioned optimization problem is a convex optimization problems with LMI constraints,
which can be solved efficiently using available softwares such as YALMIP/SeDuMi or
YALMIP/LMILAB [24].
Link to peak-to-peak gain:

The peak-to-peak gain of the difference system is defined as

sup
0<kwk1<1

kx�k1

kwk1
: (29)

where w D
�
e uc

�T
.

Corollary 2
If the LMIs (26) are satisfied, then the difference system (19) with the gains (27) admits a peak-to-
peak gain smaller than max.�ac1kCf k; �akB�k/.

4.3. Combination of virtual sensor and virtual actuator

So far, we gave conditions for the design of the virtual actuator and the virtual sensor. The following
lemma considers the stability of the cascade connection of the error system and the difference sys-
tem and states that their interconnection is ISS if they are designed based on the aforementioned
theorems. The interconnection is given by the following:�

e.k C 1/
x�.k C 1/

�
D

�
.A.�/C L.�/Cf / 0

L.�/Cf .A.�/C BfM.�//

� �
e.k/

x�.k/

�

C

�
0

B�

�
uc.k/C

�
�Bd
0

�
d.k/:

(30)

Lemma 1
If observer gains of the error system (17) and gains of the difference system (19) are designed
based on the conditions in Theorems 3 and 4, then the interconnection .†S ; †A/ given by (30)
is also ISS. The ISS gain of the interconnection w.r.t. d is c2

p
��dc4s and w.r.t uc is c3

p
�ac4s

where

c2 D kBdk; c3 D kB�k; � D �ac
2
1kCf k

2 C 1; c4 D max.��d ; �a/: (31)

Proof
See Appendix A.3. �

4.4. Stability of the closed-loop system

The following theorem states that if we design the virtual actuator and the virtual sensor indepen-
dently based on the previous theorems, then we can guarantee that the closed-loop reconfigured
system that consists of the interconnection

�
†Pf ; .†S ; †A/; †C

�
is ISS w.r.t to the input .r; d/.

Theorem 5
Consider the faulty LPV system (11). Assume that Assumption 1 holds. If there exist Mi .�/; Li .�/

such that conditions (22) and (26) are satisfied, then the closed-loop reconfigured system
.†Pf ; †S ; †A; †C / with Mi D YiQ

�1
i and Li D G�1i Ui ; i D 1; � � � ; N is ISS w.r.t the input

.r; d/.

Proof
See Appendix A.4. �
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4.5. Control reconfiguration algorithm

The overall algorithm for the proposed fault-tolerant control method is summarized in Algorithm 1.
We assume that there is a fault detection and isolation (FDI) module, which detects and isolates the
fault. When a fault is isolated, the system is reconfigured based on the type of the fault. Estimation
of the parameters of the faulty system can be performed using available results on identification of
LPV systems; for example, see [25] or [26] and references therein. The proposed method in this
paper works as long as there is no missed detection and no false positive alarm, and the estimation
error is small such that the system is robust to the uncertainties in the estimated parameters.

Three different cases are possible: sensor fault but no actuator fault, actuator fault but no sensor
fault, simultaneous sensor and actuator fault. If there is only sensor faults and no actuator faults,
we only need to reconfigure the loop by locating the virtual sensor in the loop. In this case, the
virtual sensor is acting as an observer, which estimates the states of the system form the healthy
measurements. In this case, the parameters of the faulty systemCf is received from the FDI module,
and the gains of the virtual sensor are obtained by solving the optimization problem (24). The
estimated state of the faulty system is multiplied by the output matrix of the nominal system, C and
then injected as input to the nominal controller, that is, yc D C Oxf . Because the input matrix B and
the internal dynamics A.�/ are not changed, the dynamics viewed by the nominal controller is the
same of that of the reference model (the nominal plant).

When there is only actuator faults, the virtual sensor gains are the same as the gains for the
nominal plant because the C and A matrix are not changed. In this case, the virtual sensor acts as
an observer that estimates the state of the faulty system. Then, the gains of the virtual actuator,Mi ’s,
are designed by solving the optimization problem (28). The the reference model is initialized with
the estimate of the state of the faulty system obtained by virtual sensor, that is, Qx.kr/ D Oxf .kr/,
where kr is the time of reconfiguration. In order to avoid large over-shoots, it is possible to wait

Algorithm 1 Fault-tolerant control design for LPV system using virtual actuator and sensor
1: Given The parameters of the nominal LPV system †P : Ai ; i D 1; � � � ; N , B;Bd ; C .
2: Cf  C

3: Solve the optimization problem (24) F To design a stabilizing virtual sensor
4: Li  G�1i Ui ; i D 1; � � � ; N F Gains of the virtual sensor
5: repeat
6: Run the nominal loop that consists of .†P ; †C /
7: until an actuator or sensor fault is isolated.
8: if there is a sensor fault then
9: Update Cf from the FDI module.

10: Solve the optimization problem (24) F Redesign the virtual sensor
11: Li  G�1i Ui ; i D 1; � � � ; N: F Update the gains of the virtual sensor
12: end if
13: if there is an actuator fault then
14: Update Bf from the FDI module.
15: Update the virtual sensor with Bf .
16: Choose R to minimize kB�k
17: Solve the optimization problem (28) F Design the virtual actuator
18: Mi  YiQ

�1
i ; i D 1; � � � ; N: F The gains of the virtual actuator

19: end if
20: if there is only sensor fault but no actuator fault then
21: yc  C Oxf F Put the virtual sensor in the loop.
22: Run the reconfigured loop consisting of .†Pf ; †S ; †C /
23: else
24: Qx.kr/ Oxf .kr/ F Initialization of the reference model at the time of reconfiguration
25: Run the reconfigured loop consisting of .†Pf ; †S ; †A; †C /
26: end if
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for some sample time so that the virtual sensor converges such that the estimation error, Oxf � xf ,
becomes small and then initialize the reference model and reconfigure the system.

In case both actuator and sensor faults have occurred, the gains of the virtual sensor Li must
also be updated because output matrix in changed to Cf in this case. Cf is received from the FDI
module, the gains of the virtual sensor Li are updated by solving (24), the gains of the virtual
actuator,Mi ’s, are obtained by solving (28), and the reference model is initialized by the estimate of
the state of the system. Finally, the loop is reconfigured by locating both virtual sensor and actuator
in the loop, that is, the reconfigured loop is .†Pf ; †S ; †A; †C /.

In designing the virtual actuator, we choose R to minimize jBj�(see line 16 of Algorithm 1).
This is because the ISS gain of the virtual actuator w.r.t. .uc ; e/ is given by max.�ac1jCf j; �ajB�j/.
Note that c1 is determined by the maximum of the norms of the virtual sensor gains that are obtained
separately here. The only variable that we can manipulate here through choosing R is jB�j.

4.6. Special cases: static reconfiguration blocks

A special case of the aforementioned solutions is when the virtual actuator and virtual sensor can
be realized using a static block [7]. Consider the case of an actuator fault. In this situation, if the
image of the nominal input matrix B is a subset of the image of the faulty input matrix Bf , then all
control signals generated by the healthy actuator can be generated by the faulty actuator. Therefore,
the system can be reconfigured by inserting a static block S before uf i.e uf D SBuc . The general
solution is given by the matrix S such that

Bf SB D B: (32)

The solution to this problem exists if:

im B � im Bf ; (33)

where im B D ¹Bu W uRmº. An equivalent condition is

rank.Bf /Drank
��
Bf B

��
(34)

A similar approach can be used for the case of sensor fault. In this case, the faulty measurement
is corrected through a static gain SC , therefore yc D SCyf . Therefore, matrix SC must satisfy

SCCf D C: (35)

The aforementioned condition is satisfied if and only if

rank.Cf / D rank

��
Cf
C

�	
: (36)

5. EXAMPLE

We consider the following LPV system:

x.k C 1/ D

NX
iD1

pi .k/Ai C Bu.k/C Bd .k/

y.k/ D Cx.k/

(37)

with the following parameters:

A1 D

2
4 0:7786 0:9908 0:12700:1616 0:8443 0:8144

0:9214 0:9747 0:7825

3
5 ; A2 D

2
4 0:3984 0:3263 0:77640:7806 0:9886 0:1297

0:8814 0:4718 0:3110

3
5

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
DOI: 10.1002/rnc



FTC OF LPV SYSTEMS USING VIRTUAL ACTUATORS AND SENSORS

A3 D

2
4 0:3049 0:4247 0:89790:8448 0:2485 0:6921

0:7558 0:9160 0:3636

3
5 ; A4 D

2
4 0:1194 0:3964 0:24540:1034 0:2515 0:4983

0:6981 0:8655 0:2403

3
5 ;

B D

2
4 0:984 0:7409

0:9237 0:9118

0 0

3
5 ; Bd D

2
4 0:020:02

0:02

3
5 ;

C D
�
0:3815 0:6916 0:7183

�
;

(38)

We mention that all the matrices A1; � � � ; A4 are unstable, and therefore the open-loop system is
unstable. To test the method, we consider the extreme change of the parameters pi so that they take
values randomly between 0 and 1 subject to the constraint that their sum is equal to 1. The details
of the nominal controller are not important for our approach, but for the sake of completeness, we
also give the details here. A gain-scheduledH1 static output feedback (SOF) controller of the form
u D

PN
iD1 pi .k/Kiy.k/ is designed for the nominal system using the method in Appendix A.5.

The corresponding gains are

K1 D

�
3:2224

�4:9456

�
; K2 D

�
�0:7580
�0:4070

�
; K3 D

�
0:5869

�1:9773

�
; K4 D

�
0:9532

�1:7546

�
: (39)

TheH1 gain of the designed controller is 0.4016. A simulation of the nominal system and nominal
controller is given in Figure 3.

5.1. Partial loss of the actuator gain

In the first scenario, we consider partial loss of the actuator gain. As a result of this fault, the input
matrices are changed to

Bf D 0:4B: (40)
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Figure 3. Simulation of the nominal closed-loop.
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Figure 4. Simulation of the nominal controller with faulty system with 60% loss of actuator gain. The fault
occurs at k D 30.

The nominal controller with the faulty system with 60% loss of actuator gain is unstable. This is
depicted in Figure 4 where the fault occurs at k D 30. In this case, the reconfiguration block is
realized by a virtual sensor and a virtual actuator. The virtual sensor is basically an observer for the
faulty system that estimates the state of the faulty system. Because the C matrix is not changed, the
gains of the virtual sensor would be the same as the gains of an observer designed for the nominal
system. We use (24) with nominal output matrix C and obtain the virtual sensor gains. The gains
are given as:

L1 D

2
4�0:8989�1:039
�1:42

3
5 ; L2 D

2
4�0:8179�0:9723
�0:8031

3
5 ; L3 D

2
4�0:899�1:014
�1:163

3
5 ; L4 D

2
4�0:4452�0:4938
�0:9263

3
5 ; (41)

�d of the virtual sensor is obtained as 6.3116, and therefore its ISS gain is 0.2184.
To design the virtual actuator, the gain R is designed such that it gives us the possibility to

minimize �a. Because uc is amplified by B� and B� D B C BfR, we choose R as

R D �BTf



Bf B

T
f

��1
B:

Consequently, B� D 0. The virtual actuator gains are obtained by solving the optimization problem
(28). The gains are as follows:

M1 D

�
�8:039 �4:549 �4:507
6:93 1:48 �7:452

�
; M2 D

�
1:714 4:589 �7:291
�4:664 �7:781 6:753

�
;

M3 D

�
�3:287 �3:189 �3:854
�6:32 1:732 1:682

�
; M4 D

�
�1:351 �3:027 1:429

0:5039 1:629 �3:027

�
;

(42)

We assume that the fault is detected and isolated after 15 sample times. The reference system is
initialized with the estimate of the states from the virtual sensor, and then the virtual actuator is
activated. Figure 5 shows the simulation result. The observation error shows that the virtual sensor
estimates effectively the state of the nominal as well as the faulty system. As we can, see both the
observation error e and the difference system x� are stable, and the system is stabilized by the
virtual actuator. The �a of the virtual actuator is obtained as 6.1954. Therefore, its ISS gain w.r.t.
.uc ; e/ is obtained as 13.07.
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Figure 5. Simulation of the faulty system with 60% loss of actuator gain with reconfiguration block. The
fault occurs at k D 30, and the virtual actuator is activated at k D 45.

5.2. Complete loss of second actuator

In this scenario, we consider total loss of the second actuator. Consequently, the input matrix
changes to

Bf D

2
4 0:984 0

0:9237 0

0 0

3
5 :

As a result of this fault, the loop consisting of the nominal controller and the faulty system becomes
unstable. As before, the reconfiguration block is realized by a virtual sensor and a virtual actuator.
The gain of the virtual sensor is the same as before because the C matrix is the same. The matrix R
is chosen such that we are minimizing the Frobenius norm of B�. The matrix R is given by

R D

�
1 R12
0 0

�

where R12 is obtained by minimizing the Frobenius norm of the second column of B C BfR as
R12 D 0:8702. The gains of the virtual actuator are obtained by solving (28) as

M1 D

�
�0:9289 �1:419 �0:8561

0 0 0

�
; M2 D

�
�0:9644 �0:9026 �0:5506

0 0 0

�
;

M3 D

�
�0:8802 �0:6972 �0:9688

0 0 0

�
; M4 D

�
�0:3217 �0:5921 �0:462

0 0 0

�
:

(43)

Because the second row of Mi ’s are replaced by zero, the input to the lost actuator is replaced by
zero. As it is expected in this case, the ISS gain of the virtual actuator increases, and we obtain
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Figure 6. Simulation of the faulty system with total loss of the second actuator with reconfiguration block.
The fault occurs at k D 30, and the virtual actuator is activated at k D 35.

�a D 10:3970 and �a D 21:93s. The simulation results are depicted in Figure 6. The fault occurs
at k D 30. We assume that the fault is detected and isolated after five samples. As it can be seen,
the reconfiguration block effectively stabilizes the faulty system. Note that in Figure 6, x� before
occurrence of fault is zero because the virtual actuator is not active in that period. Also, notice that
the input to the second actuator is zero after the reconfiguration time k D 35.

5.3. Simultaneous sensor and actuator fault

In this scenario, we consider simultaneous sensor and actuator fault. The second actuator is totally
lost and the C matrix is changed to

Cf D
�
0:7638 1:3832 0

�
:

The reconfiguration block is realized by a virtual sensor and a virtual actuator. The gains of the
virtual sensor are obtained as

L1 D

2
4�0:8836�0:8482
�1:248

3
5 ; L2 D

2
4�0:6994�0:8848
�0:7754

3
5 ; L3 D

2
4�0:7583�0:8319
�0:9484

3
5 ; L4 D

2
4�0:3547�0:3975
�0:8405

3
5 ; (44)

and the matrix R is chosen as in 5.2. The gain of the virtual actuator are given by solving (28):

M1 D

�
�0:9257 �1:418 �0:8585

0 0 0

�
; M2 D

�
�0:9671 �0:9002 �0:5575

0 0 0

�
;

M3 D

�
�0:8802 �0:691 �0:9658

0 0 0

�
; M4 D

�
�0:3237 �0:5946 �0:4625

0 0 0

�
;

(45)
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Figure 7. Simulation of the faulty system with total loss of the second actuator and sensor fault. The fault
occurs at k D 30, and the reconfiguration block is activated at k D 35.

The simulation results are given in Figure 7. As it is expected in this case, �d increases to 7.85,
and �a increases to 27:07 s. The fault occurs at k D 30. We assume that the fault is detected and
isolated after 5 s. As it can be seen, the reconfiguration block effectively stabilizes the system.

5.4. FTC control of an induction motor

We consider the problem of stator current control for an induction motor. A squirrel cage induction
motor is considered here. Using the dynamic .d; q/ frame, the nonlinear model of the induction
motor is given as [27]: 8̂̂̂

ˆ̂̂<
ˆ̂̂̂̂
:̂

P	a D a1	a � np!	b C a2ia;

P	b D np!	a C a2ib;

Pia D a3	a C a4!	b � �ia C a5u1;

Pib D �a4!	a C a3	b � �ib C a5u2;

y D
�
ia ib

�T
;

(46)

where ! is the rotor speed, 	a; 	b are the .d; q/ projection of the rotor flux, ia; ib are the .d; q/
projection of the stator currents, and u1; u2 are the stator voltages. The parameters are defined as
follows: a1 D �1=Tr ; a2 D Lsr=Tr ; a3 D Lsr=.Tr�LsLr/; a4 D npLsr=.�LsLr/ and a5 D

1=.�Ls/, where Tr D Lr=Rr ; � D
Rs
Ls�
C

L2sr
Ls�LrTr

and � D 1� L2sr
LsLr

. The values of the parameters
are given in Table I and are taken from [27].

In this example, we focus on the problem of controlling the current of the system where the current
must follow a given reference. If we consider the rotor speed as a parameter, then the nonlinear
system can be modeled as an LPV system as follows:
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Table I. Parameter values of the induction motor.

Description Parameters Value Units

Stator inductance Ls 0.47 H
Rotor inductance Lr 0.47 H
Mutual inductance Lsr 0.44 H
Leakage factor � 0.12
Stator resistance Rs 0.8 

Rotor resistance Rr 3.6 

Number of pole pairs np 2

²
Px D .A0 C !A1/x C Bu;
y D Cx;

(47)

where

A0 D

2
64
a1 0 a2 0

0 a1 0 a2
a3 0 �� 0

0 a3 0 ��

3
75 ; A1 D

2
64

0 �np 0 0
np 0 0 0

0 a4 0 0

�a4 0 0 0

3
75 ; (48)

B D

2
64
0 0

0 0

a5 0

0 a5

3
75 ; C D � 0 0 1 0

0 0 0 1

�
: (49)

where ! 2 Œ�110; 110�. The system is discretized with a sample time of Ts D 2ms, and an LPV
model of it is obtained with introducing p1 D

!�!
!�!

; p2 D 1 � p1, where ! D �110 and ! D

110. An LPV static output feedback controller is designed to track the reference signal
�
iar ; ibr

�T
system using the method given in Appendix A.5. The gains are as follows:

K1 D

�
7:7277 �0:5076
0:5076 7:7277

�
; K2 D

�
7:7277 0:5076

�0:5076 7:7277

�
(50)

Simulation of the response of the controlled system for ! D 88 is given in Figure 8, and simulation
results for 10 equally spaced value of ! is given in Figure 9 .

We consider loss of measurement of ib as well as 40% loss of actuator gains. Simulation of the
faulty system with 10 equally spaced values of ! in the range �110 to 110 is given in Figure 10.
In the simulation, we assume that the inputs ua and ub saturate at ˙1000. As we see from the
simulation, ib cannot track the given reference any more, and also the tracking performance of ia is
deteriorated significantly.

We use the method proposed in this paper and design a virtual actuator and a virtual sensor to
reconfigure the system. The simulation results are given in Figure 11, which shows the simulation
results for 10 equally spaced values of ! in the range Œ�110; 110�. As it is demonstrated, using a vir-
tual sensor and a virtual actuator, we can regain tracking of ib . Moreover, the tracking performance
of ia is better than the case where reconfiguration is not used. The bottom of the figure shows ua
and ub , which are the outputs of the virtual actuator, that is, the input to the faulty system. Note that
the control efforts are increased compared to the case of fault-free system.

Comparison with AFTC using controller redesign. To compare our results with cases where
we have the possibility of redesigning the controller, we use the following AFTC method. An
observer is designed for the faulty system to estimate the missing measurement, and then the SOF
is redesigned based on the model of the faulty system using the method in Appendix A.5 with
B D Bf . The nominal controller is then replaced with the redesigned controller. The simulation
results are depicted in Figure 12. The results show that our proposed reconfiguration method and
the redesigned AFTC method have similar performances with similar control efforts.
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Figure 8. Simulation of the induction motor with static output feedback (SOF) controller and ! D 88 rad/s.
Top, ia solid and iar dashed; Middle, ib solid and ibr dashed; Bottom, ua solid and ub dashed.
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Figure 9. Simulation of the induction motor with static output feedback (SOF) controller and 10 equally
spaced values of ! in the range�110 to 110. Top, ia solid and iar dashed; Middlem, ib solid and ibr dashed;

Bottom, ua solid and ub dashed.
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Figure 10. Simulation of the induction motor with static output feedback (SOF) controller and 10 equally
spaced values of ! in the range �110 to 110 subject to loss of measurement of ib and 40% loss of actuator

gains. Top, ia solid and iar dashed; Middle, ib solid and ibr dashed; Bottom, ua solid and ub dashed.
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Figure 11. Simulation of the reconfigured system with 10 equally spaced values of ! in the range �110
to 110 subject to loss of measurement of ib and 40% loss of actuator gains. Top, ia solid and iar dashed;

Middle, ib solid and ibr dashed; Bottom, output of the virtual actuator ua solid and ub dashed.
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Figure 12. Simulation of the faulty system with a redesigned controller with 10 equally spaced values of !
in the range �110 to 110 subject to loss of measurement of ib and 40% loss of actuator gains. Top, ia solid

and iar dashed; Middle, ib solid and ibr dashed; Bottom, ua solid and ub dashed.

6. CONCLUSION

In this paper, we presented a new method for FTC of LPV systems using a reconfiguration block.
We considered discrete-time LPV systems with both sensor and actuator faults. The main idea of
the method is to insert a reconfiguration block between the plant and the nominal controller such
that the fault-tolerant goal is achieved without redesigning the nominal controller. We do not need
any knowledge about the nominal controller, and it is only assumed that the loop consisting of the
nominal controller and the nominal system is stable. The reconfiguration block is realized by a
virtual actuator and a virtual sensor. We show that by separately designing ISS virtual sensor and
actuators, the ISS of the closed-loop reconfigured system is guaranteed. We derive sufficient condi-
tions in terms of LMIs for ISS of the virtual sensor and actuator. Performance of the reconfiguration
block in terms of ISS gains is derived and is optimized by convex optimization. The efficiency of the
method is demonstrated by means of a numerical example as well as an example of stator current
control of an induction motor.

APPENDIX A: PROOFS

A.1. Proof of Theorem 3

Consider

V.e.k// D e.k/TP.k/e.k/ (51)

with P.k/ D
PN
iD1 pi .k/Pi as the ISS Lyapunov function candidate. To prove the ISS of the

system, we use Theorem 1 and show that this candidate LF satisfies relations of the forms (5)
and (6).

The first step is to show that (51) satisfies a relation of the form (5). If (22) is satisfied then,
we have

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
DOI: 10.1002/rnc



S. M. TABATABAEIPOUR, J. STOUSTRUP AND T. BAK

�
�I I

I �Pi

�
< 0: (52)

Using Schur complement, it implies that Pi > I . Also, (22) implies�
Pj �Gi �G

T
i Gi

� ��dI

�
< 0: (53)

By Schur complement, this implies that Gi C GTi � Pj > ��1
d
GiG

T
i > 0. From the fact that

GiP
�1
j GTi > Gi C GTi � Pj , it follows that GiP�1j GTi > ��1

d
GiG

T
i : Therefore, Pj < �dI , and

we have Pi > I . Because
PN
iD1 pi .k/ D 1, we have

ke.k/k2 6 V.e.k// 6 �dke.k/k2: (54)

The second step is to show that the candidate LF satisfies a relation of the form (6). We use the
relation GiP�1j GTi > Gi C G

T
i � Pj again, which implies that feasibility of (22) is a sufficient

condition for the feasibility of the following matrix inequality:2
664
�GiP

�1
j GTi 0 GiAi C UiCf Gi
� �I I 0

� � �Pi 0

� � � ��dI

3
775 < 0 8i; j D 1; � � � ; N: (55)

Pre-multiplying and post-multiplying the aforementioned inequality with diag¹G�1i ; I; I; I º and its
transpose and noting that Li D G�1i Ui , we obtain2

664
�P�1j 0 Ai C LiCf I

� �I I 0

� � �Pi 0

� � � ��dI

3
775 < 0 8i; j D 1; � � � ; N; (56)

Multiplying the aforementioned inequality by pi .k/ for each i; j and summing them together over
i for each j , and then multiplying the resulting N inequalities by pj .k C 1/ and summing them
together, and finally, applying the Schur complement, we obtain�

�
PN
iD1 pi .k/Pi 0

0 ��dI

�
�

�PN
iD1 pi .k/.Ai C LiCf /

T I

I 0

�
�
�
PN
jD1 pj .k C 1/Pj 0

0 �I

� �PN
iD1 pi .k/.Ai C LiCf / I

I 0

�
< 0;

(57)

Define Aı.k/ D
PN
iD1 pi .k/.Ai C LiCf / and note that P.k/ D

PN
iD1 pi .k/Pi and P.k C 1/ DPN

jD1 pj .k C 1/Pj . Then, the aforementioned inequality is equal to�
Aı.k/

TP.k C 1/Aı.k/ � P.k/C I Aı.k/TP.k C 1/
� P.k C 1/ � �dI

�
< 0 (58)

Pre-multiplying and post-multiplying the aforementioned inequality with
�
e.k/T v.k/T

�T
and its

transpose gives

.Aı.k/e.k/C v.k//
TP.k C 1/.Aı.k/e.k/C v.k// � e.k/

TP.k/e.k/

6 �e.k/T e.k/C �dv.k/T v.k/:
(59)

The aforementioned inequality can be rewritten as

.e.k C 1//TP.k C 1/.e.k C 1// � e.k/TP.k C 1/e.k/ 6 �e.k/T e.k/C �dv.k/T v.k/; (60)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
DOI: 10.1002/rnc



FTC OF LPV SYSTEMS USING VIRTUAL ACTUATORS AND SENSORS

which is

V.e.k C 1// � V.e.k// 6 �ke.k/k2 C �dkv.k/k2; (61)

Therefore, based on Theorem 1, V.e.k// is an ISS Lyapunov function for the error system, and the
error system is ISS with respect to v D �Bdd .

Now, we move to the calculation of the ISS gain. The inequality (61) together with (54) gives

V.e.k C 1// 6 V.e.k//
�
1 �

1

� d

	
C �dkv.k/k

2: (62)

Applying (62) for k D 0 up to k D � in an inductive manner gives

V.e.�// 6 V.e.0//
�
1 �

1

�d

	�
C �d

��1X
lD0

�
1 �

1

�d

	��l�1
kv.l/k2

6
�
1 �

1

�d

	�
V.e.0//C �2dkvk

2
1:

(63)

Because from (54) V.e.0// 6 �dke.0/k2, the aforementioned inequality implies

ke.�/k 6 p�d
�
1 �

1

�d

	�=2
ke.0/k C �dkvk1: (64)

This proves that the system is ISS with respect to v with the ISS gain �v.s/ D �d s; s 2 R>0.
Consequently, the ISS gain w.r.t. d is kBdk�d .

A.2. Proof of Theorem 4

Consider

V.x�.k// D x�.k/
TP.k/x�.k/; (65)

where P.k/ D
PN
iD1 pi .k/Pi with Pi D Q�1i as a candidate LF for the difference system (19).

If (26) is feasible, then it holds that �
�I Qi

� �Qi

�
< 0; (66)

which by using Schur complement implies that Q�1i D Pi > I . Also, we have that�
�Qj I

I ��aI

�
< 0 (67)

which yields Q�1j D Pj 6 �aI . Therefore, V.x�/ satisfies

kx�.k/k
2 6 V.x�.k// 6 �akx�.k/k2: (68)

Pre-multiplying and post-multiplying (26) by diag¹I; I;Q�1i ; I º and its transpose and using the
relation Mi D YiQ

�1
i , we obtain2
664
�Qj 0 Ai C BfMi I

0 �I I 0

� � �Q�1i 0

� � � ��aI

3
775 < 0 8i; j D 1; � � � ; N: (69)

Multiplying the aforementioned inequality by pi .k/ for each iandj and summing them together
over i for each j , and then multiplying the resulting N inequalities by pj .k C 1/ and adding them
together, and finally, by using the Schur complement, we obtain

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
DOI: 10.1002/rnc



S. M. TABATABAEIPOUR, J. STOUSTRUP AND T. BAK

�
P.k/C I 0

� ��aI

�
C
hPN

iD1 pi .k/.Ai C BfMi / I

iT �
P.k C 1/

�
�
hPN

iD1 pi .k/.Ai C BfMi / I

i
< 0;

(70)

where P.kC 1/ D
PN
jD1 pj .kC 1/Pj with Pj D Q�1j and P.k/ D

PN
iD1 pi .kC 1/Pi with Pi D

Q�1i . Pre-multiplying and post-multiplying the aforementioned inequality with
�
x�.k/

T w.k/
�T

and its transpose and knowing that x.k C 1/ D
PN
iD1.Ai C BfMi /x.k/C w.k/, we obtain

x.k C 1/TP.k C 1/x.k C 1/ � x.k/P.k/x.k/ 6 �x.k/T x.k/C �aw.k/Tw.k/: (71)

which is

V.x�.k C 1// � V.x�.k// 6 �kx�.k/k2 C �akw.k/k2; (72)

Therefore, based on Theorem 1 , the closed-loop system is ISS with respect to w.k/ . The ISS gain
is calculated using the same procedure as we used for the observation error system. The ISS gain
with respect to w is �w.s/ D �ws. To obtain the ISS gain w.r.t uc and e, note that

w.k/ D
h
B� �

PN
iD1 pi .k/.LiCf /

i �
uc.k/

e.k/

�

Therefore, we have

V.x�.k C 1// � V.x�.k// 6 �kx�.k/k2 C �akB�k2kuc.k/k2 C �ac21kCf k2ke.k/k2; (73)

where c1 D max16i6N kLik. Using the same procedure as in the proof of Theorem 3, we obtain
that the ISS gain w.r.t. uc is �u.s/ D �akB�ks and ISS gain w.r.t. e is �e.s/ D �ac1kCf ks.

A.3. Proof of Lemma 1

Consider the following candidate LF:

V.e.k/; x�.k// D �Ve.e.k//C V�.x�.k//; (74)

with � > 0 for the interconnection, where Ve is the LF in (51) and V� is the LF in (65). From (61)
and (73), we have

V.x.k C 1/; e.k C 1// � V.x.k/; e.k// 6 ��ke.k/k2 C ��dkBdk2kd.k/k2 � kx�.k/k2

C �akB�k
2kuc.k/k

2 C �ac
2
1kCf k

2ke.k/k2 D .�ac
2
1kCf k

2 � �/ke.k/k2

C ��dkBdk
2kd.k/k2 � kx�.k/k

2 C �akB�k
2kuc.k/k

2:
(75)

Denote c2 D kBdk; c3 D kB�k. If we choose � D �ac21kCf k
2 C 1, then we have

V.x.k C 1/; e.k C 1// � V.x.k/; e.k//

6 �ke.k/k2 � kx�.k/k2 C ��dc22kd.k/k2 C �ac23kuc.k/k2

6 �k
�
e.k/

x�.k/

�
k2 C ��dc

2
2kd.k/k

2 C �ac
2
3kuc.k/k

2;

(76)

which proves that the interconnection is ISS w.r.t d and uc . The next step is to compute the ISS
gains. From (54) and (68), we have

�ke.k/k2 C kx�.k/k
2 6 V.k/ 6 ��dke.k/k2C 6 �akx�.k/k2: (77)

Denote c4 D max.��d ; �a/, er D

�
e

x�

�
, and note that � D �ac21kCf k

2 C 1 > 1. Then we have

ker.k/k
2 6 V.er.k// 6 c4ker.k/k2: (78)
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The aforementioned inequality with (76) gives

V.er.k C 1// 6
�
1 �

1

c4

	
V.er.k//C ��dc

2
2kd.k/k

2 C �ac
2
3kuc.k/k

2: (79)

Applying the aforementioned inequality for k D 0 to k D � gives

V.er.�// 6
�
1 �

1

c4

	�
V.er.0//C ��dc

2
2

��1X
lD0

�
1 �

1

c4

	��l�1
kd.l/k2 C �ac

2
3

��1X
lD0

�
1 �

1

c4

	��l�1
kuc.l/k

2 6
�
1 �

1

c4

	�
V.er.0//C ��dc

2
2c4kdk

2
1 C �ac

2
3c4kuck

2
1:

(80)

Because V.er.0// 6 c4ker.0/k2, the aforementioned inequality implies

ker.�/k 6
p
c4

�
1 �

1

c4

	�=2
ker.0/k C c2

p
��dc4kdk1 C c3

p
�ac4kuck1: (81)

Therefore, the ISS gain w.r.t. d is c2
p
��dc4s and w.r.t uc is c3

p
�ac4s.

A.4. Proof of Theorem 5

To prove ISS of the closed-loop reconfigured system, we use Theorem 2, and the fact that the IOS of
closed-loop system is equivalent to the IOS of the interconnection of the .† QP ; †C / and .†e; †�/
as shown in the Figure 13.

The closed-loop system that consists of the faulty system, the virtual sensor, the virtual actuator,
and the nominal controller is given by

†Pf W

²
xf .k C 1/ D A.�.k//xf .k/C Bf uf .k/C Bdd.k/;
yf .k/ D Cf xf .k/;

(82a)

†S W Oxf .k C 1/ D Aı.�/ Oxf .k/C Bf uc.k/ � L.�/yf .k/; (82b)

†A W

8<
:
Qx.k C 1/ D A.�/ Qx.k/C Buc.k/;
uf .k/ D �M.�/x�.k/ �Ruc.k/;
yc.t/ D C Qx.k/;

(82c)

†C W

²
xc.k C 1/ D fc.xc.k/; yc.k/; r.k//
uc D hc.xc.k/; yc.k/; r.k//

(82d)

where xc is the internal state of the controller. Using the change of the variables: x� D Qx � Oxf and
e D Oxf � xf , we obtain

† QP W

²
Qx.k C 1/ D A.�/ Qx.k/C Buc.k/;
yc D C Qxc ;

(83a)

†C W

²
xc.k C 1/ D fc.xc.k/; yc.k/; r.k//
uc D hc.xc.k/; yc.k/; r.k//

(83b)

†e W e.k C 1/ D .A.�/C L.�/Cf /e.k/ � Bdd.k/ (83c)

†� W x�.k C 1/ D .A.�/C BfM.�//x�.k/C L.�/Cf e.k/C B�uc.k/; (83d)

Figure 13. Closed-loop system as series connection of .†C ; † QP / and .†e; †�/.
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which is shown graphically in Figure (13). Because IOS properties are invariant under a linear
change of variables (yf D Cf xf ; xf D Qx � x� � e), it is enough to show the IOS of (83).

The transformed system (83) consists of the cascade interconnection of the .† QP ; †C / and
.†e; †�/ as shown in the Figure 13. Note that † QP has the same dynamics as the nominal system
†P . Based on the assumption 1, we know that the nominal closed-loop system is IOS, therefore
.† QP ; †C / is also IOS, and based on Theorems 3 and 4, †e and †� are ISS.

Moreover, in Lemma 1, we showed that the interconnection .†� , †e/ is ISS with respect to the
inputs .uc ; d /, and, therefore, it is IOS w.r.t the output .e; x�/. Based on Assumption 1, .† QP ; †C /
is IOS w.r.t to the input .r; d/ and the output .uc ; Qx/. Therefore, using Theorem 2, we conclude that
the series connection .† QP ; †C ; †e; †�/ is IOS w.r.t to the input .r; d/ and the output e; x�, which
proves the theorem.

A.5. Static Output Feedback Control Design for LPV systems

In this appendix, we give the details of design of an SOF controller for discrete-time LPV systems.
The structure and type of the controller is not important for our proposed method and is only given
for the sake of completeness.

Consider an LPV system of the following form:

†P W

8<
:
x.k C 1/ D A.�.k//x.k/C Buc.k/C Bdd.k/;
y.k/ D Cx.k/;
´.k/ D C´x.k/CD´d.k/;

(84)

where A is defined as in (9), ´ is the performance vector. The goal is to design a static output
feedback controller of the form:

u.k/ D K.�/y.k/ D

NX
iD1

piKiy.k/: (85)

We assume without loss of generality that the output matrix is of full row rank. Then, there exist
nonsingular transformation matrices TC such that CTC D

�
I 0

�
. This transformation matrix is

not unique for a given C . A special case is given by TC D
�
C T .CC T /�1 C?

�
, where C? is

an orthogonal basis for the null space of C . We define the following matrices: QAi D TCAiTC ,
QB D T �1C B , QC´ D C´TC , and QBd D T �1C Bd .

Theorem 6

If there exist symmetric matrices Qi D QT
i and matrices Gi D

�
G11i 0

G21i G22i

�
such that

2
664
�Qj 0 QAiGi C QB

�
Ui 0

�
QBd

� �I QC´Gi D´
� � Qi �Gi �G

T
i 0

� � � ��I

3
775 < 0 8 i; j D 1; � � � ; N; (86)

then, the LPV system (84) is stable with the H1 performance index
p
� , that is,

P1
kD0 k´.k/

2k <
�
P1
kD0 kd.k/k

2. The controller gains Ki are given by

Ki D UiG
�1
11i : (87)

Proof
Denote Qi D TC QQiT

T
C , then QQi D T

�1
C QiT

�T
C . Therefore, (86) is equal to2

6664
�T �1C QjT

�T
C 0 T �1C AiTCGi C T

�1
C B

�
Ui 0

�
T �1C Bd

� �I C´TCGi ND´i

� � T �1C QiT
�T
C �Gi �G

T
i 0

� � � ��I

3
7775 < 0; 8i; j D 1; : : : ; N: (88)
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Pre-multiplying and post-multiplying the aforementioned inequality by diag¹
�
TC I TC I

�
º and

its transpose, and denoting QGi D TCGiT TC , we obtain2
6664
�Qj 0 Ai QGi C B

�
Ui 0

�
T TC Bd

� �I C´ QGi D´

� � Qi � QGi � QG
T
i 0

� � � ��I

3
7775 < 0 8i; j D 1; : : : ; N: (89)

Because Ki D UiG�111i , using the structure of Gi , we have

�
Ui 0

�
D Ki

�
I 0

� �G11i 0

G21i G22i

�
:

Substituting
�
I 0

�
with CTC , then:

�
Ui 0

�
D KiCTCGi : Therefore, (89) is equal to2

6664
�QT

j 0 Ai QGi C BKi QGi Bd

� �I C´i QGi D´

� � Qi � QGi � QG
T
i 0

� � � ��I

3
7775 < 0 8i; j D 1; : : : ; N (90)

Using the fact Qi � QGi � QG
T
i > � QGiQ�1i QGTi and by pre-multiplying and post-multiply the

aforementioned inequality with diag¹
�
I I QG�1i I

�
º and its transpose, we find that if the above

inequality is satisfied, then we have2
6664
�Qj 0 Ai C BKiC Bd

� �I C´ D´

� � �Q�1i 0

� � � ��I

3
7775 < 0 8i; j 2 1; : : : ; N: (91)

The rest of the proof is easily followed using the same pattern as in the proof of Theorems 3 or 4
and is omitted here for the sake of space. �
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