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Linear matrix inequalities for analysis and control of linear
vector second-order systems
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SUMMARY

Many dynamical systems are modeled as vector second-order differential equations. This paper presents
analysis and synthesis conditions in terms of LMI with explicit dependence in the coefficient matrices of
vector second-order systems. These conditions benefit from the separation between the Lyapunov matrix and
the system matrices by introducing matrix multipliers, which potentially reduce conservativeness in hard
control problems. Multipliers facilitate the usage of parameter-dependent Lyapunov functions as certificates
of stability of uncertain and time-varying vector second-order systems. The conditions introduced in this
work have the potential to increase the practice of analyzing and controlling systems directly in vector
second-order form. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many physical systems have dynamics governed by LTI ODEs formulated in the vector second-
order form

M Rq.t/C C Pq.t/CKq.t/ D Ff .t/ (1)

where q.t/ 2 Rn, M 2 Rn�n, C 2 Rn�n, K 2 Rn�n, F 2 Rn�nf , and f .t/ 2 Rnf are the force
input vector. Depending on the type of loads (i.e., conservative or non-conservative), matrices M ,
C , and K have a particular structure. Conservative systems (i.e., pure structural systems) possess
symmetric system matrices. Non-conservative systems yielding from the fields of aeroelasticity,
rotating machinery, and interdisciplinary system dynamics usually possess non-symmetric system
matrices. For control purposes, system (1) is often rewritten as first-order differential equations

Px.t/ D Ax.t/C Bf .t/ (2a)

commonly referred to as the state-space form. The relationship between the physical coordinate
description (1) and the state-space description (2) is simply

x.t/ WD

�
q.t/

Pq.t/

�
; A WD

�
0 I

�M�1K �M�1C

�
; B WD

�
0

M�1F

�
(3)
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where a nonsingular matrix M is assumed. Working with the model in physical coordinates has
some advantages over the model in state-space form [1–3]:

� Physical interpretation of the coefficient matrices and insight of the original problem are
preserved.
� Natural properties of the coefficient matrices like bandedness, definiteness, symmetry and

sparsity are preserved.
� Unlike first-order systems in which the acceleration is composed as a linear combination of

position and velocity states by an additional circuitry, the acceleration feedback can be utilized
in its original form.
� Physical coordinates favor computational efficiency, because the dimension of the vector x.t/

is twice that of the vector q.t/.
� Complicating nonlinearities in the parameters introduced by inversion of a parameter-

dependent mass matrix are avoided.

The stability of vector second-order systems received considerable interest during the last four
decades. In [4], several sufficient conditions for stability and instability using Lyapunov theory are
derived. Necessary and sufficient conditions of Lyapunov stability, semistability, and asymptotic
stability are proposed in [5]. This work also brings a substantial literature survey up to 1995. In [2],
the necessary and sufficient conditions of stability are based on the generalized Hurwitz criteria.
A desirable property of these works is the explicit dependence of the conditions on the system
coefficient matrices. An undesirable fact is that conditions are particular to systems under different
dynamic loadings.

Most of the research on feedback control design of vector second-order systems has focused on
stabilization, pole assignment, eigenstructure assignment, and observer design. Identification errors
in mechanical systems might be quite large. Therefore, robust stability of the closed-loop system
is of utmost importance. The fact that stability of some classes of vector second-order systems
can be ensured by qualitative condition on the coefficient matrices has facilitated the design of
robust stabilizing controllers. In [6], conditions for robust stabilization via static feedback of veloc-
ity and displacement were motivated by the stability condition M T D M � 0, C T C C � 0,
and KT D K � 0 in the coefficient matrices An extension to dynamic displacement feedback
control law is presented in [7]. Dissipative system theory is exploited in [8, 9] for the synthesis of
stabilizing controllers. All these approaches result in closed-loop systems inherently insensitive to
plant uncertainties. Based on the eigenvalue analysis of real symmetric interval matrices, in [10],
the authors propose sufficient conditions for robust stabilizability considering structured uncertainty
in the system matrices. A transformation on the system matrices suitable for modal control is pro-
posed in [3]. Partial pole assignment techniques via state feedback control are proposed in [11, 12].
Robustness in the partial pole assignment problem is considered in [13]. An effective method for
partial eigenstructure assignment for systems with symmetric mass, damping, and stiffness coeffi-
cients is presented in [14]. Robust eigenstructure assignment is treated in [15]. Vector second-order
observers and their design are addressed in [16–18].

Despite these efforts, the first-order state space remains the preferred representation because of
the abundance of control techniques and numerical algorithms tailored for such. As far as modern,
optimization-based control theories are concerned, the literature lacks results to handle the systems
directly in the second-order form. An interesting contribution toward this goal is the stability results
of [19] for systems in standard phase-variable canonical form, given in terms of LMI extended with
multipliers. The numerical tools of modern convex optimization can solve these problems efficiently
[20]. The authors of [19] also mentioned the possibility of generalizing these results to systems
described by higher-order vector differential equations. Also interesting is the work in [21], which
associates Lyapunov functions with higher-order derivatives of the state vectors of a state-space
system and proposes a redundant state-space system description to derive a generalization with
reduced conservativeness of some of the robust stability results of [19].

The present manuscript extend the results in [19] by presenting conditions for analysis and syn-
thesis of vector second-order systems given in terms of LMI. We believe that the conditions here
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introduced have the potential to increase the practice in analyzing and controlling mechanical sys-
tems explicitly in physical coordinates. Necessary and sufficient LMI criteria for checking stability
of vector second-order systems are presented in Section 2. Some of these benefit from the separation
between the Lyapunov matrix and the system matrices by introducing Lagrange multipliers, which
potentially reduce conservativeness in robust and other hard control problems [19, 22–24]. The mul-
tipliers facilitate the usage of parameter-dependent Lyapunov functions as certificates of stability of
uncertain and time-varying systems. They also allow structural constraints on the controller to be
addressed less conservatively. Elimination of multipliers is investigated to determine in which cir-
cumstances multipliers can be removed without loss of generality. The stabilization problem by a
full vector second-order feedback as well as the problem of clustering the closed-loop system poles
in a convex region of the complex plane, namely D-stability, completes the results related to sta-
bility. A gradual extension for systems with inputs and outputs in Section 3 leads to the criteria of
synthesis subject to integral quadratic constraints (IQC). Conditions for the design of static state and
output feedback controllers in vector second-order form are addressed, with a focus on the L2 to
L2 gain performance measure because of its importance in robust control. Section 5 concludes the
paper and suggests topics for future work.

The notation used in this paper is standard. R and C denote the set of real numbers, whereas Sn

indicates the set of symmetric n � n matrices. For a matrix X , XT and XH indicate its transpose
and complex conjugate transpose, respectively. The d � d identity matrix is denoted by Id , while
1d represents a column vector composed of 1’s with dimension d . For a matrix X 2 Sn, X � .�/0
indicates that X is negative (semi)definite. The symbol˝ denotes the matrix Kronecker product. In
long symmetric matrix expressions, the meaning of the symbol ? will be inferred by symmetry. For
instance, if X is symmetric, then

�
X CN C .?/ QT

? Y

�

will be read �
X CN CN T QT

Q Y

�

2. ASYMPTOTIC STABILITY

Let us recall some concepts of Lyapunov stability for first-order state-space systems before working
with vector second-order representation. Consider the dynamics of a continuous-time LTI system
governed by the differential equation

Px.t/ D Ax.t/; x.0/ D x0 (4)

where x.t/ W Œ0;1�! R2n and A 2 R2n�2n. Define the quadratic Lyapunov function V W R2n !
R as

V.x/ WD x.t/TPx.t/ (5)

where P 2 S2n. According to Lyapunov theory, system (4) is asymptotically stable if there exists
V.x.t// > 0, 8x.t/ ¤ 0, such that

PV .x.t// < 0; Px.t/ D Ax.t/; 8x.t/ ¤ 0 (6)

In words, if there existsP � 0, the time derivative of the quadratic Lyapunov function (5) is negative
along all trajectories of system (4). Conversely, if the linear system (4) is asymptotically stable, then
there always exists P � 0 that satisfies (6). These two affirmatives imply the well-known fact that
Lyapunov theory with quadratic functions is necessary and sufficient to prove the stability of LTI
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systems. The usual way to obtain an LMI condition equivalent to (6) is to explicitly substitute (4)
into (5) [20]; that is,

PV .x.t// D x.t/T .ATP C PA/x.t/ < 0; 8x.t/ ¤ 0 (7)

The condition (7) is equivalent to the LMI feasibility problem

9P 2 S2n W P � 0; ATP C PA � 0 (8)

The fact that (6) is a set characterized by inequalities subject to dynamic equality constraints is
explored in [19] to propose a constrained optimization solution to the stability problem. It is then
possible to characterize the set defined by (6) without substituting (4) explicitly into PV .x.t// < 0
of (6) [19]. The well-known Finsler lemma [25, 26] is the main mathematical tool to transform the
constrained optimization problem into a problem subject to LMI constraints.

Lemma 1 (Finsler)
Let x.t/ 2 Rn, Q 2 Sn, and B 2 Rm�n such that rank.B/ < n. The following statements
are equivalent.

(i) x.t/TQx.t/ < 0; 8 Bx.t/ D 0; x.t/ ¤ 0.
(ii) B?TQB? � 0.

(iii) 9� 2 R W Q � �BTB � 0.
(iv) 9X 2 Rn�m W QC XB C BTX T � 0.

A similarity between statement (i) of the preceding lemma and (6) can be noticed. In contrast to
(7), the space of statement (i) is composed of x.t/ and Px.t/ that can be seen as an enlarged space
[19]. Statements (iii) and (iv) can be seen as equivalent unconstrained quadratic forms of (i) [19].
The equality constraint 8 Px.t/ D Ax.t/ is included in the formulation weighted by the Lagrangian
scalar multiplier � or matrix multiplier X .

In order to obtain a stability condition for an unforced system of the form (1) (f .t/ D 0), define
the quadratic Lyapunov function V W R2n ! R as

V .q.t/; Pq.t// WD

�
q.t/

Pq.t/

�T
P

�
q.t/

Pq.t/

�
WD

�
q.t/

Pq.t/

�T �
P1 P2
P T2 P3

� �
q.t/

Pq.t/

�
(9)

where P 2 S2n is conveniently partitioned into P1; P3 2 Sn, and P2 2 Rn. Resorting to Lyapunov
theory once again, system (1) is asymptotically stable if, and only if, there exists V.q.t/; Pq.t// > 0,
8q.t/; Pq.t/ ¤ 0, such that

PV .q.t/; Pq.t// < 0; 8M Rq.t/C C Pq.t/CKq.t/ D 0;

�
q.t/

Pq.t/

�
¤ 0 (10)

with the time derivative of the quadratic function as

PV .q.t/; Pq.t// D

�
Pq.t/
Rq.t/

�T �
P1 P2
P T2 P3

��
q.t/

Pq.t/

�
C

�
q.t/

Pq.t/

�T �
P1 P2
P T2 P3

��
Pq.t/
Rq.t/

�
< 0 (11)

Let an enlarged state-space vector be defined as x.t/ WD .q.t/T ; Pq.t/T ; Rq.t/T /T . For this enlarged
space, the constrained Lyapunov stability problem becomes0

@ q.t/Pq.t/
Rq.t/

1
A
T 2
4 0 P1 P2
P1 P2 C P

T
2 P3

P T2 P3 0

3
5
0
@ q.t/Pq.t/
Rq.t/

1
A < 0

8M Rq.t/C C Pq.t/CKq.t/ D 0;

0
@ q.t/Pq.t/
Rq.t/

1
A ¤ 0

(12)
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An LMI stability condition for vector second-order systems results from the direct application of
Finsler’s Lemma 1 to the preceding problem.

Theorem 1
System (1) is asymptotically stable if, and only if, one of the following equivalent conditions holds:

(i) 9P2 2 Rn�n; P1; P3 2 Sn:2
4E11 E12E21 E22
E31 E32

3
5
T 2
4 0 P1 P2
P1 P2 C P

T
2 P3

P T2 P3 0

3
5
2
4E11 E12E21 E22
E31 E32

3
5 � 0 (13a)

2
4E11 E12E21 E22
E31 E32

3
5 WD �K C M

�?
�
P1 P2
P T2 P3

�
� 0 (13b)

(ii) 9P2 2 Rn�n; P1; P3 2 Sn; � 2 R:

2
4��KTK P1 � �K

TC P2 � �K
TM

? P2 C P
T
2 � �C

TC P3 � �C
TM

? ? ��M TM

3
5 � 0 (14a)

�
P1 P2
P T2 P3

�
� 0 (14b)

(iii) 9ˆ; �; ƒ; P2 2 Rn�n, and P1; P3 2 Sn:

2
4KTˆT CˆK P1 CK

T�T CˆC P2 CK
TƒT CˆM

? P2 C P
T
2 C C

T�T C �C P3 C C
TƒT C �M

? ? M TƒT CƒM

3
5 � 0 (15a)

�
P1 P2
P T2 P3

�
� 0 (15b)

Proof
Assign

x.t/ 

0
@ q.t/Pq.t/
Rq.t/

1
A ; Q 

2
4 0 P1 P2
P1 P2 C P

T
2 P3

P T2 P3 0

3
5 ; BT  

2
4 KTC T
M T

3
5 ; X  

2
4ˆ�
ƒ

3
5

and apply Lemma 1 to the constrained Lyapunov problem (12) with P � 0. �

Notice the diagonal entries of the first inequality of statement (ii); that is, �KTK � 0 and
�M TM � 0, which implies that � > 0 and K; M nonsingular. The condition reflects that asymp-
totic stability of mechanical systems requires that no eigenvalues of matrixK should lie at the origin,
that is, no rigid-body modes. At last, notice that the condition does not enforce any specific require-
ment on the structure of the damping matrix C (except C ¤ 0). Thus, it is applicable to systems
under different loadings.
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2.1. Elimination of multipliers

The matrix inequality (15) is a function of the multipliers ˆ, � , and ƒ. It is worth questioning if
all degrees of freedom introduced by the multipliers are really necessary. Would it be possible to
constrain or eliminate multipliers without loss of generality? The elimination lemma [20, 26] will
serve for the purpose of removing multipliers without adding conservatism to the solution.

Lemma 2 (Elimination lemma)
Let Q 2 Sn, B 2 Rm�n, and C 2 Rn�k . The following statements are equivalent.

(i) 9X 2 Rn�m W QC CTXB C BTX T C � 0:
(ii)

B?TQB? � 0 (16a)

C?TQC? � 0 (16b)

(iii) 9� 2 R W Q � �BTB � 0; Q � �CT C � 0.

Notice that the elimination lemma reduces to Finsler’s lemma when particularized with C D I .
In such a case, C? D ¹0º, and (16b) is removed from the statement. A discussion on the relation
between these two lemmas can be found in [20, 26]. The elimination of multipliers on LMI condi-
tions for systems in the first-order form was studied in [24]. In general terms, the idea is to select a
suitable C such that (16b) does not introduce conservatism to the original problem while reducing
the size of the multiplier X . The next theorems result from a similar rationale.

Theorem 2
System (1) is asymptotically stable if, and only if, 9ˆ; ƒ; P2 2 Rn�n, and P1; P3 2 Sn:

2
4ˆK CKTˆT P1 CK

T .˛ˆCƒ/T CˆC P2 C ˛K
TƒT CˆM

? P2 C .˛ˆCƒ/C C .?/ P3 C ˛C
TƒT C .˛ˆCƒ/M

? ? ˛.ƒM CM TƒT /

3
5 � 0 (17a)

�
P1 P2
P T2 P3

�
� 0 (17b)

for an arbitrary scalar ˛ > 0.

Proof
Assign

Q 

2
4 0 P1 P2
P1 P2 C P

T
2 P3

P T2 P3 0

3
5 ; BT  

2
4KTC T
KT

3
5 ; C?  

2
4 ˛2I�˛I

I

3
5 ;

CT  

2
4 I 0

˛I I

0 ˛I

3
5
T

; X  
�
ˆ

ƒ

�

and apply the elimination lemma with P � 0. The chosen C? does not introduce conservativeness
to the condition. To see this, expand (16b):

C?TQC? D �˛3P1 � ˛P3 C ˛2P2 C ˛2P T2 � 0 (18a)

m

˛3P1 C ˛P3 � ˛
2P2 � ˛

2P T2 � 0 (18b)
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Notice that the following supports inequality

�NW �1N T � W �N �N T (19)

with W 2 Sn and N 2 Rn�n holding whenever W � 0. Resorting to the support inequality with
N WD ˛2P2 and W WD ˛P3 � 0, (18b) is satisfied whenever

˛3
�
P1 � P2P

�1
3 P T2

	
� 0 (20)

P1 � P2P
�1
3 P T2 � 0 is equivalent to (17b) by a Schur complement argument and thus positive

definite. Therefore, (20) and consequently (18b) hold for an arbitrary real scalar ˛ > 0. �

A similar, equivalent characterization of the earlier theorem can be derived by assigning

C?  

2
4 I

�˛I

˛2I

3
5 ; CT  

2
4 ˛I 0

I ˛I

0 I

3
5
T

and following the same steps presented in the proof.
The number of multipliers can be further reduced by constrainingˆ WD �ƒ in (17a), where� > 0

is a real scalar. The idea to introduce line search parameters is exploited in the LMI literature [24,
27, 28]. Unfortunately, this constraint introduces conservativeness, leading to a sufficient condition.

Theorem 3
System (1) is asymptotically stable if 9P2; ƒ 2 Rn�n; P1; P3 2 Sn; �;2 R:2
4�.ƒK CKTƒT / P1 C .1C ˛�/KTƒT C �ƒC P2 C ˛K

TƒT C �ƒM

? P2 C .1C ˛�/ƒC C .?/ P3 C ˛C
TƒT C .1C ˛�/ƒM

? ? ˛.ƒM CM TƒT /

3
5 � 0

(21a)�
P1 P2
P T2 P3

�
� 0; ˛ > 0; � > 0 (21b)

for an arbitrary scalar ˛ > 0.

A source of conservatism is the appearance of a single multiplier on the block-diagonal entries of
(21a). For M � 0, the usual property of the mass matrix, the (3, 3) block ˛.M TƒT C ƒM/ � 0
with ˛ > 0 is satisfied only if ƒ � 0. As a consequence, stability cannot be certified when M � 0
and K is indefinite because �.KTƒT CƒK/ � 0 never holds when � > 0 and ƒ � 0. Numerical
experiments suggest that a similar situation is encountered when the matrix C is indefinite and M
or K is positive definite. The condition was unable to attest the stability of randomly generated
stable systems (M , C , and K) in which C had at least one negative eigenvalue and M; K � 0.
P2 C P T2 � 0 holds whenever the condition was able to find a certificate of stability, another
contributing fact to why the (2–2) block cannot be verified as negative definite when C is indefinite.

2.2. Stabilization by static state feedback

The dependence of the stability condition to a single multiplier ƒ is particularly interesting in the
context of feedback stabilization. The vector second-order system is augmented with a controllable
input u.t/ 2 Rnu

M Rq.t/C C Pq.t/CK Pq.t/ D Fuu.t/; q.0/; Pq.0/ D 0 (22)

where Fu 2 Rn�nu . Consider a static state feedback controller of the form

u.t/ D �Ga Rq.t/ �Gv Pq.t/ �Gpq.t/ (23)
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where Ga ; Gv; Gp 2 Rn�n are static feedback gains from acceleration, velocity, and position,
respectively. The plant (22) in closed-loop systems with the controller (23) yields the equations
of motion

M Rq.t/C C Pq.t/CKq.t/ D 0 (24a)

M WD .M C FuGa/; C WD .C C FuGv/; K WD .K C FuGp/ (24b)

Conditions for controller synthesis often involve products between controller gains and Lyapunov
matrices or multipliers, resulting in non-LMI. The nonlinear terms can be linearized by resorting to
the change of variables, firstly introduced in [29], in which only the Lyapunov variable is involved,
and later in the context of conditions extended with multipliers [22]. Define the following nonlinear
change of variables

OGa WD Gaƒ; OGv WD Gvƒ; OGp WD Gpƒ (25)

Notice from (21) that the matrix ƒ multiplies the system matrices in a position not suitable for
linearization of the nonlinear terms, that is,ƒ.KCFuGp/. A dual transformation of the closed-loop
system

M MT ; C CT ; K KT (26)

makes the linearizing change of variables possible. It is worth mentioning that the preceding dual
transformation preserves the eigenvalues of the system cast in first-order form, that is,

�

�
0 I

�M�1K �M�1C

�
D �

�
0 I

�M�TKT �M�TC T

�

With these definitions in hand, the stabilizability conditions by static feedback can now be stated.

Theorem 4
System (22) is stabilizable by a static feedback law of the form (23) if 9ƒ; P2 2 Rn�n, P1; P3 2
Sn; OGa; OGv; OGp 2 Rnu�n; ˛; � 2 R:

2
6664
�


KƒC Fu OGp Cƒ

TKT C OGTp F
T
u

�
P1 C .1C ˛�/



KƒC Fu OGp

�
C �



CƒC Fu OGv

�T
? P2 C .1C ˛�/



CƒC Fu OGv

�
C .?/

? ?

P2 C ˛


KƒC Fu OGp

�
C �



MƒC Fu OGa

�T
P3 C ˛



CƒC Fu OGv

�
C .1C ˛�/



MƒC Fu OGa

�T
˛


MƒC Fu OGa Cƒ

TM T C OGTa F
T
u

�

3
7775 � 0 (27a)

�
P1 P2
P T2 P3

�
� 0; � > 0 (27b)

and ƒ is nonsingular.

Proof
The LMI (27) results from a direct application of Proposition 2 to the dual of closed-loop system
(24), together with a dual transformation ƒ  ƒT of the multiplier and the change of variables
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(25). The change of variables is without loss of generality when ƒ is nonsingular, thus invertible.
The original controller gains can then be recovered by the inverse map

Ga D OGaƒ
�1; Gv D OGvƒ

�1; Gp D OGpƒ
�1 (28)

which characterizes the stabilizable control law. �

A nonsingular multiplier ƒ is not implied by inequality (27a). This fact contrasts with the sta-
bility criteria for systems in the first-order form where nonsingularity of multipliers is a direct
consequence of the structure of the LMI [23, 30]. With some restrictions imposed on the problem
formulation, it is possible to ensure a nonsingular ƒ. For instance, the multiplier can be confined
to the positive cone of symmetric matrices, that is, ƒ 2 Sn; ƒ � 0, or to the negative cone
of symmetric matrices, ƒ 2 Sn; ƒ � 0. In these cases, extra conservativeness is brought into
the condition.

An assumption that facilitates a nonsingular ƒ without adding conservativeness is to exclude the
acceleration feedback, that is, Ga D 0. In this case, the lower right block Mƒ C ƒTM T � 0
of the LMI (27a) with M nonsingular implies a nonsingular multiplier ƒ. Therefore, a stabilizing
controller can be computed according to (28) whenever (27) is feasible. Note that the control law
(23) with Ga D 0 is a full state feedback in the first-order state-space sense.

As mentioned in the Section 1, acceleration feedback is often desirable because of practical rea-
sons. When position feedback is excluded from the control law (Gp D 0), the multiplier is assured
to be nonsingular. The entry �.KƒC ƒTKT / � 0 located in the upper left of (27a) with K non-
singular and � > 0 implies ƒ nonsingular. Therefore, once a solution for the aforementioned LMI
problem is found, the controller gains can be reconstructed according to (28).

2.3. D-Stability

Performance specifications like time response and damping in closed-loop systems can often be
achieved by clustering the closed-loop poles into a suitable subregion of the complex plane. The
subclass of convex regions of the complex plane can be characterized in terms of LMI constraints
[31]. A class of convex subregions representable as LMI conditions extended with multipliers was
proposed in [32]. Let R11; R22 2 Sd , R12 2 Rd , and R22 � 0. The DR region of the complex
plane is defined as the set [32]

DR.s/ WD
®
s 2 C W R11 CR12s CR

T
12s

H CR22s
H s � 0

¯
(29)

where s is the Laplace operator. An LMI characterization for DR-stability of vector second-
order systems can be derived from the DR-stability condition of a system in first-order form. The
autonomous system (4) is DR-stable if, and only if, 9P 2 S2n [32]:

R11 ˝ P CR12 ˝ .PA/CR
T
12 ˝ .A

TP /CR22 ˝ .A
TPA/ � 0 (30)

A relation between regions of the complex plane and a particular Lyapunov constrained problem
can be deduced from the preceding LMI. First, define the d-stacked system as

xd .t/ WD 1d ˝ x.t/; Ad WD Id ˝ A ) Pxd .t/ D Id ˝ Axd .t/ (31)

where 1d represents a column vector composed of 1’s and Id is the identity matrix both with
dimension d . For example, the d-stacked system for d D 2 yields�

Px.t/
Px.t/

�
D

�
A 0

0 A

��
x.t/

x.t/

�

The time derivative of the Lyapunov function tailored for DR-stability analysis is defined as

PV .xd .t/; Pxd .t// WD xd .t/
TR11 ˝ Pxd .t/C Pxd .t/

TR12 ˝ Pxd .t/

C xd .t/
TRT12 ˝ P Pxd .t/C Pxd .t/

TR22 ˝ P Pxd .t/ < 0
(32)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
DOI: 10.1002/rnc



F. D. ADEGAS AND J. STOUSTRUP

Substitute (31) into (32) and expand it to arrive at (30). The usual time derivative of a quadratic
Lyapunov function, that is, PV .x.t// D Px.t/TPx.t/Cx.t/TP Px.t/, is recovered from the preceding
expression by choosing R11 D R22 D 0; R12 D 1. The set of solutions of the D-stability problem
in the time domain is defined as

DR.x.t// WD
®
x.t/ 2 Rn W PV .x.t/; Px.t// < 0; PV .x.t/; Px.t// as .23/; P � 0

¯
(33)

For the sake of DR-stability of vector second-order systems, the d-stacked system is defined as

qd .t/ WD 1d ˝ q.t/; Pqd .t/ WD 1d ˝ Pq.t/; Rqd .t/ WD 1d ˝ Rq.t/ (34a)

Md WD Id ˝M; Cd WD Id ˝ C; Kd WD Id ˝K (34b)

Md Rqd .t/C Cd Pqd .t/CKdqd .t/ D 0 (34c)

Let the constrained Lyapunov problem in the enlarged space be formalized

0
@ qd .t/Pqd .t/
Rqd .t/

1
A
T 2
4R11 ˝ P1 R11 ˝ P2 CR12 ˝ P1

? R11 ˝ P3 CR
T
12 ˝ P2 CR12 ˝ P

T
2 CR22 ˝ P1

? ?

R12 ˝ P2
R12 ˝ P3 CR22 ˝ P2

R22 ˝ P3

3
5
0
@ qd .t/Pqd .t/
Rqd .t/

1
A < 0

(35a)

�
P1 P2
P T2 P3

�
� 0; 8Md Rqd .t/C Cd Pqd .t/CKdqd .t/ D 0;

0
@ qd .t/Pqd .t/
Rqd .t/

1
A ¤ 0 (35b)

The D-stability condition for vector second-order systems is stated in the next theorem.

Theorem 5
System (1) is DR-stable if, and only if, 9 P1; P3 2 Sn, P2 2 Rn; ˆ; �; ƒ 2 Rdn�dn:

J CHCHT � 0; H WD

2
4ˆ.Id ˝K/ ˆ.Id ˝ C/ ˆ.Id ˝M/

�.Id ˝K/ �.Id ˝ C/ �.Id ˝M/

ƒ.Id ˝K/ ƒ.Id ˝ C/ ƒ.Id ˝M/

3
5 (36a)

J WD

2
4R11 ˝ P1 R11 ˝ P2 CR12 ˝ P1 R12 ˝ P2

? R11 ˝ P3 CR
T
12 ˝ P2 CR12 ˝ P

T
2 CR22 ˝ P1 R12 ˝ P3 CR22 ˝ P2

? ? R22 ˝ P3

3
5

(36b)

�
P1 P2
P T2 P3

�
� 0 (36c)

The proof follows similarly to Theorem 1 and is omitted for brevity. Multipliers need to be elim-
inated to make the preceding condition suitable for computing stabilizing controllers. The same
choice of C? and C of Theorems 2 and 3 serve this purpose. However, conservativeness when elim-
inating multipliers depends on the particular DR region. Taking .C?; C/ similarly to Theorem 2,
C?TQC? � 0 after expansion and some algebraic manipulations yield

R11 ˝
�
˛4P1 � ˛

3P2 � ˛
3P T2 C ˛

2P3
	
CR12 ˝

�
�˛3P1 C ˛

2P2 C ˛
2P T2 � ˛P3

	
CRT12 ˝

�
�˛3P1 C ˛

2P2 C ˛
2P T2 � ˛P3

	
CR22 ˝

�
˛2P1 � ˛P2 � ˛P

T
2 C P3

	
� 0

(37)
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This inequality depends on the matricesR11,R12, andR22 that define the stability region. Although
it is not trivial to state non-conservativeness independently of the chosen region, one can attest if
the elimination of a multiplier brings any conservativeness for a particular DR region. To do so, first
note that all of the addends of the preceding inequality are similar in structure. A correspondence
with the Lyapunov matrix P can be established via a congruence transformation involving ˛, and
multiplications with a matrix and its transpose, for example,

Y THT

�
P1 P2
P T2 P3

�
HY � 0; H WD diag.˛I; I /; Y WD

�
I �I

�T
WheneverHTPH � 0 holds, which is always the case because of (36c), ˛2P1�˛P2�˛P T2 CP3 �
0 also holds. Let us take some typical regions as examples. The continuous-time stability region is
determined by R11 D R22 D 0; R12 D 1, rendering non-conservativeness as shown in Theorem 2.
For a region with minimum decay rate ˇ > 0 set with R11 D 2ˇ; R22 D 0; R12 D 1, if

2˛HT

�
P1 P2
P T2 P3

�
H � 2˛2ˇHT

�
P1 P2
P T2 P3

�
H � 0 (38)

holds, then (37) also holds. Indeed, multiply the preceding inequality with Y WD
�
I �I

�T
from

the right and Y T from the left to obtain (37). A set of values of ˛, which does not introduce conser-
vativeness to the condition, can be inferred from (38), that is, ¹˛ W ˛ � ˛2ˇ > 0; ˛ > 0; ˇ > 0º.
For the discrete-time stability region, represented as a circle centered at the origin of the complex
plane with R11 D �1; R22 D 1; R12 D 0, if

˛2HT

�
P1 P2
P T2 P3

�
H � HT

�
P1 P2
P T2 P3

�
H � 0

is satisfied, then inequality (37) is satisfied. Therefore, any ˛ > 1 does not bring conservativeness.

3. QUADRATIC PERFORMANCE

The following LTI vector second-order system with inputs and outputs

M Rq.t/CD Pq.t/CKq.t/ D Fww.t/; q.0/; Pq.0/ D 0 (39a)

´.t/ D U Rq.t/C V Pq.t/CXq.t/CD´ww.t/ (39b)

is considered in this section, where w.t/ 2 Rnw and ´.t/ 2 Rn´ are the disturbance input and
performance output vectors, respectively, U; V; X 2 Rn´�n. The presence of input signals w.t/
requires a definition of stability.

3.1. L2 to L2 stability

The notion of stability of a system with inputs is related to the characteristics of the input signal
w.t/. Assume w.t/ W Œ0;1/ ! Rnw , a piecewise continuous function in the Lebesgue function
space L2

kw.t/kL2 WD

�Z 1
0

w.�/Tw.�/d�

�1=2
<1

In the control literature, the quantity kw.t/kL2 is often referred to as the energy of signal w.t/.
The system (39) is said to be L2 stable if the output signal ´.t/ 2 L2 for all w.t/ 2 L2. Define the
L2 to L2 gain as the quantity

�1 WD sup
w.t/2L2

k´k2

kwk2
(40)
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This quantity can serve as a certificate of L2 stability. If the L2 to L2 gain of a system is finite,
that is, 0 < �1 < 1, then one can conclude that the system is L2 stable. Because �1 is bounded
below, it suffices to find an upper bound � such that 0 < �1 < � < 1. Consider the modified
Lyapunov stability condition

PV .q.t/; Pq.t/; Rq.t// < 0; ´.t/T ´.t/ > �2w.t/Tw.t/ (41a)

8 .q.t/; Pq.t/; Rq.t/; w.t/; ´.t// satisfying (39) (41b)

.q.t/; Pq.t/; Rq.t/; w.t/; ´.t// ¤ 0 (41c)

where � > 0 is a given scalar. Invoking the S-procedure [20] produces a necessary and sufficient
equivalent condition [19]

PV .q.t/; Pq.t/; Rq.t// < �2w.t/Tw.t/ � ´.t/T ´.t/ (42a)

8 .q.t/; Pq.t/; Rq.t/; w.t/; ´.t// satisfying (39) (42b)

.q.t/; Pq.t/; Rq.t/; w.t/; ´.t// ¤ 0 (42c)

To realize that (42) implies an L2 to L2 gain less than � , integrate both sides of (42a) over time
t > 0 to obtain Z t

0

PV .q.�/; Pq.�/; Rq.�// d� <

Z t

0

�2w.�/Tw.�/ � ´.�/T ´.�/ d� (43)

For t !1, the resulting Lyapunov function

Z t

0

PV .q.�/; Pq.�/; Rq.�// d� D V .q.�/; Pq.�/; Rq.�// > 0 (44)

is positive by definition. From the preceding expression and (43), it can be inferred that

k´.t/k2L2 < �
2kw.t/k2L2 (45)

which compared with (40) implies � > �1.
Synthesis of controllers is usually attached to some performance indicator or measure of a system.

The L2 gain also serves as a system performance measure.

3.2. Integral quadratic constraints

The notion of system performance can be further generalized by enforcing an IQC on the input and
output signals [33, 34]

Z t

0

�
´.�/

w.�/

�T �
Q S

ST R

��
´.�/

w.�/

�
d� > 0 (46)

where Q 2 Sn´ , R 2 Snw , and S 2 Rn´�nw . Similar to (43), pose the inequality

Z t

0

PV .q.�/; Pq.�/; Rq.�// d� < �

Z t

0

�
´.�/

w.�/

�T �
Q S

ST R

��
´.�/

w.�/

�
d� (47)

The right-hand side of the preceding inequality can be seen as a quadratic constraint on the Lyapunov
quadratic function V.q.t/; Pq.t/; Rq.t//. The modified Lyapunov problem then becomes
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PV .q.t/; Pq.t/; Rq.t// < �

�
´.t/

w.t/

�T �
Q S

ST R

��
´.t/

w.t/

�
(48a)

8.q.t/; Pq.t/; Rq.t/; w.t/; ´.t// satisfying (39) (48b)

.q.t/; Pq.t/; Rq.t/; w.t/; ´.t// ¤ 0 (48c)

ready to be transformed in an LMI condition by Finsler’s lemma.

Theorem 6 (IQC)
The following statements are equivalent.

(i) The set of solutions of the Lyapunov problem (48) with

�
P1 P2
P T2 P3

�
� 0 is not empty.

(ii) 9P1; P3 2 Sn, ˆ1; �1; ƒ1; P2 2 Rn, …1 2 Rn´�n, „1 2 Rnw�n, ˆ2; �2; ƒ2;2 Rn�n´ ,
…2 2 Rn´�n´ , „2 2 Rnw�n´ :

J CHCHT � 0;

�
P1 P2
P T2 P3

�
� 0; where (49a)

J WD

2
66664

0 P1 P2 0 0

P1 P2 C P
T
2 P3 0 0

P T2 P3 0 0 0

0 0 0 Q S

0 0 0 ST R

3
77775 (49b)

H WD

2
6664
ˆ1K �ˆ2X ˆ1C �ˆ2V ˆ1M �ˆ2U ˆ2 �ˆ1Fw �ˆ2D´w
�1K � �2X �1C � �2V �1M � �2U �2 ��1Fw � �2D´w
ƒ1K �ƒ2X ƒ1C �ƒ2V ƒ1M �ƒ2U ƒ2 �ƒ1Fw �ƒ2D´w
…1K �…2X …1C �…2V …1M �…2U …2 �…1Fw �…2D´w
„1K �„2X „1C �„2V „1M �„2U „2 �„1Fw �„2D´w

3
7775 (49c)

Proof
Assign

x.t/ 

0
BBB@
q.t/

Pq.t/
Rq.t/
´.t/

w.t/

1
CCCA ; Q .49b/; BT  

2
66664
KT �XT

C T �V T

M T �U T

0 I

�F Tw �D
T
´w

3
77775 ; X  

2
6664
ˆ1 ˆ2
�1 �2
ƒ1 ƒ2
…1 …2

„1 „2

3
7775 (50)

and apply Finsler’s lemma to the constrained Lyapunov problem (48) with P � 0. �

The preceding condition yields specialized quadratic performance criteria depending on the
choice of Q, S , or R. Assign �

Q S

ST R

�
 

�
I 0

0 ��2I

�

to verify the L2 performance criteriaZ t

0

�
´.t/

w.t/

�T �
Q S

ST R

��
´.t/

w.t/

�
> 0,

Z t

0

´.t/T ´.t/ dt < �2
Z t

0

w.t/Tw.t/ dt

, k´.t/k2L2 < �
2kw.t/k2L2

, kH´w.j!/k
2
H1 < �2
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also known as bounded real lemma. To check the passivity of a vector second-order system, select

�
Q S

ST R

�
 

�
0 �I
�I 0

�

reducing the IQC to

Z t

0

�
´.t/

w.t/

�T �
Q S

ST R

��
´.t/

w.t/

�
> 0, �2

Z t

0

´.t/Tw.t/ dt < 0

mZ t

0

´.t/Tw.t/ dt > 0, H´w.j!/CH´w.j!/
� � 0 , H´w.j!/ is passive

a condition also known as positive real lemma. Sector bounds on the signals ´.t/ and w.t/ can be
enforced by choosing

�
Q S

ST R

�
 

2
64 I �

1

2
.˛ C ˇ/I

�
1

2
.˛ C ˇ/I �˛ˇI

3
75

The IQC yields

Z t

0

�
´.t/

w.t/

�T �
Q S

ST R

��
´.t/

w.t/

�
> 0,

Z t

0

.´.t/ � ˛w.t//T .´.t/ � ˇw.t// dt > 0

, .´.t/; w.t// 2 sector.˛; ˇ/

Similar to the stability case, in (49), the product of the multipliers with the system matrices occurs
in a position that does not facilitate possible change of variables. One would be tempted to invoke
algebraic duality of the vector second-order system once again. However, the presence of outputs
brings complicating issues, making such an approach not trivial. In addition to this, the multipliers
involved in the ICQ condition have different dimensions. An ICQ condition dependent on a single,
square, invertible, and well-located multiplier is desirable for synthesis purposes.

A modification on the constrained Lyapunov problem is the first step toward a condition with such
properties. The IQC may depend explicitly on positions, velocities, and accelerations by substituting
´.t/ D U Rq.t/C V Pq.t/CXq.t/CD´ww.t/ into (46), yielding

Z t

0

0
B@
q.t/

Pq.t/
Rq.t/
w.t/

1
CA
T �

ZTQZ ZT .S CQD´w/

? RCDT
´wQD´w CD

T
´wS C S

TD´w

�0B@
q.t/

Pq.t/
Rq.t/
w.t/

1
CA > 0 (51a)

Z WD
�
X V U

�
(51b)

The new constrained Lyapunov problem

PV .q.t/; Pq.t/; Rq.t// < �

0
B@
q.t/

Pq.t/
Rq.t/
w.t/

1
CA
T �

ZTQZ ZT .S CQD´w/

.S CQD´w/
TZ NR

�0B@
q.t/

Pq.t/
Rq.t/
w.t/

1
CA

NR WD RCDT
´wQD´w CD

T
´wS C S

TD´w

(52a)
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8 .q.t/; Pq.t/; Rq.t/; w.t// satisfying M Rq.t/C C Pq.t/CKq.t/ D Fww.t/ (52b)

.q.t/; Pq.t/; Rq.t/; w.t// ¤ 0 (52c)

is not dependent explicitly on the output vector ´.t/. Sufficient conditions with a reduced number
of multipliers can be derived from the preceding Lyapunov problem by applying the elimination
lemma. They become also necessary if the acceleration vector (or position vector) is absent in ´.t/,
that is, U D 0 (or X D 0).

Theorem 7
The set of solutions of the Lyapunov problem (52) with P � 0 is not empty if 9 P1; P3 2
Sn; P2; ˆ; ƒ 2 Rn�n; ˛ 2 R:

J CHCHT � 0; where (53a)

J WD

2
664

0 P1 P2 0

P1 P2 C P
T
2 P3 0

P T2 P3 0 0

0 0 0 0

3
775C

2
664
XTQX XTQV XTQU XT .S CQD´w/

? V TQV V TQU V T .S CQD´w/

? ? U TQU U T .S CQD´w/

? ? ? NR

3
775 (53b)

H WD

2
64

ˆK ˆC ˆM �ˆFw
.˛ˆCƒ/K .˛ˆCƒ/C .˛ˆCƒ/M �.˛ˆCƒ/Fw

˛ƒK ˛ƒC ˛ƒM �˛ƒFw
0 0 0 0

3
75 ; ˛ > 0 (53c)

�
P1 P2
P T2 P3

�
� 0 (53d)

This is necessary and sufficient whenever U D 0 in (52).

Proof
Assign

Q 

2
664

0 P1 P2 0

P1 P2 C P
T
2 P3 0

P T2 P3 0 0

0 0 0 0

3
775C

2
664
XTQX XTQV XTQU XT .S CQD´w/

? V TQV V TQU V T .S CQD´w/

? ? U TQU U T .S CQD´w/

? ? ? NR

3
775

BT  

2
664
KT

C T

M T

�F Tw

3
775 ; C?  

2
664
˛2I 0

�˛I 0
I 0

0 I

3
775 ; CT  

2
64
I 0

˛I I

0 ˛I

0 0

3
75 ; X  

�
ˆ

ƒ

�

and apply the elimination lemma with P � 0. This lemma renders a condition without extra
conservatism whenever C?TQC? � 0, that is,

�
F11.P1; P2; P3/ F12

F T12 � NR

�
� 0; NR � 0

F11.˛; P1; P2; P3/ WD2.˛
3P1 � ˛

2.P2 C P
T
2 /C ˛P3/ �

�
˛4XTQX � ˛3XTQV C ˛2XTQU

C˛2V TQV � ˛V TQU C U TQU
	
C ?

F12.˛/ WD � ˛
2XT .S CQD´w/C ˛V

T .S CQD´w/ � U
T .S CQD´w/ (54)
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Use the support inequality (19) with N WD ˛2P T2 ; W WD ˛
3P1 � 0 and a Schur complement with

respect to NR to show that (54) is equivalent to

P3 � P
T
2 P

�1
1 P2 �

1

2

�
˛3XTQX � ˛2XTQV C ˛XTQU C ˛V TQV � V TQU C ˛�1U TQU

	
�
1

2

�
˛3XT NR�1X � ˛2XT NR�1V C ˛

�
XT NR�1U � V T NR�1V

	
C˛�1

�
U T NR�1U � U T NR�1V

		
C ? � 0

(55)

Note that P3 � P T2 P
�1
1 P2 � 0 implies P � 0 because of a Schur complement argument. When

U D 0, the right-hand side of (55) is polynomial in ˛ with no constant term. Thus, there exists a
sufficiently small ˛ such that (55) holds, which implies no added conservatism as long as ˛ > 0 is
considered a variable in the formulation. �

For a constant ˛, the preceding constraint is an LMI. However, the condition requires a line search
in ˛. When X D 0, the same rationale with slightly modified C? and C

C?  

2
664

I 0

�˛I 0

˛2I 0

0 I

3
775 ; CT  

2
64
0 ˛I

˛I I

I 0

0 0

3
75

also yields a necessary and sufficient condition.
The second step toward an ICQ condition for synthesis is to define a nonlinear change of

variables between the Lyapunov matrices and a multiplier. Let a congruence transformation be
Y WD diag.�; �/; � WD ƒ�T , where ƒ is assumed invertible. Apply it to the partitioned Lyapunov
variable, leading to the change of variables

Y T
�
P1 P2
P T2 P3

�
Y WD

�
OP1 OP2
OP T2
OP3

�
� 0 (56a)

OP1 WD �
TP1�; OP2 WD �

TP2�; OP T2 WD �
TP T2 �

OP3 WD �
TP3� (56b)

The original Lyapunov matrices can be reconstructed by the inverse congruence transformation�
P1 P2
P T2 P3

�
D Y �T

�
OP1 OP2
OP T2
OP3

�
Y �1 � 0 (57)

With the results of Theorem 7 and the previously defined nonlinear change of variables in hand,
an ICQ criteria suitable for synthesis can be stated.

Theorem 8
The set of solutions of the Lyapunov problem (52) with P � 0 is not empty if 9 OP1; OP3 2
Sn; OP2; � 2 Rn�n; ˛; � 2 R:

J CHCHT � 0;

�
OP1 OP2
OP T2
OP3

�
� 0; where (58a)

J WD

2
664
0 OP1 OP2 0
OP1 OP2 C OP

T
2
OP3 0

OP T2
OP3 0 0

0 0 0 0

3
775C

2
664
�TXTQX� �TXTQV � �TXTQU� �TXT .S CQD´w/

? �T V TQV � �T V TQU� �T V T .S CQD´w/

? ? �TU TQU� �TU T .S CQD´w/

? ? ? NR

3
775

NR WD RCDT
´wQD´w CD

T
´wS C S

TD´w (58b)
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H WD

2
6664

�K� �C� �M� ��Fw

.1C ˛�/K� .1C ˛�/C� .1C ˛�/M� �.1C ˛�/Fw

˛K� ˛C� ˛M� �˛Fw

0 0 0 0

3
7775 ; ˛ > 0; � > 0 (58c)

Proof
To derive (58) from (53), first introduce the constraint ˆ D �ƒ where � > 0. Apply the con-
gruence transformation Ya WD diag.�; �; �; I /, � WD ƒ�T to (53a), congruence transformation
Yd WD diag.�; �/ to (53d), and the change of variables (56). Notice that the upper-left entry of
J C H C HT � 0 in (58), that is, K� C �TKT C �TXTQX� � 0 with K nonsingular,
implies � nonsingular. This fact corroborates the assumption of an invertible � in the change of
variables (56). �

The condition from Theorem 8 benefits from some convenient properties. It depends on a single
multiplier � in products with M , C , and K matrices as well as U , V , and X matrices. Moreover,
the product occurs at the ‘right side’ of the matrices. Both properties facilitate change of variables
involving the controller data, as will become clear later in this manuscript.

Synthesis of controllers is the subject of the remainder of this paper. Design of controllers with
guaranteed L2-gain performance for clarity and its practical relevance will be given focus. Synthesis
conditions considering other ICQ criteria can be derived similarly by particularizing Q, R, S , and
appropriate Schur complements involving these matrices.

3.3. Static full vector feedback

The proposed ICQ condition offers the possibility of synthesizing controllers. Consider the vector
second-order system with disturbance and controllable inputs

M Rq.t/C C Pq.t/CKq.t/ D Fww.t/C Fuu.t/ (59a)

´.t/ D U Rq.t/C V Pq.t/CXq.t/CD´ww.t/CD´uu.t/ (59b)

in loop with the static full vector feedback (23) yielding the closed-loop system denoted H´w :

M Rq.t/C C Pq.t/CKq.t/ D Fww.t/ (60a)

´.t/ D U Rq.t/C V Pq.t/C Xq.t/CD´ww.t/ (60b)

M WD .M C FuGa/; C WD .C C FuGv/; K WD .K C FuGp/ (60c)

U WD .U �D´uGa/; V WD .V �D´uGv/; X WD .X �D´uGp/ (60d)

The same issues regarding the nonsingularity of the multiplier in the stabilizability case have also to
be considered here. Therefore, the next theorem states the existence of a static controller in which
the acceleration feedback is absent (Ga D 0). This controller structure corresponds to a full state
feedback in the first-order state-space sense.

Theorem 9
There exists a controller of the form (23) with Ga D 0 such that kH´wkL2 < �2 if 9 OP1; OP3 2
Sn; OP2; � 2 Rn; OGv; OGp 2 Rnu�n; ˛; � 2 R:

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
DOI: 10.1002/rnc



F. D. ADEGAS AND J. STOUSTRUP

2
66666664

�


K� C Fu OGp C �

TKT C OGTp F
T
u

�
OP1 C �



C� C Fu OGv

�
C .1C ˛�/



K� C Fu OGp

�T
? OP2 C .1C ˛�/



C� C Fu OGv

�
C .?/

? ?

? ?

? ?

OP2 C �M� C ˛


K� C Fu OGp

�T
��Fw �TXT � OKTpD

T
´u

OP3 C .1C ˛�/M� C ˛


C� C Fu OGv

�T
�.1C ˛�/Fw �T V T � OKTv D

T
´u

˛.M� C �TM T / �˛Fw �TU T

? ��2I DT
´w

? ? �I

3
77777775
� 0 (61a)

˛ > 0; � > 0;

�
OP1 OP2
OP T2
OP3

�
� 0 (61b)

Proof
In order to obtain the preceding inequalities from (58), first particularize it withQ D I , R D ��2I
and apply a Schur complement with respect to Q. A direct application of the resulting inequalities
to the closed-loop system (24) together with a change of variables of the form (25) involving the
multiplier � and the controller data Gv; Gp yields (61). Nonsingularity of � is implied by the
entry MƒCƒTM T � 0 with M nonsingular. Once a solution to the preceding problem is found,
invertibility of � assures the reconstruction of the controller gains from the auxiliary ones according
to Gv D OGv��1 and Gp D OGp��1. �

The acceleration feedback was removed from the feedback law for theoretical reasons: ensure a
nonsingular � . As discussed in the stabilizability section, a nonsingular � could also be enforced
by neglecting the position feedback Gp . If all feedback gains are desired, in practice, the preceding
LMI could be augmented with the acceleration gain and solved. The multiplier � could be invertible.
In case this happens, the acceleration, velocity, and position gains can all be recovered from the
auxiliary controller gains.

Working with the closed-loop system in vector form facilitates the feedback of only the position
or velocity vector without introducing extra conservatism to the presented formulation. These con-
troller structures would correspond to partial state feedback in the first-order state-space sense, to
which convex reformulations without loss of generality are not known to exist.

3.4. Static output feedback

The acceleration, velocity, or position vectors are often partially available for feedback. In such a
case, the vector second-order system

M Rq.t/C C Pq.t/CKq.t/ D Fww.t/C Fuu.t/ (62a)

´.t/ D U Rq.t/C V Pq.t/CXq.t/CD´ww.t/CD´uu.t/ (62b)

y.t/ D R Rq.t/C S Pq.t/C Tq.t/CDyww.t/ (62c)

is augmented with a measurement vector y.t/ 2 Rny . The interest lies on the synthesis of a static
output feedback controller of the form

u.t/ D �Gyy.t/ (63)
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where Gy 2 Rnu�ny . To facilitate the derivations that follow, the measurement vector is not cor-
rupted by noise (Dyw D 0). Assume, without loss of generality, that the output matrices R, S , and
T are of full-row rank. Then, there exist nonsingular transformation matrices Wa; Wv; Wp 2 Rn�n

such that

RWa D
�
I 0

�
; SWv D

�
I 0

�
; T Wp D

�
I 0

�
(64)

For any given triple .R; S; T /, the corresponding .Wa; Wv; Wp/ are not unique in general. A
particular .Wa; Wv; Wp/ can be obtained by

Wa WD
�
RT .RRT /�1 R?

�
; Wv WD

�
ST .SST /�1 S?

�
; Wp WD

�
T T .T T T /�1 T ?

�
The feedback of a single quantity, that is, either accelerations, velocities, or positions, is addressed

here. Let the measurement vector be composed of position feedback only, that is, y.t/ D Tq.t/.
From the coordinate transformation defined as Rq WD Wp RQq, Pq WD Wp PQq, and q WD Wp Qq, the system
matrices of (62) are substituted according to

M  MWp; C  CWp; K  KWp

U  UWp; V  V Wp; X  XWp

R RWp; S  SWp; T  
�
I 0

�
The closed-loop matrices of the transformed system related to positions are then

K WD
�
K C Fu

�
Gy 0

�	
; X WD

�
X �D´u

�
Gy 0

�	
while the other closed-loop matrices are the same as the open-loop ones. A static output–feedback
gain can be obtained by imposing on the auxiliary controller gain OG and the multiplier �
the structure

OG WD
�
OGy 0

�
; � WD

�
�1 0

�3 �4

�
(65)

This kind of controller/multiplier constraint was firstly proposed in [23] in the context of first-order
state-space systems. This structure is merged in Theorem 9 by imposing the structural constraints
OGa WD OGv WD OGp WD OG and � as (65). Supposing � nonsingular and consequently the upper-left

block �1 invertible, the original controller data can be recovered by the inverse change of variables

G D
�
Gy 0

�
D
�
OGy�

�1
1 0

�
(66)

Thus, the structure imposed on the state feedback gain matrix G facilitates the output feedback law
u.t/ D Gyy.t/. The same procedure can be made when the measurement vector is y.t/ D R Rq.t/
or y.t/ D S Pq.t/.

3.5. Robust control

The inherent decoupling of the Lyapunov and system matrices occasioned by the introduction of
multipliers facilitates the usage of parameter-dependent Lyapunov functions [35]. This decoupling
property was firstly exploited under the context of robust stability of first-order state-space systems
in [22] and latter extended to performance specifications [23]. Assume that the matrices of system
(59) are uncertain but belong to a convex and bounded set. This set is such that the matrix

S WD
�
M C K Fu Fw
U V X D´u D´w

�

takes values in a domain defined as a polytopic combination of N given matrices Q1; : : : ;QN ,
that is,
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S WD

´
S.˛/ W S.˛/ WD

NX
iD1

Si˛i ;
NX̨
iD1

˛i D 1; ˛i > 0
μ

The operator Vert.S/ WD ¹S1; : : : ;SN º reduces the infinite-dimensional set S to the vertex
Si ; i D 1; : : : ; N . The LMI conditions for vector second-order systems presented here can turn
into sufficient conditions for robust analysis and synthesis by defining a parameter-dependent
Lyapunov matrix

P.˛/ WD

NX̨
iD1

Pi˛i (67)

and maintaining the multipliers as parameter independent. In this case, the LMI are infinite-
dimensional functions of the uncertain vector ˛. A finite-dimensional problem arises with
Vert.F.x; ˛/ � 0/. Consider the robust stability problem as an example. System (22) is robustly sta-
bilizable by a static feedback law of the form (23) with Ga D 0, for all S 2 S, if 9ƒ; P2;i 2 Rn�n,
P1;i ; P3;i 2 Sn; OGv; OGp 2 Rnu�n; ˛; � 2 R:

Ji CHi CHT
i � 0; Ji WD

2
64

0 P1;i P2;i

P1;i P2;i C P
T
2;i P3;i

P T2;i P3;i 0

3
75 (68a)

Hi WD

2
6664

�


KiƒC Fu;i OGp

�
�


CiƒC Fu;i OGv

�
�.Miƒ/

.1C ˛�/


KiƒC Fu;i OGp

�
.1C ˛�/



CiƒC Fu;i OGv

�
.1C ˛�/.Miƒ/

˛


KiƒC Fu;i OGp

�
˛


CiƒC Fu;i OGv

�
˛.Miƒ/

3
7775 (68b)

"
P1;i P2;i

P T2;i P3;i

#
� 0; ˛ > 0; � > 0 (68c)

for i D 1; : : : ; N .

4. NUMERICAL EXAMPLES

4.1. Three-mass system

The simplicity of a three-mass system depicted in Figure 1 allows an easy analysis and straightfor-
ward interpretation of the results. In this figure, m1, m2, and m3 are system masses and k1, k2, k3,
and k4 are stiffness coefficients, while d1, d2, d3, and d4 are damping coefficients.

The control input u.t/ acts at mass 2 and mass 3 in opposite directions. The first disturbancew1.t/
acts at mass 2 and mass 3 in opposite directions, with an amplification factor of 3, and the second
disturbance w2.t/ acts at mass 2. The controlled outputs (´1.t/, ´2.t/, ´3.t/) are the displacement
of mass 2 with an amplification factor of 3, the velocity of mass 3, and the input u.t/, respectively.

Figure 1. Three-mass mechanical system.
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The motion of this mechanical system is described by the differential equations2
4m1 0 0

0 m2 0

0 0 m3

3
5 Rq.t/C

2
4 c1 C c2 �c2 0

�c2 c2 C c3 �c3
0 �c3 c3 C c4

3
5 Pq.t/

C

2
4 k1 C k2 �k2 0

�k2 k2 C k3 �k3
0 �k3 k3 C k4

3
5 q.t/ D

2
4 0 0

3 1

�3 0

3
5w.t/C

2
4 0

1

�1

3
5u.t/

(69a)

´.t/ D

2
4 0 0 00 0 1

0 0 0

3
5 Pq.t/C

2
4 0 3 00 0 0

0 0 0

3
5 q.t/C

2
4 00
1

3
5u.t/ (69b)

For this system, m1 D 3, m2 D 1, m3 D 2, k1 D 30, k2 D 15, k3 D 15, k4 D 30, and
C D 0:004K C 0:001M . Magnitude plots of the open-loop transfer functions from disturbances
(w1; w2) to outputs (´1; ´2) are depicted in Figure 3a. The lightly damped characteristics of the
system modes are noticeable.

H1 control will be used to reject the oscillatory response of these modes in face of disturbances.
Full vector feedback gains of positions and velocities are synthesized using Theorem 9 for different
values of the scalars ˛ and �. The upper bound � of the H1-norm for various .˛; �/ is illustrated
in Figure 2. The minimum achieved upper bound �� D 7:679 occurs at .˛; �/ D .0:0060; 0:0820/

with corresponding position and velocity feedback gains

Gp D
�
0:2501 0:0774 �0:0786

�
; Gv D

�
5:2757 1:9574 �1:6351

�
Improved vibration performance is corroborated by magnitude plots and impulse responses of the
closed-loop system (Figure 3a, b).

4.2. Model-matching control of wind turbines

A different perspective to modern control of wind turbines is given here by considering the design
model in its natural form. For clarity, the turbine model contains only the two structural degrees
of freedom with the lowest frequency contents: rigid-body rotation of the rotor and fore-aft tower
bending described by the axial nacelle displacement. The simplified dynamics of a wind turbine can
be described by the nonlinear differential equations

J R D Qa

�
v � Pq1; P ; ˇ

	
.t/ �Qg.t/ (70)

M1 Rq1 CK1q1 D Ta
�
v � Pq1; P ; ˇ

	
(71)
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Figure 2. Upper bound on the H1-norm of the closed-loop three-mass system with full position and velocity
feedback, obtained by Theorem 9.
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(a) Magnitude Plot
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Figure 3. Comparison of open-loop three-mass system and closed-loop system with full position and
velocity feedback (Theorem 9).

where the aerodynamic torque Qa.t/ and thrust Ta.t/ are nonlinear functions of the relative wind
speed v.t/ � q1.t/ with v.t/ being the mean wind speed over the rotor disk, the rotor speed P .t/,
and the collective pitch angle ˇ.t/. Linearization of (70) around an equilibrium point � yields

.Jr CN
2
gJg/

R .t/ D
@Qa

@ P 

ˇ̌̌
ˇ
�

P .t/C
@Qa

@V

ˇ̌̌
ˇ
�

.v.t/ � Pq1.t//C
@Qa

@ˇ

ˇ̌̌
ˇ
�

ˇ.t/ � 	�1NgQg.t/ (72)

M1 Rq1.t/CK1q1.t/ D
@Ta

@ P 

ˇ̌̌
ˇ
�

P .t/C
@Ta

@V

ˇ̌̌
ˇ
�

.v.t/ � Pq1.t//C
@Ta

@ˇ

ˇ̌̌
ˇ
�

ˇ.t/ (73)
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where Jr and Jg are the rotational inertia of the rotor (low-speed shaft part) and the generator (high-
speed shaft part),K1 is the stiffness for axial nacelle motion q1.t/ due to fore-aft tower bending,M1

is the modal mass of the first fore-aft tower bending mode, 	 is the total electrical and mechanical
efficiency, and Ng is the gearbox ratio.

The primary control objective of pitch-controlled wind turbines operating at rated power is
to regulate power generation despite wind speed disturbances. To accomplish this, rotor speed
is controlled using the collective blade pitch angle, and generator torque is maintained constant
(Qg.t/ D 0 in (72)). Tower fore-aft oscillations are induced by the wind turbulence hitting the tur-
bine as well as changes in the thrust force due to pitch angle variations. The collective blade pitch
angle can be controlled to suppress these oscillations without degrading rotor speed regulation. The
vector second-order system

�
Jr CN

2
gJg 0

0 M1

��
R .t/
Rq1.t/

�
C

2
664
@Qa

@ P 

ˇ̌̌
ˇ
�

�
@Qa

@V

ˇ̌̌
ˇ
�

@Ta

@ P 

ˇ̌̌
ˇ
�

�
@Ta

@V

ˇ̌̌
ˇ
�

3
775
�
P .t/
Pq1.t/

�
C

�
0 0

0 K1

��
 .t/

q1.t/

�

D

2
664
@Qa

@v

ˇ̌̌
ˇ
�

@Ta

@v

ˇ̌̌
ˇ
�

3
775 v.t/C

2
664
@Qa

@ˇ

ˇ̌̌
ˇ
�

@Ta

@ˇ

ˇ̌̌
ˇ
�

3
775ˇ.t/

(74)

arises from rearranging expression (72). In the preceding equation, the disturbance vector is
w.t/ WD v.t/, and control input is u.t/ WD ˇ.t/. The open-loop system (74) has a singular stiffness
matrix because of the rigid-body mode of the rotor, which at first may seem inadequate for a direct
application of the conditions presented in this work. However, the closed-loop stiffness matrix is
nonsingular because the position of the rotor is part of the feedback law. Feedback of rotor position
is analogous to the inclusion of integral action on rotor speed regulation, the usual scheme in wind
turbine control.

Controller design follows an H1 model-matching criteria, which has an elegant structure when
considered in vector second-order form. The performance of the system in a closed loop should
approximate a given reference model

Mr Rqr.t/C Cr Pqr.t/CKrqr.t/ D Fwrw.t/ (75a)

´r.t/ D Ur Rqr.t/C Vr Pqr.t/CXrqr.t/ (75b)

in an H1-norm sense. The matrices of the reference model are chosen to enforce a desired second-
order closed-loop sensitivity function from wind speed disturbance v.t/ to rotor speed P .t/. The
augmented system for synthesis is

�
M 0

�M.1,:/ Mr

�0@ R Rq1
R r

1
A� C 0

�C.1,:/ Cr

�24 P Pq1
P r

3
5� K 0

�K.1,:/ Kr

�24  

q1
 r

3
5

D

�
Fw
0

�
w.t/C

�
Fu
Fu (1,:)

�
u.t/

(76a)

´.t/ D

�
�1 0 1
0 0 0

�24 P Pq1
P r

3
5C � 0

D´u

�
u.t/ (76b)

where P r.t/ is the reference model velocity and .	/.1,:/ stands for the first line of matrix .	/. The
reference filter in (76a) is forced indirectly by the the open-loop system (74), which is conve-
nient for implementation purposes. In this example, Mr D 6:0776 	 106, Cr D 6:1080 	 106, and
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Kr D 3:9346 	10
6 characterize a reference system with damped natural frequency !d D 0:628 rad/s

and damping 
 D 0:625.
Full vector feedback gains of positions and velocities are synthesized using Theorem 9 with

˛ D 0:9 and � D 1, yielding a guaranteed upper bound � D 1:462. The true upper bound of the
augmented system in a closed loop computed using Theorem 7 is � D 0:1058. Controller gains are

Gv D
�
�0:3734 �0:1702 0:0028

�
; Gp D

�
�0:1951 �0:1029 �0:0096

�
Bode plots of the closed-loop, open-loop, and reference systems are depicted in Figure 4a.

A good agreement between the closed-loop and reference models is noticeable. The chosen ref-
erence model indirectly imposes some damping of the tower fore-aft displacement by trying to
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(a) Bode Plots
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Figure 4. H1 model-matching control of a simplified wind turbine model.
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reduce the difference in magnitude between open-loop and reference models at the tower natural
frequency. Step responses of the controlled and reference systems are compared in Figure 4b,
showing good correspondence.

5. CONCLUSIONS

The analysis and synthesis conditions of vector second-order systems obtained during our studies
have the potential to increase the practice of working with systems directly in vector second-order
form. LMI conditions for verifying asymptotic stability and quadratic performance were shown to
be necessary and sufficient, irrespective of the type of dynamic loading. Because of their linear
dependence in the coefficient matrices and the inclusion of multipliers on the formulation, the con-
ditions are appropriate to robust analysis of systems with structured uncertainty. Synthesis of vector
second-order controllers with guaranteed stability and quadratic performance is also formulated as
LMI problems. Unfortunately, the synthesis conditions are only sufficient to the existence of full
state feedbacks. This is a major drawback when compared with synthesis in state-space first-order
form, to which necessary and sufficient LMI conditions are available in the literature. However,
when structural constraints are imposed on the controller gains, the design in vector second-order
form may render less conservative results.

ACKNOWLEDGEMENTS

This work is supported by the CASED Project funded by grant DSF-09-063197 of the Danish Council for
Strategic Research.

REFERENCES

1. Skelton RE. Adaptive orthogonal filters for compensation of model errors in matrix second-order systems. Journal
of Guidance Control and Dynamics 1979:214–221.

2. Diwekar AM, Yedavalli RK. Stability of matrix second-order systems: new conditions and perspectives. IEEE
Transactions on Automatic Control 1999; 44(9):1773–1777.

3. Inman DJ. Active modal control for smart structures. Philosophical Transactions of the Royal Society of London A
2001; 359(1778):205–219. DOI: 10.1098/rsta.2000.

4. Shieh L, Mehio M, Dib H. Stability of the second-order matrix polynomial. IEEE Transactions on Automatic Control
1987; 32(3):231–233.

5. Bernstein D, Bhat SP. Lyapunov stability, semistability, and asymptotic stability of matrix second-order systems.
Transactions of the ASME 1995; 117:145–153.

6. Joshi SM. Robustness properties of collocated controllers for flexible spacecraft. Journal of Guidance Control 1986;
9(1):85–91.

7. Fujisaki Y, Ikeda M, Miki K. Robust stabilization of large space structures via displacement feedback. IEEE
Transactions on Automatic Control 2001; 46(12):1993–1996.

8. Gardiner JD. Stabilizing control for second order models and positive real systems. Journal of Guidance Control and
Dynamics 1992; 15:280–282.

9. Morris KA, Juang JN. Dissipative controller designs for second-order dynamic systems. IEEE Transactions on
Automatic Control 1994; 39:1056–1063.

10. Diwekar A, Yedavalli R. Robust controller design for matrix second-order systems with structured uncertainty. IEEE
Transactions on Automatic Control 1999; 41(2):401–405.

11. Datta BN, Elhay S, Ram YM. Orthogonality and partial pole assignment for the symmetric definite quadratic pencil.
Linear Algebra and its Applications 1997; 257(0):29–48. (Available from: http://www.sciencedirect.com/science/
article/pii/S0024379596000365).

12. Datta B, Sarkissian D. Multi-input partial eigenvalue assignment for the symmetric quadratic pencil. Proceedings of
the American Control Conference, 1999, Vol. 4, San Diego, California, USA, 1999; 2244–2247.

13. Datta B, Lin WW, Wang JN. Robust partial pole assignment for vibrating systems with aerodynamic effects. IEEE
Transactions on Automatic Control 2006; 51(12):1979–1984.

14. Datta B, Elhay S, Ram Y, Sarkissian D. Partial eigenstructure assignment for the quadratic pencil. Journal
of Sound and Vibration 2000; 230(1):101–110. (Available from: http://www.sciencedirect.com/science/article/pii/
S0022460X99926202).

15. Nichols NK, Kautsky J. Robust eigenstructure assignment in quadratic matrix polynomials. SIAM J. Matrix Anal.
Applicat 2001; 23:77–102.

16. Kwak S, Yedavalli R. Observer designs in matrix second order system framework: measurement conditions and
perspectives. Proceedings of the American Control Conference, Chicago, Illinois, 2000; 2316–2320.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
DOI: 10.1002/rnc

http://www.sciencedirect.com/science/article/pii/S0024379596000365
http://www.sciencedirect.com/science/article/pii/S0024379596000365
http://www.sciencedirect.com/science/article/pii/S0022460X99926202
http://www.sciencedirect.com/science/article/pii/S0022460X99926202


F. D. ADEGAS AND J. STOUSTRUP

17. Kwak S, Yedavalli R. New approaches for observer design in linear matrix second order systems. Proceedings of the
American Control Conference, Chicago, Illinois, 2000; 2316–2320.

18. Duan G, Wu Y. Generalized Luenberger observer design for matrix second-order linear systems. Proceedings of the
IEEE International Conference on Control Applications, 2004, Vol. 2, Taipei, Taiwan, Sept. 2004; 1739–1743.

19. Oliveira MC, Skelton RE. Stability tests for constrained linear systems. In Perspectives in Robust Control—Lecture
Notes in Control and Information Sciences, Vol. 268, Springer: London, UK, 2001; 241–257.

20. Boyd S, Ghaoui L, Feron E, Balakrishnan V. Linear Matrix Inequalities in System and Control Theory. SIAM:
London, 1994.

21. Ebihara Y, Hagiwara T, Peaucelle D, Arzelier D. Robust performance analysis of linear time-invariant uncertain
systems by taking higher-order time-derivatives of the state. 44th IEEE Conference on Decision and Control, 2005
and 2005 European Control Conference. CDC-ECC ’05, Seville, Spain, Dec. 2005; 5030–5035.

22. Oliveira MD, Bernussou J, Geromel J. A new discrete-time robust stability condition. Systems & Control Letters
1999; 37:261–265.

23. Oliveira MD, Geromel J, Bernussou J. ExtendedH2 andH1 norm characterizations and controller parametrizations
for discrete-time systems. International Journal of Control 2002; 75:9:666–679.

24. Pipeleers G, Demeulenaere B, Swevers J, Vandenbergh L. Extended LMI characterizations for stability and
performance of linear systems. Systems & Control Letters 2009; 58:510–518.

25. Finsler P. Uber das vorkommen definiter und semidefiniter formen in scharen quadratischer formem. Commentarii
Mathematici Helvetici 1937; 9:188–192.

26. Skelton R, Iwasaki T, Grigoriadis K. An Unified Algebraic Approach to Linear Control Design. Taylor and Francis:
London, UK, 1999.

27. Stoustrup J, Iwasaki T, Skelton R. Mixed H2 / H1 state feedback control with an improved covariance bound.
Proceedings of the IFAC World Congress, Vol. 5, Sydney, Australia, 1993; 235–238. (Available from: http://www.
control.aau.dk/~jakob/selPubl/papers1993/ifac_wc_1993.pdf), Invited paper.

28. Xie W. An equivalent LMI representation of bounded real lemma for continuous-time systems. Journal of
Inequalities and Applications 2008; 2008(1):8. DOI: 10.1155/2008/672905.

29. Bernussou J, Geromel J, Peres PLD. A linear programming oriented procedure for quadratic stabilization of uncertain
systems. Systems and Control Letters 1989; 13:65–72.

30. Apkarian P, Tuan H, Bernussou J. Continuous-time analysis, eigenstructure assignment, and H2 synthesis with
enhanced linear matrix inequalities (LMI) characterizations. IEEE Transactions on Automatic Control 2001;
46(12):1941–1946.

31. Chilali M, Gahinet P. H1 design with pole placement constrains: an LMI approach. IEEE Transactions on
Automatic Control 1996; 41(3):358–367.

32. Peaucelle D, Arzelier D, Bachelier O, Bernussou J. A new robust D-stability condition for real convex polytopic
uncertainty. Systems & Control Letters 2000; 40:21–30.

33. Megretski A, Rantzer A. System analysis via integral quadratic constraints. IEEE Transactions on Automatic Control
1997; 42(6):819–830.

34. Fu M, Dasgupta S, Sohc YC. Integral quadratic constraint approach vs. multiplier approach. Automatica 2005;
41(2):281–287.

35. Feron E, Apkarian P, Gahinet P. Analysis and synthesis of robust control systems via parameter-dependent Lyapunov
functions. IEEE Transaction on Automatic Control 1996; 41(7):1041–1046.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
DOI: 10.1002/rnc

http://www.control.aau.dk/~jakob/selPubl/papers1993/ifac_{w}c_{1}993.pdf
http://www.control.aau.dk/~jakob/selPubl/papers1993/ifac_{w}c_{1}993.pdf

	Linear matrix inequalities for analysis and control of linear vector second-order systems
	SUMMARY
	Introduction
	Asymptotic Stability
	Elimination of multipliers
	Stabilization by static state feedback
	D-Stability

	Quadratic Performance
	L2 to L2 stability
	Integral quadratic constraints
	Static full vector feedback
	Static output feedback
	Robust control

	Numerical Examples
	Three-mass system
	Model-matching control of wind turbines

	Conclusions
	REFERENCES


