
Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

2014, Vol. 90(3) 249–264

� 2013 The Society for Modeling and

Simulation International

DOI: 10.1177/0037549713515542

sim.sagepub.com

Modular simulation
of reefer container dynamics

Kresten K Sørensen, Jens D Nielsen and Jakob Stoustrup

Abstract
The amount of food transported long distances in reefer containers is constantly increasing and so is the cost per mile
because of rising fuel prices. One way to reduce the cost is to minimize the energy consumed by reefer containers
through a better controller but in order to achieve this a fast and flexible simulation model is needed for controller
development. The simulation model may also be used for developing fault diagnosis methods for the reefer container
and thereby further lowering costs by reducing the amount of functioning spare parts that is replaced and by providing
early warning for faults enabling preventive maintenance. In this paper the feasibility of using different simulation methods
is assessed with the goal of identifying a fast but accurate method that works well in a multi-rate environment. A modu-
lar multi-rate simulation environment for a dynamical system consisting of components with different dynamical speeds
is presented with an improvement of previous results. The simulation speed is improved by 350% with no reduction in
the accuracy of the solution, by substituting the MATLAB ode15s solver with an explicit first-order solver with a step-size
calculation algorithm that ensures numerical stability and that the error is bounded using a minimum of calculations. The
reefer container model is simulated using both ode15s and the proposed method both in multi-rate and monolithic
configurations. The results are analyzed and compared with respect to speed and accuracy.

Keywords
Simulation, control, Matlab, modular modeling, modular simulation, multi-rate simulation

1. Introduction

Reefer containers are used extensively to transport food all

over the world and by mid-2008 there was a worldwide

fleet of 11.4 million twenty foot equivalent (TEU) pre-

dicted to grow by 69% to 19.3 million TEU by 2013,

according to the Reefer Shipping Market Annual Report.1

The container cargo market is highly competitive and

therefore it is interesting to examine any possible means

of lowering the total cost of ownership (TCO), which cov-

ers the cost of initial procurement and operation during its

lifetime, of a reefer container. The average lifetime expec-

tancy for a reefer is 12 years and the cost of procurement

is small compared to the cost of inspection, repairs and

energy over the lifetime of the container. This of course

means that there is a potential for lowering the TCO

through a reduction of these three factors; that will be clar-

ified in the following. Before every trip a reefer must com-

plete a pre-trip inspection (PTI) test which is a self test

where the container tests that its cooling capacity is as

specified and that there are no other obvious problems.

This requires that the container is taken to a special PTI

area on the harbor where it is plugged in and the PTI test

is started by an operator, for a fee that covers handling and

power. The PTI test is executed in this way because it is a

programmed sequence that requires the container to be

empty so that it may change the temperature set point and

cooling capacity without risk of damaging the cargo. But

if this self check could be done by examining the relation-

ship between control signals and sensor inputs without

changing set point or cooling capacity it would be possible

to avoid the PTI test because the container controller

would be aware of the capabilities of the container at all

times. This self check may be extended further from cov-

ering just the available cooling capacity and elementary

faults to accurate detection and identification of the major-

ity of likely failures on the container, thereby lowering the

Section for Automation and Control, Department of Electronic Systems,

Aalborg University, Denmark

Corresponding author:

Kresten K Sørensen, Section for Automation and Control, Department

of Electronic Systems, Aalborg University, Fredrik Bajers Vej 7C, 9220

Aalborg, Denmark.

Email: kresten@es.aau.dk

http://sim.sagepub.com/


time and effort needed to carry out maintenance during the

trip. It can also enable early warning on errors that increase

over time, which opens up the possibility to carry out pre-

ventive maintenance between trips where parts that are

close to failing can be replaced, and that is always prefer-

able over repairs that have to be carried out at sea while the

container is in use. These measures would increase reliabil-

ity due to better and in-time maintenance of the container

and thereby also decrease the chance of losing cargo due to

system failure. But in order to accurately identify faults it is

necessary to use model- or observer-based fault detection

and isolation (FDI) techniques and for that an accurate

model that can be embedded in the container controller is

needed. In general, a fairly high-fidelity model can be

required in order to detect certain types of fault. Some faults

might require a good static model fit, whereas other faults

might require the model to fit well dynamically.2 In this

paper, we will mainly focus on the latter class of faults.

The average power consumption of a reefer is 3.6 kW

per TEU3 and assuming an idle time of 50% the total

power consumption of the world’s reefer container fleet is

above 20 GW. In recent years the shipping business has

been looking into ways to cut costs, and the energy con-

sumed by reefers, that earlier was deemed insignificant

compared to the main engine energy consumption, has

now come into focus. There are two ways to lower energy

consumption: by changing the mechanical design of the

reefer and the cooling system or by optimizing the way it

is controlled. This paper uses the Star Cool container4 as

an example but the mechanical design of this reefer is

already nearly optimal, leaving control optimization as the

best option for efficiency improvements. The refrigeration

unit is controlled by a microprocessor with a control algo-

rithm already optimized for energy efficiency, on the short

term. On the long term, however, the potential for energy

savings is large if daily variations in ambient temperature

are exploited by cooling more when the ambient tempera-

ture is low and less when it is high.5,6 This method ‘stores’

some cooling in the cargo during low ambient temperature

periods when refrigeration system efficiency is higher and

takes it back when the ambient temperature is high and

refrigeration system efficiency is lower. The cargo in a

reefer container is the single largest thermal capacitance of

the system with a time constant that is several orders of

magnitude higher than the smallest time constant of the

refrigeration system dynamics, which yields a very stiff sys-

tem. Controller development is an iterative process where a

design is tested, evaluated, modified and tested over again

and again until a satisfactory result is achieved. On a system

like this the time taken can be very long because a test must

last several days, due to daily temperature variations and

since the system in general has large time constants. If many

iterations are needed the time required will be too much and

too expensive. Therefore a simulation model is needed to

speed up the iterative cycle, and in order to optimize the

controller with respect to energy consumption the model

must capture both the dynamics of the cargo and the refrig-

eration plant. The control optimization problem for the

reefer container is to keep the cargo within certain tempera-

ture limits while using as little energy as possible. Because

the efficiency of the refrigeration system is inversely propor-

tional to the ambient temperature and the ambient tempera-

ture cycles during a day it is beneficial to apply the cooling

when the ambient temperature is at its lowest and use the

cargo mass as a ‘storage’ for cooling. This will however

require that the simulator and the model are stable, fast,

have adequate accuracy and are computationally light-

weight enough to run on an embedded system.

There exist many different modeling and simulation

tools where models composed of different components

may be simulated numerically and in the following a few

general-purpose simulators and energy system simulators

are described.

Within the field of energy system simulation the modu-

lar approach is well known and has been used in for exam-

ple the simulation environment TRNSYS7 for more than

35 years to simulate the behavior of a composition of sys-

tem components over time, using a numerical solver.

TRNSYS provides a library of common energy system

components that may be combined using a custom system

description language.

Another approach is used by DYMOLA
8 that implements

the MODELICA
9 language which is an equation-based

object-oriented modeling language. In MODELICA symbolic

equations that define the dynamical behavior of a compo-

nent may be entered in a non-causal way, leaving the task

of ordering and reducing the final set of equations to the

simulation engine before a simulation can be run.

WINDALI is a tool developed at the Department of

Energy Engineering at the Technical University of

Denmark that is aimed specifically at simulation of refrig-

eration systems.10 It uses a semi-explicit differential alge-

braic equation (DAE) solver that can handle discontinuities

and models can be programmed in any language that can

be compiled to a DLL that can be used by the simulation

environment. Because the model runs as native machine

code simulation WINDALI is very fast.

MATLAB is a high-level language for numerical comput-

ing that provides state-of-the-art toolboxes for a wide range

of engineering disciplines, including modeling and controller

design. A range of solvers are available that enable simula-

tion of ordinary differential equations (ODEs), partial differ-

ential equations (PDEs) and DAEs. Most active research in

control engineering uses MATLAB as a tool because it is easy

to use and has a flexible external interface.

SIMULINK is a tool from the MATLAB suite that is used

extensively by researchers and engineers to simulate com-

plex systems built from blocks in a GUI. The user may

define blocks consisting of many smaller elements and

thereby a highly complex model can be arranged in a man-

ageable way. SIMULINK has a large library of pre-defined

blocks that covers a wide area of applications, and a

250 Simulation: Transactions of the Society for Modeling and Simulation International 90(3)

http://sim.sagepub.com/


selection of explicit and implicit solvers that may be set to

both variable and fixed step-size. The model connections

are examined prior to simulation and existing algebraic

loops are attempted to be solved by a built-in algebraic

loop solver.11

Fault detection and estimation has been shown to work

well for refrigeration systems and in Yang et al.12 a com-

plete FDI approach consisting of an extended Kalman fil-

ter and a bank of unknown input observers are described.

The combination is shown to have detection and identifi-

cation capability for sensor and parametric faults on a

refrigeration system but it depends on an accurate model

for design of the extended Kalman filter and the unknown

input observers.

In Kübler and Schiehlen13 is a modular multi-rate

approach where the components may be simulated by dif-

ferent solvers. The component interconnections are man-

aged by a time-discrete linker and scheduler that connects

the inputs and outputs of the components and exchanges

data at discrete time instants. The advantage of this

approach is that it is possible to combine simulators from

multiple domains in science and engineering that were not

originally designed to work together. Coupling systems

with different dynamical behavior with discrete-time lin-

ker algebraic loops may cause instability and in Kübler

and Schiehlen13 this problem is described and a method

that guarantees stability when algebraic loops are present

is proposed. The modular approach has several advan-

tages: it is faster to build a new simulation model from a

library of components than starting from scratch and it is

also easier to maintain because the code is naturally

divided and therefore less likely to be entangled across

component models. Simulating a stiff system as a mono-

lithic block has some drawbacks especially under chang-

ing conditions on the fast states,14 because the stiff solver

must evaluate the entire system in steps small enough to

achieve satisfactory accuracy on the fast states. This is

however more than adequate for the slow states and there-

fore many of the calculations done on them is essentially a

waste of computer power. A way to lessen this problem is

to convert the ODEs of the fastest states into algebraic

equations,14,15 but this can not be used on all states in the

current application because too much precision is lost.

Another way of reducing the computational load is by

using a multi-rate simulator that divides the model into

components by their dynamical speeds and thereby yields

a significant increase in speed, as shown by Howe16 and

Pearce et al.,17 because slow components are no longer

simulated at an unnecessary small step size. In Sørensen

and Stoustrup18 a modular multi-rate simulation environ-

ment for simulations of a refrigeration container was

described and the theoretical increase in speed was

calculated.

For the reefer container application there is a need to

simulate the model in small single steps in order to incor-

porate an external controller, and this is possible with the

modular multi-rate approach. An attempt is made to quan-

tify the impact of the multi-rate method on speed and

accuracy through multiple simulation experiments on the

refrigeration system using different simulator configura-

tions on the refrigeration container model and comparing

the results. Furthermore, an attempt is made to increase

the simulation speed by using a simple solver tailored for

the problem at hand instead of MATLAB’s built-in solvers

in order to enable the model to be used as an observer on

an embedded system. The simple solver should be fast,

reliable and easy to implement but it is not required to be

as accurate or versatile as the MATLAB solvers.

This paper presents a simulation environment for

MATLAB that provides modular multi-rate simulation of a

system consisting of fast and slow dynamic components.

An early version of the environment was described by

Sørensen and Stoustrup18 and some preliminary results

were reported but the implications of multi-rate simulation

of this system were not treated in detail. In the present

effort the calculations of the speed increase is backed up

by experiments and the implications of replacing

MATLAB’s numerical solvers with an explicit first-order

solver with a simple step-size algorithm is investigated.

This leads to an improvement to the simulator that

increase the simulation speed by 350% while maintaining

adequate accuracy and the ability to interact with the

model during simulation. The numerical stability of the

new solver is investigated and it is shown that it is possible

to determine a solver setup for each of the modular com-

ponents a priori that guarantees stability and a bounded

local error. Simulations of the refrigeration container using

different combinations of single- and multi-rate modular

and monolithic simulator configurations are compared in

order to identify the source and nature of decreased accu-

racy that arises due to the multi-rate zero-order-hold

(ZOH) delay between component models. Finally, the simu-

lator and model stability for long-term simulations are

demonstrated by simulating the model in open-loop with

control signals recorded on a real system as inputs. The aim

of this work is to find a simple and robust algorithm that is

capable of simulating the refrigeration container model

using a minimal CPU time but with adequate accuracy for

development of model-based controllers and for use as a

full system observer. Currently the MATLAB ode15s is used

to simulate the model and therefore finding a simpler

replacement, tailored for this task, is attempted.

2. Methods

This section investigates the benefits and disadvantages of

multi-rate and monolithic simulation methods applied to a

modular model of the Star Cool refrigeration container,

with special emphasis on finding a simple solver that is

suitable for implementation on an embedded platform.

The simple solver should be able to simulate the model

with a precision that is adequate for FDI and for the model

Sørensen et al. 251

http://sim.sagepub.com/


to be used as an observer for a model-based controller.

Furthermore it must be able to simulate the model in short

steps such that it can produce an output at regular intervals

that may be used by the FDI and control algorithms on the

container controller.

2.1. Refrigeration system model

The model of the Star Cool refrigeration container is used

for development, testing and validation of control and fault

detection algorithms and therefore the model reflects the

system properties that are important for these tasks. The

salient properties are the dynamics of the refrigeration sys-

tem used for control of the evaporator and the dynamics of

the container walls and cargo that are relevant for control

of the compressor speed. The equations are based on first

principles where infinitesimal terms that have little impact

on the accuracy or stability of the solution have been

removed. This results in a set of mainly first-order equa-

tions that due to the highly nonlinear relationship between

evaporation temperature and pressure of the refrigerant

have varying time constants. One good thing about a

refrigeration system is that while operating within the nor-

mal limits for the system it settles at a steady state when

the control inputs and ambient conditions are steady.

Therefore the accuracy of the model is adequate if the

equations can capture the varying rates of exponential

decay towards an input-dependent steady state. The sys-

tem has the property that the slow states are isolated in the

component that models the container walls and the cargo,

and the fast states are present in five different refrigeration

system component models. The refrigeration system is

divided in components because it is easier to maintain

code that is divided in modules with clean interfaces but it

also gives the advantage that each component model can

easily be substituted by another component if needed. This

division also enables the use of custom solvers for each

component, depending on what is better suited to the com-

ponent. A schematic of the refrigeration system is shown

in Figure 1 and the details of the system model have been

described in Sørensen and Stoustrup.18

The model has 80 states of which 30 are discrete and

50 are continuous, divided into three discrete and six con-

tinuous component models. The model framework is

described in the Section 2.2, and the simulation methods

are described in Section 2.3.

2.2. Modeling

The model of the refrigeration system is divided into com-

ponents that each represent a physical component of the

system, in other words, a condenser or an evaporator. Each

component model is described by two files: an m file that

holds the input/output equations of the model and an XML

file that describes the properties of the inputs and outputs

of the m file. The simulation model is the overall model

for the refrigeration plant and its properties are described

by an XML file that holds a list of included component

models and the connections between them. Therefore the

structure of the simulation model is defined by the simula-

tion model definition file, and from this the model loader

can create a simulation object that is used by the simulator.

2.2.1. Component model syntax. Modeling of component

models is basically the same as for normal ODE model

functions that may be solved by MATLAB’s built-in ode
solvers, but additional info is needed by the model loader

in order to do type-checking when connecting the inputs

and outputs of the component models. Each component

model is described by an m file containing the input/output

equations, an XML file describing the input/output proper-

ties of the model, its execution mode and the name of the

corresponding m file. The syntax for writing the compo-

nent model XML file is shown in Listing 1.

Figure 1. Refrigeration system for the reefer container.

252 Simulation: Transactions of the Society for Modeling and Simulation International 90(3)

http://sim.sagepub.com/


The <inputs> section contains a list of the inputs

to the component model, and it is important that the inputs

are listed in the order in which they occur in the input vec-

tor of the model function. Each input has a name, a type

used for type-checking when inputs are connected and a

description. There must be the same number of inputs in

the input list as the length of the input vector of the corre-

sponding model function. The <states> section is

similar to the input section except that it describes the

states or outputs of the function and that a default value

must be declared. The default value is used as the initial

value in simulations when the simulation tool is not given

an initial state vector to start from. Signals may be grouped

together in connectors that allow the user to connect a set

of signals from one component model to a similar set on

another component model in one operation.

Because this environment is used for refrigeration sys-

tems, it has a built-in connector class for refrigeration pipe

interfaces but obviously, for other applications, other con-

nections will be relevant; see ‘Simulation model syntax’ in

Section 2.2.2. On the refrigeration pipe interface three vari-

ables exist: a mass flow _m, a pressure p and an enthalpy h.

Listing 1: Component model syntax.

Sørensen et al. 253

http://sim.sagepub.com/


The model loader will return an error if each refrigeration

pipe interface does not contain exactly one of each of the

aforementioned types. The individual variables may be

either an input or a state but the model loader will check

that each of the inputs can be connected to a state of the

correct type when two refrigeration pipe interfaces are con-

nected. This saves the user the work of having to connect

the variables manually, but when building the component

models attention must be paid to where the different states

that are shared between models are located.

2.2.2. Simulation model syntax. The syntax for the simula-

tion model XML file is shown in Listing 2.

The simulation model is composed of a set of component

models and their connections described by the simulation

model XML file, containing a list of the included component

models and a description of how the components are con-

nected. The <components> section lists the component

models used in the simulation model and using a component

model more than once is allowed if they are given unique

names. In the <connections> section all the connec-

tions in the simulation model are listed. A connector connec-

tion is established as in the <connector> sections by

giving the name of the two component models and the

connector on each of the components. Inputs and outputs

that are not associated with connector interfaces, such as

control inputs to actuators, are connected in a

<connection> section by listing the two components

one by one. In each of the <component> sections it

must be stated whether the signal is an input or an output,

and what the name of the signal is. The model loader pro-

vides type-checking on connections between components

and gives a precise description, with the names of the impli-

cated components and signals, in case of an eventual error in

the set of connections between components.

The model may be loaded into MATLAB with a model

loader function that loads each of the components and

creates a structure containing all the information necessary

for simulation. During simulation the states of the compo-

nent models are kept in a single vector, denoted X, and

therefore two matrices that map between X and component

model I/O are generated for each component model. The

matrix Zk maps from X to the component model state-

vector xk such that

X=Zk · xk ð1Þ

xk =ZT
k ·X ð2Þ

Listing 2: Simulation model syntax.

254 Simulation: Transactions of the Society for Modeling and Simulation International 90(3)

http://sim.sagepub.com/


where the index k denotes the component model number.

Component model inputs uk are mapped from X by the

connection matrix CMk such that

uk =CMk ·X ð3Þ

Because CMk maps from state variables that reflect a

physical value to inputs that take a physical value, it is a

zero-one matrix and must have exactly one ‘1’ in each

row. When the model loader has created the mapping

matrices they are used to check the connection integrity of

the system model such that all inputs are connected to

exactly one state.

2.3. Simulation
2.3.1. Multi-rate simulation. Multi-rate simulation of the

system model is done in discrete time steps defined in the

time vector given in the simulation function call. In each

of the time steps the component models are simulated sep-

arately, according to the method defined in the component

model XML file, and the results are then combined into

the X vector containing the states for all of the component

models. Component models that are purely algebraic are

evaluated in one operation like a normal MATLAB function,

and dynamical models are solved by one of MATLAB’s

built-in ode functions. Figure 2 shows a possible structure

for a simulation model consisting of four component

models.

The discretization of the signals between the component

models is equivalent to inserting a ZOH between all mod-

els as shown in Figure 2. The inputs to the individual com-

ponent models are calculated by applying (2) and (3), and

given as arguments to the appropriate simulation function

such that

_xk(n)= fk ½t(n� 1) t(n)�,ð
Zk ·X(n� 1), CMk ·X(n� 1)Þ ð4Þ

where fk is the simulation function for the referenced com-

ponent model and ½t(n� 1) t(n)� is the time interval in

which to simulate. The results from the each of the com-

ponent simulations are then combined into the system state

vector X by

X(n)= PK
k = 1

Zk · xk(n) ð5Þ

where K is the total number of components in the

model. The simulation environment may then proceed

and simulate the next time step with the same procedure

as above.

2.3.2. Monolithic simulation. In a monolithic simulation the

entire collection of component models is lumped together

by a wrapper function and treated as a single model that

may be simulated by ode15s or another solver that accepts

functions with a similar interface. This means that for

every iteration of the solver all component functions are

evaluated in order to find a derivative for the entire collec-

tion of component models.

In Sørensen and Stoustrup18 the multi-rate simulation

speed of the reefer container system was compared to the

calculated speed for a monolithic simulation of the same

system, showing that the modular approach was more than

three times faster than the monolithic one. There was no

comparison to an actual monolithic simulation of the sys-

tem but by introducing a monolithic wrapper this is now

possible.

The monolithic wrapper encapsulates the entire model

into one function as shown in the example in Figure 3.

The function simulate _model_monolithic() is

used to simulate the model by letting ode15s19 simulate

the wrapper for the desired period. Therefore the exact

same component functions can be simulated as a mono-

lithic block without the need to combine them into one

function or change them in any way, giving a lower prob-

ability for user errors. Further, ode15s is, as a default, set

to use at least 10 iterative steps for each time period of the

supplied time vector which in this case is 1000 steps of 1

s, similar to the one used for the modular simulation.

In order to achieve a fair comparison to the modular

simulation, the monolithic solver’s maximum step size is

increased from the default 0.1 s to 1 s such that it can use

multiple steps if the dynamics require it, but also run faster

if possible. The wrapper will forward results from the

ODE and DAE components directly because their output

is the state vector gradient, but for the algebraic functions

the output is simply the new state at the next sample point

and therefore the gradient must be calculated and for-

warded to the solver. This is simply the difference betweenFigure 2. Example of a simulation model structure.

Sørensen et al. 255

http://sim.sagepub.com/


the new and the old state because the algebraic functions

of this model are designed for a sample time of 1 s.

2.3.3. Implications of using the ode15s solver. When calling

the ode15s solver there is a considerable startup overhead

and because the solver is called for each of the continuous

components in every discrete time step the total time lost

to this is large. According to Shampine and Reichelt19 the

ode15s solver relies on a Jacobian that is generated auto-

matically when it is not supplied by the user, as is the case

in this study. Because the calculation of the Jacobian

requires a lot of computations the solver only generates

the Jacobian when simulation is started, when the order

and step size are changed or if the solution is converging

too slowly. Another drawback of using the solver in short

steps is that it uses a very small step size in the beginning

of the simulation period and then gradually increases it.

Because the simulation period is so short the solver never

reaches larger step sizes and therefore it never reaches the

efficiency expected of a variable time step solver, leading

to a longer simulation time. In fact, if the model is simu-

lated for 1000 s as a monolithic block by ode15s in one

go, the model can be simulated at a speed that is higher

than the speed of a multi-rate simulation using ode15s and

this shows that a great deal can be gained by using the sol-

ver differently, but interaction with the model during simu-

lation is more difficult when the model is simulated in one

go by ode15s.

2.3.4. Proposed numerical method. The main goal of the

simulation algorithm is to lower the computational bur-

den in order to increase simulation speed and this means

that the model should be simulated using as few evalua-

tions of the component model functions as possible and

that the startup overhead for the simulation algorithm

should be low. The chosen method, a variable-step for-

ward Euler (VS-FE), is the simplest possible and it

requires only one evaluation of the component model

function per step but it can be unstable if the selected

step size is too large.

The stability region for the explicit Euler method con-

sists of the points in the region z given in (6) where λ is

the eigenvalue of the system and h is the step size.20 If (8)

is observed the solution converges and therefore the maxi-

mum permissible step size can be found if the eigenvalue

is known (10):

z= λ · h ð6Þ

yn+ 1 = (1+ λ · h) · yn ð7Þ

j1+ zj < 1 ð8Þ

j1+ λ · hj < 1 ð9Þ

hmax = 2

j1+ λj ð10Þ

Although the solution converges when using the maxi-

mum permissible step size it gives a very inaccurate result

because the error is dependent on the step size as shown in

(11) and in reality the used step size should be orders of

magnitude smaller than the maximum permissible step size

in order to ensure a smooth solution.

For higher-order numerical algorithms the local error is

found by comparing the results of two different-order cal-

culations and while this requires more calls to the model

function and thus increases the computational burden, it

also yields better accuracy because an accurate error esti-

mate gives a good step size. Step-size selection algorithms

normally compare the local truncation error of the solver

with a given fixed tolerance and select the step size such

that the local truncation error is smaller than or equal to

the tolerance. The method proposed here is an adaptation

of a textbook method that is described in Kreyzig21 and

Butcher.20 The local error E for the first-order explicit

Euler method is given by

E = 1

2
h2j€yj ð11Þ

where h is the step size and €y is the second-order derivative

of the state. Substituting E with the acceptable error local

error tolerance TOL and isolating h yields the step size that

limits how much the first-order gradient is allowed to

change in each step and therefore also the magnitude of

the local error

h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 · TOL

j€yj

s
ð12Þ

Figure 3. The monolithic wrapper.

256 Simulation: Transactions of the Society for Modeling and Simulation International 90(3)

http://sim.sagepub.com/


where TOL is the absolute tolerance for the second-order

derivative of the system state thus bounding the step size

with respect to how fast the first-order derivative changes,

and thereby bounding the local error.

The different types of state in the container model are

numerically very different and therefore the second-order

derivative is also numerically very different. This means

that if the step size is to be determined from the largest

second-order derivative given by a model with multiple

states the larger states will usually also have the larger

second-order derivative. The consequence of this is that

states that are small may have a relatively large second-

order derivative but it will be ignored and that can result

in numerical instability for states of small magnitude. For

this model the notion of an absolute error tolerance is

therefore impractical and in order to address this problem

the second-order derivative is normalized with respect to

the size of the states as shown in (13):

€ynorm = j€yj
jyj+ 1

ð13Þ

h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 · TOL

max(€ynorm)

s
ð14Þ

h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ·TOL · (jyj+ 1)

jyj

s
ð15Þ

Normalizing the second-order derivative has a draw-

back: if a state approaches zero the normalized second-

order derivative will approach infinity and result in very

small steps. This issue is addressed by adding one to the

state vector and therefore as a state approaches zero its

normalized second-order derivative will approach the

real second-order derivative. Due to the normalization of

the second-order derivative TOL is now a measure of

error relative to the state size for large states and it

approaches a measure of absolute error as the states

approach zero. For the solvers in the MATLAB ODE suite

the absolute and relative tolerances can be set indepen-

dently,19 but that flexibility is not needed for this appli-

cation and therefore it is left out in order to have as

simple a solver as possible.

In the remaining part of this section the proposed simu-

lation algorithm and its step-size calculation method is

described and analyzed, starting with the MATLAB code

for the resulting simulation algorithm that is shown in

Listing 3. The algorithm shown above uses exactly one

call of the model function for every step and because the

rest of the calculations are quite simple the function has a

low overhead. In order to accommodate the different

experiments carried out in Section 2.4 it is possible to

force a fixed step size and limit the variable step size

between a minimum and a maximum. Each step is started

with an evaluation of the function that is being simulated

in order to obtain the first-order derivative. The second-

order derivative is then calculated from the old and the

newly obtained first-order derivatives and it is then nor-

malized according to (13). Then the step size is calculated

and limited and finally the step is taken whereafter the

sequence is repeated until the simulation reaches the end

time. In the next section the different experiments that are

used to verify the performance of the simulation environ-

ment and the solver are described.

2.4. Experiments

The required accuracy for the problem at hand is given by

the objectives of the model: it must be adequate for con-

troller experiments and for the model to be used as an

observer for FDI in an embedded system. For the controller

experiments it is important that the closed loop dynamical

behavior of the system is accurate but because the control-

lers are designed to be robust to a rather large variance in

the mechanical system of the containers due to wear and

tear and faulty or inadequate maintenance, a maximum

error of 2% is acceptable. The average error is the normal-

ized average error on all states and the maximum error is

the largest error on any of the states. The errors are calcu-

lated from the states of all components except the control-

ler because it will be replaced by an external controller

when the model is moved to the embedded system.

When used as an observer for fault detection it is impor-

tant that the faults are low because a large uncertainty on

the simulation result will require higher fault detection

thresholds to avoid false positives and thus the ability to

detect small faults will be limited or the time to detect a

fault will be too long. As an observer the model will be

running in open loop and therefore it is important that the

long-term static behavior is accurate. A requirement has

been chosen that the maximum error on the variables

important for control of the system stays below 5% for a

three-hour open loop simulation where the control inputs

are recorded from a real container.

The proposed simulation method is tested in a variety

of different scenarios in order to qualify its performance

and accuracy in the modes of operation in which it is to be

used. Furthermore, a series of experiments are carried out

to investigate the ode15s overhead and the nature of the

reduction in accuracy caused by the proposed VS-FE

method. Table 1 shows a short list of the tests carried out.

Tests 1 and 2: Reference simulations

In order to calculate the error of the different experiments

it is necessary to have a reference simulation that repre-

sents the true solution and this is achieved by simulating

the model with a fixed step size that is very small com-

pared to the dynamics of the system. In this case a 1 ms

step size is found to be adequate by simulating at both 1

ms and 2 ms step sizes and comparing the results, from

Sørensen et al. 257

http://sim.sagepub.com/


Listing 3: Proposed simulation algorithm.

258 Simulation: Transactions of the Society for Modeling and Simulation International 90(3)

http://sim.sagepub.com/


which it was concluded that the error had converged. Two

reference simulations are made: the first test is a mono-

lithic simulation where the model is simulated as one large

block at a 1 ms resolution and that represents the true solu-

tion without the impact from the ZOH of the modular

simulation environment. The second reference is a modular

simulation where the components are simulated indepen-

dently with a 1 ms step size for 1 s at a time and the pur-

pose is to isolate the error introduced by the ZOH between

the component models.

Tests 3 and 4: Stepwise and continuous monolithic ODE

In these two tests the model is simulated monolithically by

the ode15s solver as a sequence of 1 s steps and in one con-

tinuous go in order to identify the startup overhead of the

solver.

Test 5: Modular ODE (previous method)

This is the simulation method presented by Sørensen and

Stoustrup18 and it is used as a baseline for verification of

the new VS-FE solver.

Test 6: Modular VS-FE (new method)

The VS-FE solver is compared to both reference simula-

tions and to Test 5 in order to verify the performance of

the simple solver in a modular environment.

Test 7: Monolithic VS-FE

It may be a viable option to simulate the model monolithi-

cally in order to avoid any implications from the modular

simulation and therefore this test is carried out to verify the

speed and accuracy of this solution.

Test 8 and 9: Open loop modular VS-FE and ODE

In order to verify the long-term stability and accuracy of

the simulation environment the VS-FE solver is used to

simulate the system in open loop over a three-hour period

with control signals recorded from a real container. The

output of the model on the measurements that are impor-

tant for control of the system is then tested for accuracy

by comparing it with sensor measurements from the same

real-life data set as the control signals.

Test sequence

The simulation model controller used in this experiment is

programmed to ramp the compressor speed nine times dur-

ing a 1000 s simulation in order to excite the system and

create some events that challenge the solver with large gra-

dients on the system states. The modular simulation model

that was presented by Sørensen and Stoustrup18 was not

excited as much as in this test, leading to a low error due to

the small gradients on the model states. When the system is

excited more strongly the state gradients will be higher

yielding a larger difference in the zero gradient of the ZOH

in the modular environment, which gives a larger error.

3. Results

In this section the results of the tests carried out in Section

2.4 are listed and analyzed in order to identify viable

options for simulating the model for controller experi-

ments and for use as an observer on an embedded system.

The measured variables are the simulation time, the aver-

age error and the maximum error. The average error is the

normalized average error on all states and the maximum

error is the largest error on any of the states. The errors

are calculated from the states of all components except the

controller because its states may go to zero and yield an

infinite normalized error.

In Figure 4 the main results are shown and the refer-

ences for calculating the errors are the monolithic refer-

ence for the monolithic simulations and the modular

reference for the modular simulations. The error toler-

ance for the VS-FE method has been selected such that

the error is approximately the same as that produced by

the ode15s solver with standard tolerance settings19 in

order to make comparison of the results easier. From the

results in Figure 4 it can be seen that the simple VS-FE

solver is able to outperform the more advanced ode15s

solver and in the following the reason for this will be

analyzed.

Closed loop tests

The results of the relevant tests compared to the mono-

lithic reference can be seen in Table 2, where the time col-

umn is the time used simulating the 1000 s test and the

steps column has the number of steps used by the solver.

For modular simulations the number of steps is the sum of

steps used on the nine components, and for monolithic

simulations it is the number of times the monolithic wrap-

per function has been called by the solver.

The error for Test 2 – Modular reference shows the

magnitude of the error introduced from the multi-rate

simulation itself and it is a consequence of the ZOH delays

Table 1. List of tests.

Number Description Solver

1. Reference simulation – Fixed 1 ms
step monolithic

FS-FE

2. Reference simulation – Fixed 1 ms
step modular

FS-FE

3. Continuous monolithic ode15s
4. Stepwise monolithic ode15s
5. Modular ODE (previous method) ode15s
6. Modular VS-FE (new method) VS-FE
7. Monolithic VS-FE VS-FE
8. Open loop modular VS-FE VS-FE
9. Open loop modular ODE ode15s

Sørensen et al. 259

http://sim.sagepub.com/


between component models. Therefore this error is also

large when gradients are as large as they are in this test,

due to the high excitation of the model. In a controller

experiment setup the ZOH delays are not critical because

they are small compared to the dynamics that are impor-

tant for control, which according to Rasmussen et al.22 for

a refrigeration system are the thermal masses of the eva-

porator and the condenser. Under normal operation the

refrigeration system is in steady state most of the time and

therefore the temporal inaccuracy during steep gradients

imposed by the ZOH delays has little impact on the accu-

racy of long-term simulations.

Test 3 – Continuous Monolithic ODE and Test 4 –

Stepwise Monolithic ODE illustrate the importance of

using the ode15s solver as it is intended to be used,

which is visible through the large difference in simulation

time. Test 3 simulates the model in one go, that is, the

solver controls the simulation from start to end and can

run without interruptions. In Test 4 the solver simulates 1

s at a time, and therefore it has to linearize the model

before every step and it is only able to step 1 s forward.

This causes it to use more than ten times as many calls to

the monolithic wrapper as are used by the solver in Test 3,

resulting in a very inefficient solution of the problem.

The results for the old method18 running on this test

sequence are shown in Test 5 – Modular ODE and it can

be seen that the error is a bit higher than the error for Test

2 which indicates that ode15s does a good job. The simu-

lation profile that shows the number of steps and time con-

sumed for each of the components in this test is shown in

Figure 5.

The simple solver shows an unexpected result in Test 6

– Modular VS-FE: it has a shorter simulation time than the

old method but it still manages to produce a smaller error

Figure 4. Comparison of test results for monolithic and modular methods.

Table 2. Simulation results compared to the monolithic reference.

Number Description Solver Time Mean error Maximum error Steps

2. Modular reference FS-FE 2411s 0.443% 2.973% 1,000,000
3. Continuous monolithic ODE ode15s 28.6 s 0.095% 0.709% 7621
4. Stepwise monolithic ODE ode15s 412 s 0.013% 0.058% 109,683
5. Modular ODE ode15s 54.6 s 0.457% 3.002% 15,247
6. Modular VS-FE VS-FE 15.6 s 0.418% 2.790% 34,072
7. Monolithic VS-FE VS-FE 15.3 s 0.099% 0.488% 4236

260 Simulation: Transactions of the Society for Modeling and Simulation International 90(3)

http://sim.sagepub.com/


than the modular reference simulation. This is because the

solver’s crude first-order method causes it to settle faster

than the analytical solution and that cancels out some of

the error caused by the ZOH in the modular environment.

This means that a good comparison of Tests 5 and 6 is dif-

ficult when using the monolithic reference and therefore a

comparison with the modular reference is also carried out.

The simulation profile for this test is shown in Figure 6

and it can be seen that the step size changes more often

than for the ode15s solver, but for both tests it is easy to

identify the ramps that start every 100 s and get larger

and thus longer as the test progresses. This shows that the

step-size selection strategy of the VS-FE solver is ade-

quate for this system although it uses more steps for the

model of the economizer than ode15s.
From Test 7 – Monolithic VS-FE it can be seen that the

VS-FE solver handles the monolithic model quite well. It

finishes faster than the continuous monolithic simulation

in Test 3 with an error that is roughly the same and it is

just as fast as the modular solution which means that using

the monolithic simulation method may be one option when

there is a need for high accuracy.

Because of the large error from the modular simulators

ZOH it is difficult to verify the performance of Tests 5 and

6 and they are therefore compared to the modular refer-

ence, with the results shown in Table 3.

From the results it is clear that the VS-FE solver is

capable of simulating this system with the same accu-

racy as the ode15s solver 3.5 times faster, even though

it needs twice the amount of steps to do it. The ode15s

solver uses approximately 3.75 ms per step due to the

solver’s startup overhead, and because the VS-FE solver

uses only 0.455 ms per step and has almost no startup

overhead its speed advantage increases if the error toler-

ance of the two solvers is increased. Therefore the VS-

FE solver is a better choice for a solver in the modular

configuration.

Open loop tests

The test sequences in Tests 1 to 7 are designed to show

dynamical errors that are relevant when doing controller

experiments but they do not verify the long-term stability

of the simulation environment and the model. Long-term

stability and accuracy are two very important parameters

for a simulation model and this is verified with an open

loop test that simulates the system model without feedback

control for three hours. The initial state for the model is

set to match the initial state for a real container and the

model is then simulated with the sampled control signals

from the refrigeration container. Five measurements that

are characteristic for the system are then compared to the

results of the simulation in order to verify that the model

Figure 5. Simulation profile for the modular simulation with the ode15s solver.

Sørensen et al. 261

http://sim.sagepub.com/


is stable for longer runs and that the VS-FE solver does

not compromise the accuracy of the solution. In Table 4

the results of these two tests are shown. Tret and Tsup are

the return and supply air temperatures for the container

respectively, and they are important for the temperature

control and estimation of actual cooling capacity. The suc-

tion temperature Tsuc is the temperature of the refrigerant

vapor going from the evaporator to the compressor and

combined with the suction pressure Psuc it forms the con-

trol signal for control of the evaporator. The last signal

Pdis is the discharge pressure of the compressor. With

feedback from these five signals it is possible to control

the refrigeration system. As can be seen, the errors of the

two simulations are almost identical but the VS-FE solver

is six times faster than the previous method that uses the

ode15s solver and therefore the obvious choice of solver

in an observer is the VS-FE method.

4. Conclusion

A modular simulation environment was presented with a

dynamical model of a refrigeration container. Different

Figure 6. Simulation profile for the modular simulation with the VS-FE solver .

Table 3. Simulation results compared to the modular reference.

Number Description Solver Time Mean error Maximum error Steps

5. Modular ODE ode15s 54.6 s 0.021% 0.213% 15,247
6. Modular VS-FE VS-FE 15.6 s 0.032% 0.190% 34,072

Table 4. Open loop simulation results.

Number Solver Time Tret Tsup Tsuc Pdis Psuc

8. Modular ODE 622 s 0.541% 0.957% 0.790% 2.183% 1.369%
9. Modular VS-FE 97.6 s 0.545% 0.954% 0.795% 2.183% 1.369%

262 Simulation: Transactions of the Society for Modeling and Simulation International 90(3)

http://sim.sagepub.com/


options for simulating the model for controller experiments

or as a full system observer to be used in the embedded

controller for the refrigeration container were tested and

analyzed. It was demonstrated that the VS-FE modular

simulation approach may be used to simulate vapor com-

pression cycles without the loss of accuracy but with a sig-

nificant increase in speed. The impact of simulating a

model of a refrigeration system with the multi-rate method

has been analyzed with respect to dynamical and static

errors and it was shown that the multi-rate method com-

bined with the VS-FE solver was the best option for an

embedded observer. A comparison between monolithic

and multi-rate simulations on the same model was done

and showed that the VS-FE solver was faster than the

ode15s solver in both scenarios without increasing the

error. From the tests it can be concluded that it is very

important to use a solver with a low overhead in a multi-

rate environment because simulation times are short and

therefore an advanced solver never reaches its true poten-

tial. Design and simulation of reefer systems based on a

modular simulation concept have shown very promising

results. Simulation speed has been increased by up to

350% and it has been shown that the trade-off, inaccuracy,

has no real impact on results. The simulation environment

and the model have been verified to be more accurate than

necessary for control experiments and therefore a decrease

in simulator accuracy is acceptable when modular simula-

tion is used.

Funding

This research was funded by the Danish Ministry of Science,

Innovation and Higher Education.

References

1. Drewry Shipping Consultants Limited. Reefer shipping mar-

ket annual report. Report, 2009. London: Drewry Publishing.

Available at: http://www.drewry.co.uk/get_file.php?id=1161.

Accessed December 7, 2013.

2. Blanke M, Kinnaert M, Lunze J, et al. Diagnosis and fault-

tolerant control. New York, NY: Springer, 2003.

3. General Association of German Insurers. Container hand-

book: Cargo loss prevention information from German marine

insurers, http://www.containerhandbuch.de/chb_e/wild/index.

html?/chb_e/wild/wild_08_01_02.html. Accessed December

7, 2013.

4. Maersk Container Industry. Homepage at: http://www.maer

skbox.com/. Accessed December 7, 2013.

5. Larsen LSF, Thybo C and Rasmussen H. Intelligent control –

Optimizing the operation of refrigeration systems under daily

variations in ambient temperature. In: Proceedings of Danske

Køledage, 15–16 March 2007.

6. Cai J, Stoustrup J and Jorgensen JB. Preventing refrigerated

foodstuffs in supermarkets from being discarded on hot days

by MPC. In: Proceedings of the 17th IFAC world congress,

Seoul, Korea, 2008.

7. TRNSYS. Homepage at: http://sel.me.wisc.edu/trnsys/.

Accessed December 7, 2013.

8. DYMOLA. Homepage at: http://www.dynasim.se/index.htm.

Accessed December 7, 2013.

9. MODELICA. A unified object-oriented language for physical

systems modeling. Available at: http://www.modelica.org/doc-

uments/ModelicaSpec30.pdf. Accessed December 7, 2013.

10. Skovrup M.WinDali– An open-structured component model-

ing and simulation program based on standard programming

languages. In: Proceedings of SIMS conference, Lyngby,

Denmark, 2000, pp.157–172.

11. MATLAB SIMULINK. Homepage at: http://www.mathworks.

com/products/simulink/. Accessed December 7, 2013.

12. Yang Z, Rasmussen KB, Kieu AT, et al. Fault detection and

isolation for a supermarket refrigeration system. Part two:

Unknown-input-observer method and its extension. In:

Proceedings of the 18th IFAC world congress, 2011,

pp.4238–4243.

13. Kübler R and Schiehlen W. Modular simulation in multibody

systems. Multibody Sys Dyn 2000; 4: 107–127.

14. Rosen C, Vrecko D, Gernaey KV, et al. Implementing

ADM1 for benchmark simulations in Matlab/Simulink. J

Water Sci Tech 2006; 54(4): 11–19.

15. Ding G. Recent developments in simulation techniques for

vapour-compression refrigeration systems. Int J Refrig 2007;

30(7): 1119–1133.

16. Howe RM. Accuracy and stability tradeoffs in multirate

simulation. In: Proceedings of the international society for

optical engineering, 2001, pp. 113–126.

17. Pearce JG, Crosbie RE, Zenor JJ, et al. Developments and

applications of multi-rate simulation. In: 11th international

conference on computer modelling and simulation, 25–27

March 2009, pp.129–133.

18. Sørensen KK and Stoustrup J. Modular modelling and simu-

lation approach – Applied to refrigeration systems. In:

Proceedings of the IEEE conference on control applications,

San Antonio, TX, 3–5 September 2008, pp.983–988.

19. Shampine LF and Reichelt MW. The MATLAB ODE suite.

SIAM J Sci Comput 1997; 18: 1–22.

20. Butcher JC. Numerical methods for ordinary differential

equations. New York, NY: John Wiley & Sons, 2003.

21. Kreyzig E. Advanced engineering mathematics. 8th ed.New

York, NY: Wiley, 2006.

22. Rasmussen B, Musser A and Alleyne A. Model-driven sys-

tem identification of transcritical vapor compression systems.

IEEE Trans Control Syst Tech 2005; 13(3): 444–451.

Author biographies

Kresten K Sørensen is an industrial PhD student at

Aalborg University for Lodam Electronics in Sønderborg,

Denmark.

Jens D Nielsen is an Associate Professor at Aalborg

University in the Department of Electronic Systems,

Section of Automation and Control. He is currently

responsible for the University Student Space and Satellite

Program.

Sørensen et al. 263

http://www.containerhandbuch.de/chb_e/wild/index.html?/chb_e/wild/wild_08_01_02.html
http://www.maerskbox.com/
http://www.mathworks.com/products/simulink/
http://sim.sagepub.com/


Jakob Stoustrup is a Professor at Automation &

Control, Aalborg University, Denmark, and acts as Head

of Research for the Department of Electronic Systems. He

has acted as Associate Editor, Guest Editor and Editorial

Board Member of several international journals. Stoustrup

is an IEEE SM, and past Chair of IEEE Chapter. He chairs

the IFAC Technical Committee SAFEPROCESS and is a

member of the IFAC Technical Board. He is a member of

the Danish, Norwegian and Swedish Research Councils

and the European Research Council, and a board member

of The Danish Academy of Technical Sciences. His main

contributions have been to robust control, fault-tolerant

control and plug-and-play control, with more than 250

peer-reviewed papers. Stoustrup has carried out industrial

cooperation with approximately 100 companies.

264 Simulation: Transactions of the Society for Modeling and Simulation International 90(3)

http://sim.sagepub.com/



