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Heuristic Optimization for the Discrete Virtual
Power Plant Dispatch Problem

Mette K. Petersen, Lars H. Hansen, Jan Bendtsen, Kristian Edlund, and Jakob Stoustrup

Abstract—We consider a virtual power plant, which is given
the task of dispatching a fluctuating power supply to a portfo-
lio of flexible consumers. The flexible consumers are modeled
as discrete batch processes, and the associated optimization
problem is denoted the discrete virtual power plant dispatch
problem (DVPPDP). First, the nondeterministic polynomial time
(NP)-completeness of the discrete virtual power plant dispatch
problem is proved formally. We then proceed to develop tailored
versions of the meta-heuristic algorithms hill climber and greedy
randomized adaptive search procedure (GRASP). The algorithms
are tuned and tested on portfolios of varying sizes. We find that
all the tailored algorithms perform satisfactorily in the sense that
they are able to find sub-optimal, but usable, solutions to very
large problems (on the order of 105 units) at computation times
on the scale of just 10 s, which is far beyond the capabilities
of the optimal algorithms we have tested. In particular, GRASP
sorted shows with the most promising performance, as it is able
to find solutions that are both agile (sorted) and well balanced,
and consistently yields the best numerical performance among
the developed algorithms.

Index Terms—Algorithms, computation time, scheduling,
suboptimal control.

I. INTRODUCTION

GLOBAL EFFORTS to reduce CO2 emissions has driven
the introduction or renewable power generation tech-

nologies into the power system. However, since solar panels
and wind turbines harvest energy from sun and wind power
availability becomes changeable and more difficult to predict.
The smart grid was born out of the need to maintain the bal-
ance between production and consumption in this far more
volatile power system. In the smart grid a communication
link to the consumption side is established, such that flexi-
ble consumers like electric vehicles, heat pumps and heating,
ventilation, and air conditioning (HVAC) systems can be orga-
nized and activated to follow power availability and scarcity,
(see [1] and [2]).

A major challenge in developing the smart grid is the sheer
size of the optimization problems involved. Solving a dispatch
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problem for a traditional power system with tens or hundreds
of generators is a challenge, which has been researched for
decades, (see [3]–[5]). Switching to the smart grid, however,
will expand that problem with additional thousands or mil-
lions of units. This means that the computation time associated
with determining an optimal solution is very likely to be
unacceptable in practice.

A review of computation times for optimization in smart
grid literature reveals that computation time is still a very real
challenge. Table I summarizes problem size and computation
times for ten recent scientific publications related to smart grid
optimization. Obviously, computation times are highly depen-
dent on the specific structure of the considered problem and
the software and platform used for calculation. Nonetheless,
Table I does give the general impression that computation
times are still quite a lot longer than what one can expect
to be acceptable for a fully deployed smart grid operating in
real time. This is the case even though several of the cited
references investigate heuristic rather than exact optimization
methods.

The fastest results found are given in [8] with computation
times of just 1.2 s. In [8], however, it is shown that the consid-
ered method does not scale to larger problems due to memory
overload.

To substantiate the aforementioned assertion, this paper
introduces the discrete virtual power plant dispatch problem in
which batch processes (constant power consumption with fixed
duration) must be scheduled to balance a fluctuating power
supply. Similar optimization problems have been investigated
in [6]–[8] and [16]. In these papers batch processes are used
as simple models of electric vehicles, dishwashers, microwave
ovens and more. These papers formulate objectives to schedule
units to balance a fluctuating, limited or costly power supply.

After formulating the discrete virtual power plant dispatch
problem it is proven formally that the optimization problem is
NP-complete [17]. Motivated by this knowledge, we proceed to
investigate the performance of two heuristic methods to obtain
solutions, which are sub-optimal, but fast to compute. This
way a feasible solution will always be available before some
predefined power market gate closure. In practice, a suboptimal
solution available 2 min before market gate closure is far more
valuable than an optimal one available 2 min after.

The methods we will investigate are known in the literature
as Hill Climber and greedy randomized adaptive search proce-
dure (GRASP). The main reason for choosing these methods
to solve the discrete virtual power plant dispatch problem is
that the considered cost function, can be implemented using
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TABLE I
OVERVIEW OF COMPUTATION TIMES REPORTED IN RECENT SCIENTIFIC

PUBLICATIONS ON OPTIMIZATION IN SMART GRID APPLICATIONS.
SIMULATION SAMPLES IS THE NUMBER OF DISCRETE TIME

STEPS THAT THE CONSIDERED SIMULATION HORIZON

HAS BEEN SPLIT INTO

delta evaluation; and both Hill Climber and GRASP are able
to exploit that.

Delta evaluation means that if the cost associated with on
candidate solution is known, and a new solution is obtained
through a limited number of permutations of the old solution,
then the cost function for the new solution can be computed
only from the permutations. Using delta evaluation can only
improve calculation time by a constant factor; however, this
factor is usually so large, that the actual improvement is far
better than algorithmic changes.

Other methods that could be considered for solving the dis-
crete virtual power plant dispatch problem are ant swarm opti-
mization [11], genetic algorithms [19], and tabu search [22].
However, these algorithms are all based on manipulating a set
of candidate or tabu solutions. They thus have a tendency to
drown in logistics as the majority of the available computation
time is spent running through and updating solution sets.

The main contributions of the paper is firstly the proof that
the discrete virtual power plant dispatch problem problem is
NP-complete. Secondly, we also show that even though finding
optimal solutions of the considered problem is indeed very
challenging, highly promising results can be obtained in short
time frames and for very large problems by special adaptations
of the considered heuristic algorithms.

The paper is structured as follows. Firstly, Section II
presents the discrete virtual power plant dispatch problem
including flexibility modeling and agility. In Section III,
the computational complexity of the discrete virtual power
plant dispatch problem is explored in several different ways:
firstly, the NP-completeness is proven formally and then the
feasibility of solving the problem by use of the optimiza-
tion package CPLEX [18] is explored. In Section IV, four
heuristic algorithms are developed, namely uniform selec-
tion (UHC), weighted selection (WHC), GRASP random, and
GRASP sorted. These algorithms are tuned and compared in
Section V. Finally, Section VI summarizes general conclusions
and suggestions for future work.

II. OPTIMIZATION PROBLEM

We consider a virtual power plant, which is given the task
of satisfying the consumption needs of a portfolio of flexi-
ble systems (distributed energy resources) by dispatching a
fluctuating power supply.

A forecast of the fluctuating power supply is denoted
PDispatch(k), k = 1, 2, . . . , K, and the flexible consumers are
denoted local units. A portfolio of N local units is denoted
{LUi}i=1,2,...,N . At sample k we let Pi(k) denote the power to
be dispatched to LUi, and any quantity, which cannot be dis-
patched to the portfolio, is denoted S(·). The objective is to
minimize the residual power, that is |S(·)|.

The optimization problem can be formulated as

min
Pi(·)

K∑

k=1

wk|S(k)| (1)

s.t.

PDispatch(k) ∈ R+, k = 1, 2, ..., K (2)
N∑

i=1

Pi(k)+ S(k) = PDispatch(k) (3)

and also subject to the dynamics and constraints of
{LUi}i=1,2,...,N . Here, K denotes the total simulation horizon.

The impatience weights wk ∈ R have been added,
because the forecasted power production will rarely fit exactly
with the power needed to satisfy {LUi}i=1,2,...,N . In practice,
when this happens, a traditional power plant will have to adjust
its power consumption, such that the discrepancy between
supply and demand is compensated. As a rule of thumb, how-
ever, the better time the plant operator has to modify the
output of a traditional power plant, the cheaper it can be
done. It is therefore desirable to introduce slack as late on
the simulation horizon as possible, which can be achieved by
introducing wk, k = 1, 2, . . . , K and requiring that wk1 > wk2

if k1 < k2.

A. Flexibility Modeling

In this paper, the flexible units are modeled as batch-
processes, which are characterized by constant power con-
sumption, P, a run time, KRun, and a deadline, KEnd, by which
the process must be finished. Also, we let Ts denote the size
of the time step. Each LU can therefore be modeled by

E(k + 1) = E(k)+ TsP(k) (4)

P(k) = Pv(k) (5)

0 ≤ E(k + 1) ≤ E (6)

E(KEnd) = E (7)

0 ≤
k+KRun−1∑

l=k

v(l)− KRun (v(k)− v(k − 1)) (8)

where P ∈ R+, k = 1, 2, . . . , K, v(k) ∈ {0, 1}, E = PKRun,
KRun ≤ K, and KEnd ≤ K. Inequality (8) is the minimum
runtime constraint, which ensures that if v(k) − v(k − 1) is
one, then v(l), l = k+ 1, k+ 2, . . . , KRun − 1 must also all be
one; that is, once the local units is activated, it must complete
its consumption immediately.

We let {LUi}i=1,2,...,N denote a portfolio of N flexi-
ble consumers. Then, for each {LUi}i=1,2,...,N a solution
of problem (1)–(3) consists of a set of start times,
KStart = (KStart,1, KStart,2, . . . , KStart,N), one for each
LU. An illustration of the discrete virtual power plant
dispatch problem for batch processes is given in Fig. 1.
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Fig. 1. Solving the discrete virtual power plant dispatch problem essentially
corresponds to packing rectangles under an arbitrary profile.

Fig. 2. As time progresses an un-agile solution can become sub-optimal
when earlier projections of PDispatch turn out to be erroneous.

Fig. 3. As time progresses an agile solution is more likely to remain optimal
even when earlier projections of PDispatch were erroneous.

B. Agility

As mentioned earlier, PDispatch is a forecast of the power
production of some renewable production technology. This
means that PDispatch will not correspond exactly to the power,
which will actually be produced over the considered time
horizon. To alleviate this issue, we want to find a solution
of problem (1)–(3), which is as agile as possible. Finding an
agile solution means prioritizing the most urgent tasks, namely
the ones which are closest to their deadline. In this way, we
will have created more maneuverability, if updated forecasts
of PDispatch give very different power availability than origi-
nally projected. We also call this maximizing the agility of the
portfolio (see Figs. 2 and 3).

The concept of agility is illustrated in Figs. 2 and 3 for
a portfolio consisting of three units. The top illustrations in
Figs. 2 and 3 both depict optimal solutions of this instance of
the discrete virtual power plant dispatch problem and if the
predicted progress of PDispatch is correct, then it is obviously

unimportant to distinguish between the two. If, however, a
significant portion of the available power is delayed as in the
lower illustrations, then the top solution in Fig. 3 remains opti-
mal, but the top solution in Fig. 2 does not. This happens
because the top solution in Fig. 2 has left more maneuverabil-
ity for the optimization in later time steps. Thus, in a sense
introducing agility to the problem solving is an attempt to
maximize the flexibility of the remaining solution space.

To find an agile solution of problem (1)–(3) the cost function
is extended with a term, which adds a penalty to dispatching
each LU, that is

f (P(·)) = min
Pi(·)

K∑

k=1

(
wk|S(k)| +

N∑

i=1

wi,k|Pi(k)|
)

(9)

s.t.

PDispatch(k) ∈ R+, k = 1, 2, ..., K (10)
N∑

i=1

Pi(k)+ S(k) = PDispatch(k). (11)

The agility weights wi,k should then be chosen such that LUi

is dispatched before LUj, if KEnd,i −KRun,i < KEnd,j −KRun,j.
To explain how agility weights are chosen, let
{LUi}i=1,2,...,N denote a set of local units sorted accord-
ing to deadline minus run time. Intuitively, agility weights
will penalize increasing the energy term of each LU and
this penalty is proportional to the unit index. This means
replacing the cost function (9) with

min
Pi(·)

K∑

k=1

(
wk|S(k)| +

N∑

i=1

i|Ei(k)|
)
. (12)

However, since Ei(k) =∑k
l=1 TsPi(l) (12) can be written as

min
Pi(·)

K∑

k=1

(
wk|S(k)| +

N∑

i=1

i(K + 1− k)Ts|Pi(k)|
)

and the agility weights are therefore given by

wi,k = i(K + 1− k)Ts. (13)

C. Portfolio Generation for Simulation

Throughout this paper, we consider optimization problems
on randomly generated portfolios. Each portfolio is charac-
terized by the numbers N and K, such that Portfolio(N, K)

denotes a randomly generated portfolio of N local units with
KRun ∈ {2, 3, 4, 5}, P ∈ {1, 2, 3, 4}, and KEnd ∈ {1, 2, . . . , K}.
Also, we set Ts = 1 in all simulations and all calculations
have been performed on a standard laptop.

Fig. 4 depicts a solution of problem (9)–(11) for a
Portfolio(105, 100) computed by use of the algorithm GRASP
Random, which is introduced in Section IV-B. It can be seen
that the majority of slack is introduced toward the end of the
simulation horizon as the total consumption (blue) is no longer
able to follow PDispatch (black). Agility/sortedness is illustrated
by green, red, cyan, and magenta lines illustrating the accumu-
lated consumption of the first, second, third, and fourth quarter
of units, respectively, when the portfolio is sorted according
to deadline minus runtime.
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Fig. 4. Solution of problem instance of the discrete virtual power plant
dispatch problem with 105 local units computed by use of the algorithm
GRASP random introduced later in this paper.

III. COMPUTATIONAL COMPLEXITY

In this section, we will investigate the computational com-
plexity of the discrete virtual power plant dispatch problem.
We first do this by proving that the problem is NP-Complete.
Next, we attempt to solve the optimization problem via
CPLEX. All calculations are performed on a standard laptop.

A. Proof of NP-Completeness

Polynomial-time reductions provide a formal means of
showing that one problem is at least as hard to solve as another
to within a polynomial-time factor. That is, if L1 ≤P L2, then
L1 is not more than a polynomial factor harder than L2 [17].

Definition 1 (Subset-Sum Problem): Let there be given a
finite set S ∈ N and a target t ∈ N. Is there a subset S′ ∈ S
whose elements sum to t?

Lemma 1: The subset-sum problem is NP-complete.
Proof: The proof of NP-completeness of the subset-sum

problem is done by formulating the 3 − CNF − SAT (three-
conjuncture-normal-form-satisfiability) language. Next it is
proved that satisfiability of boolean formulas in 3−CNF−SAT
is NP-complete. Finally, the subset-sum problem is formulated
as boolean formulas in 3 − CNF − SAT , thus proving that
L3−CNF−SAT ≤P LSubsetsum. For full proof see [17].

In the following, we show that a simplified version of the
discrete virtual power plant dispatch problem is equivalent to
the subset-sum problem. We shall refer to this reduced problem
as DVPPDP for brevity.

Theorem 1: The discrete virtual power plant dispatch prob-
lem is NP-complete.

Proof: In this proof, it is shown that a subset of the class
of instances of the discrete virtual power plant dispatch prob-
lem is equivalent to the subset-sum problem. By polynomial
reduction this proves that the discrete virtual power plant dis-
patch problem is NP-complete, since the subset-sum problem
is NP-complete.

Firstly, we simplify the discrete virtual power plant dispatch
problem by setting agility weights to 0. This reduces problem
(9)–(11) to

f (Pi(·)) = min
Pi(·)

K∑

k=1

wi|S(k)| (14)

s.t.

PDispatch(k) ∈ R+, k = 1, 2, . . . , K (15)

Fig. 5. For the considered instance of the discrete virtual power plant dispatch
problem a solution of problem (14)–(16) such that f (Pi(·)) = 0 can exist if
and only if there also exists a subset of KRun,i, i = 1, 2, . . . , N, which sums
to K.

N∑

i=1

Pi(k)+ S(k) = PDispatch(k). (16)

Flexible units are still modeled by (4)–(8).
Let K ∈ N+ and K ∈ N+ be given and assume without loss

of generality that K < K. Next define portfolio {LUi}i=1,2,...,N ,
such that Pi = 1, i = 1, 2, . . . , N, KEnd,i = K, i = 1, 2, . . . , N,
and

∑N
i=1 KRun,i = K+ K. Also, define PDispatch(k) = 2, k =

1, 2, . . . ,K and PDispatch(k) = 1, k = K + 1,K + 2, . . . , K
(see Fig. 5).

To prove NP-completeness we formulate the following deci-
sion problem: given the discrete virtual power plant dispatch
problem instance constructed above does there exist a solution
of problem (14)–(16) for which f (Pi(·)) = 0?

First observe that
∑K

k=1 PDispatch(k) = K + K and∑N
i=1 KRun,iP = ∑N

i=1 KRun,i = K + K as well. This means
that exactly two local units must be on at any sample until
sample K and that exactly one LU must be on at any sample
after sample K in order for a solution with zero slack to exist.
However, such a solution can exist if and only if there also
exists a subset of KRun,i, i = 1, 2, . . . , N, which sums to K.

This, however, corresponds exactly to the subset-sum prob-
lem for the set S = KRun,i, i = 1, 2, . . . , N and t = K since
K and K are arbitrarily chosen positive integers. Thus, if
there exists a polynomial time algorithm for solving the con-
sidered instance of the discrete virtual power plant dispatch
problem then this algorithm could also solve the subset-sum
problem in polynomial time. It now follows from Lemma 1
that the discrete virtual power plant dispatch problem is
NP-complete.

B. CPLEX Performance

A commonly used option for solving integer problems is to
use the software package CPLEX [18]. If CPLEX is capable
of solving the discrete virtual power plant dispatch problem to
optimality within a reasonable time frame, then there will be
no reason to apply meta-heuristic methods to the problem. In
this section, we will therefore investigate how CPLEX handles
the discrete virtual power plant dispatch problem.

We have tested CPLEX performance on ten
Portfolio(25, 100) and ten Portfolio(50, 100) problems.
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Algorithm 1: Hill Climber ({LUi}i=1,2,...,N,

{PDispatch(k)}k=1, 2,...,K, n)

1: Generate initial solution KStart,0 by randomly choosing feasible
start samples for each local unit.

2: Repeat
3: Select KStart

′ in νn(KStart,i) by use of Uniform Selection or
Weighted Selection

4: If f (KStart
′) < f (KStart,i) then

5: KStart,i+1 = KStart
′

6: Until time-limit is reached

In many cases the computations are terminated with an error
message stating that the computer has run out of memory
and therefore no optimal solution is found. We observed that
for Portfolio(25, 100) five of ten problems were solved with
an average computation time of 8 min and for Portfolio(50,
100) zero of ten problems were successfully solved. Since all
calculations finish due to lack of memory for 50 units and
100 samples, there is little hope that this option will scale to
larger problem instances.

IV. META-HEURISTIC ALGORITHMS

Since we have illustrated that finding optimal solutions
of the discrete virtual power plant dispatch problem is
indeed very challenging, we will now investigate the perfor-
mance of the meta-heuristic methods Hill Climber [19], and
GRASP [20].

A. Hill Climber

We first define a neighborhood associated with the discrete
virtual power plant dispatch problem, which is based on the
idea of an n-move. Next, we develop two variations of the
algorithm denoted UHC and WHC.

1) Neighborhood and n-Move: Let an instance of the dis-
crete virtual power plant dispatch problem be given, that is,
a set of parameters Pi, KEnd,i and KRun,i, i = 1, 2, . . . , N
and a dispatch sequence PDispatch(k) ∈ R, k = 1, 2, . . . , K.
A solution of the discrete virtual power plant dispatch prob-
lem is then given by a set of feasible start times, KStart =
(KStart,1, . . . , KStart,N). The solution space is given by

S = {(KStart,1, . . . , KStart,N) ∈ N
N

|KStart,i < KEnd,i − KRun,i, i = 1, 2, . . . , N}
and we have that

|S| = �N
i=1KEnd,i − KRun,i

≤ KN .

In the discrete virtual power plant dispatch problem a neigh-
borhood map νn:S → SM , defines for each solution KStart a
neighborhood set Sn(KStart) ∈ SM consisting of the set of
solutions that can be obtained from KStart by moving the start
time of any n local units to feasible locations. This is called
an n-move. In other words, a neighborhood map is a map of
the form

νn(KStart) = {KStart
′ ∈ S

| KStart
′ is obtained from KStart by an n-move}.

Algorithm 2: Uniform Selection ({LUi}i=1,2,...,N, n)
1: for j = 1 to n do
2: Select LUi from {LUi}i=1,2,...,N−j+1 with probability 1

N−j+1

3: Select start sample k for LUi with probability 1
KStart,i

4: Set {LUi}i=1,2,...,N−j = {LUi}i=1,2,...,N−j+1\LUk
5: end for

Algorithm 3: Weighted Selection ({LUi}i=1,2,...,N,

{PDispatch(k)}k=1,2,...,K, n)
1: for j = 1 to n do

2: Select LUi from {LUi}i=1,2,...,N−j+1 with probability 1
N−j+1

3: for k = 1 to KEnd,i − KRun,i do
4: vk ← �Cost(i, k) given that j − 1 local units have already

been assigned new start samples.
5: end for

6: Construct vnegative containing all negative numbers in v.

7: if Length(vnegative) ≥ 1 then

8: Select start sample k for LUi with probability
vnegative(k)∑

vnegative
9: else

10: Select start sample k for LUi with probability
1

v(k)∑ 1
v

11: end if

12: Set {LUi}i=1,2,...,N−j = {LUi}i=1,2,...,N−j+1\LUk

13: end for

2) Uniform Selection Hill Climber and Weighted Selection
Hill Climber: Pseudo code for the Hill Climber method is
given in Algorithm 1. The Hill Climber method first generates
a random initial solution for the considered problem. Next, a
solution in the neighborhood of the current solution is found.
If the cost of the neighboring solution is less than the cost of
the current solution, then the neighbor solution will take its
place as current solution. This procedure is continued until the
time limit is reached.

Two tailored versions of the Hill Climber method, denoted
UHC and WHC will be investigated.

In UHC the initial solution KStart
′ is found by choosing n

local units from the portfolio with uniform probability and then
selecting feasible start samples for each LU, also with uni-
form probability. Pseudo-code for uniform selection is given
in Algorithm 2. Allowing n to be larger than one means that it
is possible to accept a solution where a unit is moved to a less
favorable start sample as long as other units are simultaneously
moved to beneficial positions. This could help the algorithm
escape a local optimum, which would not be possible if only
one LU can be moved at a time.

In an alternative implementation, denoted WHC, the n
local units are again chosen uniformly from the portfolio,
but the start time of each LU is now chosen with probability
proportional to the benefit/cost of moving the start time of the
LU to each feasible time slot. Pseudo-code for weighted selec-
tion is given in Algorithm 3. If improving start times exist,
we choose an improving time with probability proportional
to the obtained benefit. On the other hand, if no improving
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Algorithm 4: GRASP Random ({LUi}i=1,2,...,N,

{PDispatch(k)}k=1,2,...,K, m, l, n)
1: repeat

2: for j = 1 to N do

3: for k = 1 to m do
4: Unit List(k) ← Select LUi from {LUi}i=1,2,...,N−j+1

with probability 1
N−j+1 .

5: for h = 1 to KStart,Unit List(k) − KRun,Unit List(k) do
6: vk,h ← �Cost(Unit List(k), h) given that j − 1 local

units have already been assigned start samples.
7: end for
8: end for

9: CandidateListk,h ← The l smallest entries in vk,h.

10: Select LUk and start sample h from CandidateList with
probability 1

l .

11: Set start time of LUk to h and set {LUi}i=1,2,...,N−j ={LUi}i=1,2,...,N−j+1\LUk.

12: end for

13: Hill-Climber({LUi}i=1,2,...,N , {PDispatch(k)}k=1,2,...,K , n)

14: until time-limit is reached

start times exist, then we choose a deteriorating time with
probability inversely proportional to the cost.

UHC and WHC are tuned and compared in Section V.

B. GRASP

A definite weakness of the developed Hill Climber methods
is that the initial solution is generated by choosing local units
and start time with uniform probability. This means that the
solutions generated for initial use have absolutely no similarity
to PDispatch. This problem is mended in GRASP.

The idea in GRASP is to construct an initial solution one
element at a time by use of a greedy algorithm. The choice
of next element to be added is determined by constructing
a candidate list of most beneficial choices. The probabilistic
element in GRASP is then introduced by randomly choosing
one of the candidates in the candidate list, but not necessarily
the top candidate. After an initial solution has been generated,
Hill Climber is called to achieve a further improvement of the
solution.

Again two versions of the algorithm have been investigated,
namely GRASP random and GRASP sorted. GRASP random
falls closest to the generic description of the GRASP algo-
rithm, but as we will see later it has some challenges related to
the discrete virtual power plant dispatch problem. To address
this GRASP sorted is developed as well.

Pseudo-code for GRASP random is given in Algorithm 4.
The idea is that m local units are chosen randomly from the
portfolio and placed in the unit list. Next, the cost of starting
each LU in the unit list at each feasible sample is computed
and saved in v. The candidate list is then generated by choosing
the l smallest elements from v. Finally, an element from the
candidate list is chosen with uniform probability.

When exploring GRASP random it was discovered that for
all problem sizes, GRASP random generates initial solutions,
which overshoot PDispatch in the beginning of the horizon and

Fig. 6. GRASP random builds an initial solution one unit at a time and above
it is depicted how the initial solution looks, when 1/4, 2/4, 3/4, and 4/4 of
the units in the portfolio have been added. Since slack is cheaper toward the
end of the horizon, GRASP random will first start units early in the horizon.
When 1/4 of the portfolio has been added a decent fit with PDispatch has
been obtained for sample 0–18. However, there are still units remaining in
the portfolio, which have a deadline of 18 or less, and now GRASP random
can only add these in such a way that the accumulated power consumption
before sample 18 overshoots PDispatch even further. This means that as units
are added more and more positive slack builds up at the beginning of the
simulation horizon, as can be seen from the progression of the figures.

fall lower than PDispatch toward the end of the horizon. This
behavior can be explained as follows.

Since slack is cheaper toward the end of the horizon GRASP
random will first start units early in the horizon as it builds an
initial solution. At some point a decent match with PDispatch
is obtained for, say, the first ten samples. However, if a LU
then remains in {LUi}i=1,2,...,N−j, which has deadline 10 or
less, then it can only be added such that it makes the accu-
mulated power consumption overshoot PDispatch somewhere in
the first ten samples. When this has happened a number of
times (see Fig. 6) the result is a consumption profile, which
overshoots PDispatch in the beginning of the horizon and falls
lower than PDispatch toward the end of the horizon.

To alleviate this problem, the algorithm GRASP sorted was
developed. The algorithm is identical to GRASP random except
that local units are not initially chosen at random, but in sorted
order, starting with the n local units with the earliest dead-
lines. The candidate list is again generated based on the unit
list and an element from the candidate list is chosen with uni-
form probability. Pseudo-code for GRASP sorted is given in
Algorithm 5.

V. RESULTS

Before the algorithms can be compared they must be prop-
erly tuned. When applying a meta-heuristic there will always
be a trade-off between time and performance, so computation
time is fixed, not a parameter. All calculations are performed
on a standard laptop. The algorithms have been implemented
in C# [21].

A. Tuning

To tune the algorithms, a representative training test set
of R problem instances is generated and each algorithm is
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Algorithm 5: GRASP Sorted ({LUi}i=1,2,...,N,

{PDispatch(k)}k=1,2,...,K, m, l, n)
1: repeat

2: Sort {LUi}i=1,2,...,N according to KEnd,i − KRun,i.

3: for k = 1 to m do
4: Unit List(k)← LUk.
5: end for

6: for j = 1 to N do

7: for h = 1 to KStart,Unit List(k) − KRun,Unit List(k) do
8: vk,h ← �Cost(Unit List(k), h) given that j−1 local units

have already been assigned start samples.
9: end for

10: CandidateListk,h ← The l smallest entries in vk,h.

11: Select LUk and start sample h from CandidateList with
probability 1

l .

12: Set start time of LUk to h and set UnitList = UnitList\LUk∪
LUj+1.

13: end for

14: Hill-Climber({LUi}i=1,2,...,N , {PDispatch(k)}k=1,2,...,K , n)
15: until Time limit is reached.

TABLE II
PERCENTAGE GAP AND PERCENTAGE DEVIATION FOR ALL

DEVELOPED METHODS

run T times on each training data set. In order to be able to
compare performance on problem instances with very differ-
ent absolute values we compute the percentage gap and the
percentage deviation. Since it is not feasible to determine the
optimal solution of problems of the considered size, the per-
centage gap and the percentage deviation is computed relative
to the minimum value found over all calculations on each
particular problem instance.

In order to be able to compare performance
on problem instances with very different abso-
lute values, we compute the percentage gap
E = (1/S)

∑T
j=1(((zj − z∗) · 100)/z∗) and the percentage devi-

ation σ =
√

(1/(T − 1))
∑T

j=1

(
(((zj − z∗) · 100)/z∗)− E

)2,
where z∗ is the optimal solution of the problem instance and
j indexes the set of T candidate solutions. Since z∗ is not
known we will substitute the minimum value found over all
calculations on the particular problem instance.

The tuning test is performed on randomly generated
Portfolio(N, 100), N = 103, 104, 105 (see Section II-C). The
tuning set consists of nine instances of the discrete virtual
power plant dispatch problem (sets of portfolio and PDispatch)

Fig. 7. Performance of uniform selection hill climber for a
Portfolio(105, 100) problem.

Fig. 8. Performance of weighted selection hill climber for a
Portfolio(105, 100) problem.

Fig. 9. Performance of GRASP random for a Portfolio(105, 100) problem.

with three portfolios of 103, 104, and 105 local units each.
Computation time is fixed at 10 s for all runs of the algo-
rithms and T = 10. Results of parameter tuning test are given
in Tables III and IV where A = 103 local units, B = 104 local
units, and C = 105 local units.

B. Results

To finally test the algorithms a new Portfolio(N, 100), N ∈
{103, 104, 105} is generated with three portfolios of 103, 104,
and 105 local units each. Computation time is still fixed at 10
s for all runs of the algorithms and T = 10. The performance
of all four algorithms is given in Table II.

It is found that for all problem sizes the Hill Climber meth-
ods and GRASP random have very similar performance, with
no clear winner. GRASP sorted, on the other hand, outper-
forms all the other methods by at least an order of magnitude
both in terms of percentage gap and percentage deviation and
for all problem sizes.
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Fig. 10. Performance of GRASP sorted for a Portfolio(105, 100) problem.

TABLE III
DEVELOPED HILL CLIMBER METHODS HAVE ONE PARAMETER, NAMELY

THE VALUE OF n IN n− move. TO PROPERLY JUDGE THE PERFORMANCE

OF THE ALGORITHM A SUITABLE VALUE OF THIS PARAMETER MUST

BE FOUND. THIS TABLE STATES THE BEST PARAMETER

VALUE FOUND FOR BOTH HILL CLIMBER METHODS

Figs. 7–10 depict solutions found for a
Portfolio(100.000, 100) problem using each algorithm
and the parameters given in Tables III and IV. A visual
inspection confirms the general conclusions that UHC, WHC,
and GRASP random have very similar performance as the
curves can hardly be distinguished. However, GRASP sorted
is clearly superior. It can be seen that particularly at the
beginning of the simulations GRASP sorted has less slack
than the other methods and GRASP sorted has furthermore
found a far more sorted solution, which can be seen by the
very steep slopes of the quarter lines in Fig. 10.

As demonstrated in Section III there exists no efficient strat-
egy for determining optimal solutions of the virtual power
plant dispatch problemfor large problem instances. One option
would be to generate artificial, structured problem instances
where the optimal solution is known. However, inherent struc-
ture in a problem could likely favor one of the methods,
in particular GRASP sorted, and would thus lead to unfair
comparisons.

Our best available optimal solutions are therefore the five
Portfolio(25, 100) problem instances, which were successfully
found by CPLEX in Section III-B. In Table V, GRASP sorted
has been retuned for Portfolio(25, 100) problems and the aver-
age performance over ten solutions is given for these problems.
It is found that the deviation from optimality is 6% to 13%,
which is fairly good considering the short computation time.

VI. CONCLUSION

In the vision for the future smart grid, not just hundreds,
but thousands or even millions of flexible consumers must be
coordinated to operate in a sensible, interconnected manner. A
major issue in implementing the smart grid, however, is that
this must happen in real time. In this paper, we have there-
fore investigated computational speed of large-scale dispatch
problems.

TABLE IV
DEVELOPED GRASP METHODS HAVE THE FIVE PARAMETERS LISTED

UNDER “PARAMETER.” THIS TABLE STATES THE BEST PARAMETER

VALUE COMBINATION FOUND FOR BOTH GRASP METHODS

TABLE V
OPTIMAL SOLUTIONS VALUES FOUND IN CPLEX AND SOLUTION

VALUES FOUND BY GRASP SORTED FOR FIVE

PORTFOLIO(25, 100) PROBLEMS INSTANCES

Our investigations have concentrated on the discrete vir-
tual power plant dispatch problem. Firstly, the computational
complexity was investigated by proving that the problem is
NP-complete and investigating the options of solving the
discrete virtual power plant dispatch problem by use of
CPLEX [18]. Being NP-complete the discrete virtual power
plant dispatch problem is therefore at least as complex (hard)
to solve as the well-known unit commitment problem [23].

We therefore developed heuristic methods for solving
the problem and specifically looked at Hill Climber and
GRASP. Four algorithms were developed, denoted UHC,
WHC, GRASP random, and GRASP sorted. After tuning and
testing, by far the best results where obtained by GRASP
sorted. This method can determine solutions, which are both
agile (sorted) and well balanced even for problems of 100.000
units, 100 samples and with a computation time of just 10 s.
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