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Abstract

Thermostatically controlled electrical loads can provide valuable energy storage and are prime candidates for fast acting
demand response (DR) that can be used to mitigate highly variable renewable power generation and limited availability
of ramping resources. When conventional thermostats are retrofitted for real-time price DR control, significant control
errors can arise, particularly in the form of dispatch control drift. This paper identifies the underlying causes and presents
a new residential thermostat design that enables accurate aggregate load control. The new design gives rise to linear
time-invariant models of aggregate load control and demand response, which facilitate the design of highly accurate
load-based regulation services for electricity interconnections. Detailed simulation and performance studies coupling a
residential house and feeder models are presented to show how consumer comfort and cost savings are achieved and how
energy use is impacted for cities in three different climatic zones. During peak times, the new thermostat imparts the
entire residential load an energy demand elasticity of about 10% to 25%. Larger demand elasticities could be achieved
by extending the control strategy to other residential thermostatic loads. The proposed thermostat design can operate in
the real-time distribution capacity auction system and can provide all the benefits associated with transactive systems,
and in particular facilitate increased integration of renewable resources.
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1. Introduction

Demand response is increasingly regarded as an impor-
tant resource for electricity interconnections in industrial-
ized economies. Demand response provides both economic
and technical benefits that far outweigh their costs [1]. The
United States Federal Energy Regulatory Commission is-
sued FERC Order 745 specifically to encourage participa-
tion and ensure the competitiveness of demand resources
in organized wholesale markets [2]. In spite of the regula-
tory setback dealt by the US Court of Appeal’s decision to
vacate the order[3], both proponents and critics of FERC’s
approach agree that demand plays a crucial role in miti-
gating both the market power of electricity suppliers [4]
and the intermittency of renewable generation resources
[5] while maintaining the comfort and satisfaction of con-
sumers [6].

Research into fast-acting demand response was origi-
nally motivated by technical pressures to improve system
efficiency while retaining a high level of consumer satisfac-
tion. Direct load control and time-of-use demand response
strategies have been widely used for decades but often
show limited benefits at subhourly levels [7]. To address
these limitations market-based real-time demand response
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based on microeconomic theory [8] was initially demon-
strated in computer resource allocation [9] and proposed
for electricity operations [10]. Work on multi-commodity
flow [11] and building thermal control [12] demonstrated
the applicability of markets to optimal micro-allocation
problems in energy. In all these approaches, markets are
used to find short-term Pareto-optimal allocations of a
constrained resource in a technical system by determining
the short-term price at which the supply equals demand
over the coming interval of time. Individual responsive sys-
tem components are equipped with new control elements
to bid for resource utilization to satisfy consumer needs
and respond to changes in price by changing resource us-
age in the short term. The benefits of this approach have
been shown to reach throughout electric interconnections
including enhancing the penetration of intermittent renew-
able resources [13].

However, incentives, dispatch methods and compensa-
tion of demand response remain challenges that restrain
system planners and operators from adopting these fast-
acting control strategies. Hogan [14] argues that the “the
ideal and economically efficient solution regarding demand
response compensation is to implement retail real-time
pricing at the LMP, thereby eliminating the need for [whole-
sale] demand response [compensation].” To investigate
the technical questions regarding the large-scale feasibil-
ity of near real-time demand response the US Department
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of Energy funded the 2006 Olympic Peninsula [15] and
2013 Columbus Ohio [16] demonstration projects. Both
projects sought to address the open technical questions re-
garding the so-called “price-to-devices” challenge [17] by
demonstrating the transactive control approach on retro-
fitted control equipment that integrates small-scale res-
idential, commercial and municipal electrical equipment
with utility electric power distribution system operations
as a first step toward integrating distributed generation
and demand response into wholesale operations. “Transac-
tive control” in this context refers to a distributed resource
allocation strategy that engages both electricity suppliers
and consumers using market-based mechanisms extending
down to the retail level for the purpose of enabling demand
response by the utilities at the wholesale level [18].

This paper addresses potentially significant shortcom-
ings of the existing conventional thermostat control retro-
fits uncovered by the demonstration projects. Specifically,
under certain circumstances the demand response quan-
tity dispatched by the retail markets using the real-time
price was not sustained for the entire duration of the mar-
ket clearing interval. In addition, any significant sustained
deviation in the price could lead to unpredictable demand
response deviations because of changes in the diversity of
thermostatic device states. These problems lead to in-
creased uncertainty about the reliability demand response
services based on conventional thermostats and lack of
confidence in the effectiveness of demand response control
systems. These shortcomings are mitigated by a funda-
mental redesign of residential thermostats when used for
fast-acting demand response. In particular the new ther-
mostat eliminates the use a deadband altogether and im-
poses a discrete-time control model instead. These steps
seem to individually violate conventional wisdom about
how thermostat should work, i.e., 1) deadbands are nec-
essary to avoid fast cycling of heating/cooling equipment
and 2) discrete-time control results in excessive overshoot
and degrades consumer comfort. However taken together
they represent a novel solution to the problem of obtaining
accurate large-scale fast-acting demand response from res-
idential energy systems. After reviewing the background
of the transactive control problem, this paper reports the
preliminary results of those investigations.

Without mechanisms like transactive control, price-
responsive load requires directly engaging a very large num-
ber of very small participants in the unit-commitment and
economic dispatch process [19]. The computational com-
plexity of the centralized optimal dispatch problem makes
this impractical for anything more than the thousands of
larger suppliers already involved [20]. Strategies extant
for addressing this challenge generally involve retail de-
mand aggregation that enables the integration of demand
units by proxy of a reduced number of larger representative
units. Private entities such as Enernoc have based their
business models on this approach. These are used pri-
marily on commercial buildings where the control systems
are more amenable to this integration and the number of

control points per Watt of resource is lower than it is for
residential buildings. Unfortunately, this leaves nearly half
the available building load untapped as a demand resource
for utilities.

Previous demand response through heating/cooling sys-
tem control has generally focused on retrofits to existing
thermostats. Rather than fundamentally rethinking the
operation of thermostats, these retrofit strategies added
new capabilities to thermostats to enable demand response
behavior needed by utilities for peak load reduction or
shifting. Most of these methods are focused on direct load
control design either for peak load reduction [21] [22] or for
regulation services [23] [24]. Indirect load control methods
are typically extensions of direct load control methods that
include additional control component to convert incentive
signals such as prices to comfort signals such as thermostat
offsets [15] [16].

Using markets to solve electricity resource allocation
problems at the wholesale bulk system level is well un-
derstood [25]. But transactive control takes the idea to
the retail level by solving the resource allocation problem
at the distribution level first before integrating it at the
wholesale level. These retail markets are designed to find
an allocation of distribution capacity, distributed gener-
ation and demand response to resolve how much whole-
sale energy resource is required and determine how much
distributed generators should produce and customers can
consume in the coming time interval. Transactive control
systems use sub-hourly distribution capacity markets to
determine energy prices that minimizes the imbalance be-
tween supply and demand for electricity for participating
equipment during the next operating interval [26]. These
systems compute 5-minute retail real-time prices (RTP)
for energy that reflect the underlying wholesale LMP plus
all other distribution costs and scarcity rents arising from
distribution constraints. In cases where large amounts of
renewable resources are available the real-time price can
be less than the LMP. Negative prices are even possible
when a surplus of must-run generation is available. The
RTP comes under a new tariff presumably designed to be
revenue neutral in the absence of demand response.

Distributed generation, load shifting, demand curtail-
ment, and load recovery can all be induced by variations
in real-time prices. Given these responses transactive con-
trol systems can reduce the utility’s long-term exposure
to price volatility in the wholesale market and the costs
of congestion on the distribution system [27]. These can
reduce the long-term average cost of energy for consumers
who are willing to forgo consumption in the very short-
term. Short-term retail prices are discovered using a feeder
capacity double auction and these prices can help man-
age distribution, transmission or bulk generation level con-
straints. Distributed generation and demand response are
dispatched based on consumers’ preferences, which they
enter into an advanced thermostat that acts on their behalf
as an automated agent bidding for electricity. Transactive
thermostats both bid for the electricity and modulate con-
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sumption in response to the market clearing price. By in-
tegrating this response to a price signal that reflects antic-
ipated scarcity, the system closes the loop on energy deliv-
ery and improves resource allocation efficiency by ensuring
that consumers who value the power most are served prior
to those who are willing to forgo it for a short time. At
the same time, consumers provide valuable services to the
wholesale bulk power system [13] and experience reduced
energy costs at times of day when they express preferences
for savings over comfort.

The overall approach used in the paper to develop
and deploy transactive control systems may appear sim-
ple. But this is quite deceptive because although the in-
dividual components of the system are indeed very simple
in their design and operation, their combined behavior is
quite complex to model and well beyond the capabilities of
the existing modeling and simulation tools used to study
demand response systems [28]. In Section 2 we examine
the new thermostat to reveal how the undesirable behav-
ior of existing thermostats is eliminated and the desired
behavior is introduced. In Section 3 we discuss the nu-
merical models used to study the aggregate behavior the
controlled loads and we discuss the results and findings ob-
tained from the simulations in Section 4. As we will show,
this new thermostat design is at once simpler than ex-
isting thermostats because it does not have any hysteresis
and provide synchronized discrete-time responses, but also
much more effective at providing demand response control
services that utility can aggregate to provide capacity and
ramping resources that have real value in wholesale elec-
tricity markets.

2. New Thermostat Design

The proposed thermostat design shown in Figure 1 fol-
lows the general paradigm used for all transactive control
systems developed to date. Three inputs are provided to
a thermostat. The consumer’s indoor air temperature set-
point TD and comfort preference k are set every few hours
from an occupancy schedule established by the consumer.
The real-time price PC is sent by the utility every 5 min-
utes and is derived from various sources such as the hourly
wholesale energy price signal, the real-time imbalance, and
local capacity constraint prices, if any. The price signal
is then filtered to separate the component with a time-
constant that matches the building mass response and a
time-constant that matches the air’s response, denoted as
the slow response and fast response components, respec-
tively. Both of these signals are then converted to a tem-
perature offset using the consumer’s comfort preferences.
The slow response temperature offset signal compared to
the estimated mass temperature TM (the design of which
is not in the scope of this paper) and added to the offset
from the fast response signal. These are added to the con-
sumer’s desired temperature setpoint TD, which is finally
compared to the observed indoor air temperature TA to

determine the control temperature TC . The signal is up-
dated only when a new price received, which in the current
embodiment is once every 5 minutes.

Once the control temperature TC is determined, the
remainder of the system is implemented in a manner that is
consistent with conventional thermostats, and thus could
be used to replace existing thermostat without changing
the design of the rest of the HVAC system. The only
difference with conventional thermostats systems is that
the controller output M is a discrete-time signal rather
than a continuous-time signal.

This design recognizes that a house has two fundamen-
tal responses, a fast one for the air and a slow one for
the mass. In addition, it recognizes that any price sig-
nal from the utility may have multiple components, in-
cluding a short term price signal emanating from distribu-
tion capacity or ancillary service markets, and a long term
price signal from bulk energy markets. The purpose of the
new thermostat is to control the long-term response of the
house based on the bulk energy price independently of the
short-term response of the house, which is based on the
short-term distribution capacity or ancillary services price
signal.

There are other possible responses that are not con-
trolled by this design, such as the ramping response. At
this time the price signals are not expected to arrive fre-
quently enough (e.g., ts < 1 minute) to allow control of a
house’s ramp response anyway. Such signals are not ex-
pected to include any primary regulation components for
the foreseeable future. So both this signal and the associ-
ated ramp response are not addressed in this paper.

Only the fast-response controller is studied in this pa-
per. The controller is based on the Olympic controller
design except that it uses a high-pass filter to remove the
super-hourly components of price variations, and sets the
deadband to zero while maintaining the controller output
signal for the duration of the market interval.

2.1. Methods and Simulations

The Olympic and Columbus demonstration projects
were successful in achieving their primary objectives: 1)
they shown the effectiveness of using price signals to man-
age peak loads using demand resources and 2) they showed
that consumers could retain control while providing the
resources necessary to accomplish the former. In addition
they showed that financial benefits accrue to both the util-
ities who installed and the consumers who participated in
the program.

In both projects, the demand curves were constructed
from the bids received from the responsive equipment in
households subject to the RTP tariff, as shown in Fig-
ure 2 (left). Unresponsive load corresponds to all the other
load on the feeder, including unresponsive equipment un-
der RTP tariff, all other customers on non-RTP tariffs, ser-
vices and losses. Bids were computed by the thermostats
based on measurements of the indoor air temperature such
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that

PB =
kPD

TM − TD
(TA − TD) + PA (1)

where PA is the long-term average price over the past 24
hours, PB is the bid price, PD is the long term price stan-
dard deviation, k is the customer’s comfort control set-
ting, TA is the measured indoor air temperature, TD is the
customer’s desired indoor air temperature, and TM is the
maximum cooling (TH) or minimum heating (TL) indoor
air temperature allowed. The quantity K = kPD

TM−TD
is re-

ferred to as the demand response control gain or comfort
gain in $/◦F, which is illustrated for cooling in Figure 2
(right).

The supply curve was constructed from bids received
by the various resources available, although in the case
of the Columbus demonstration there was only the feeder
supply. In the Olympic demonstration, supply included
distributed generation with “hot” capacity representing
must-run units that are already running and presumably
can’t or won’t stop and any units that have zero marginal
production cost, such as photovoltaic units. So called
“cold” units are those that have start-up costs included
in the marginal cost and therefore are held off until the
demand is sufficiently high to justify starting them.

In all existing embodiments of the transactive control
system the clearing price PC and quantity QC are found
at the intersection of the supply and demand curves. The
clearing price is then used to change the thermostat set-
point such that

TC = TD +K−1(PC − PA), (2)

as shown in Figure 2 (right). The thermostat then changes
the mode of the HVAC system according to the relation-
ship between the TA and TC in the conventional manner
based on whether the value of TD is based on the heating
or cooling setpoint.

3. Numerical Methods

Detailed simulations of load control using thermostats
confirmed some potentially significant technical problems
that were anecdotally observed in these embodiments of
the transactive control system. Among these was demand
response dispatch control drift. When the markets cleared
the measured load was initially very close to the cleared
load. However, during the five minutes that followed, be-
fore the next market clearing, the total load drifted away
from the cleared load. In the demonstrations, this was
observed as a deviation in the actual energy use over the
5-minute interval from the expected energy use.

This deviation suggests that the 5-minute market im-
plemented did not work well as a load dispatch “control”
system. The prevailing hypothesis is that the drift is the
result of changes in the diversity of thermostat states in-
duced by a common exogenous signal. These changes in

the state diversity of the loads were caused by the ag-
gregate load’s initial response to the change in price [29],
as shown in Figure 3 (top). Because diversity always in-
creases in the absence of an external forcing signal, the
aggregate load approaches the equilibrium diversity load
given the initial price signal and the prevailing conditions
at the time the load is being observed. Under peak load
conditions, this drift can be very significant, as illustrated
in Figure 3 (bottom), and can only be mitigated by a)
minimizing the degree to which diversity is affected by
control signals, or b) preventing the devices from changing
state during the 5 minute interval between price clearings.
Because option (a) would defeat the purpose of the load
control system, it would seem if diversity changes are the
cause of the problem then option (b) is the only mitigation
strategy available.

The overall structure of the real-time price demand re-
sponse simulations used to study the proposed solution is
illustrated in Figure 4 (left). For each study the location,
house design specifications and tariff are used to produce a
single house model, the performance of which is observed
using thermostat and metering telemetry. At the utility
level, a feeder is simulated with real-time pricing based on
the transactive control system used in the Olympic and
Columbus projects as shown in Figure 4 (right). However,
this paper focuses only on the open-loop behavior of the
utility’s demand response control system in the time inter-
val of a single price signal, i.e., less than 5 minutes. The
longer term closed-loop behavior of the utility demand re-
sponse control system will be examined in future work.

The numerical experiments were conducted in three
study cities located in the continental United States. Seat-
tle is in a northern cool climate and is chosen for mild
winters amenable to demand response using heat-pumps
and mild summers for which demand response will be
very limited. Phoenix and Miami are in southern hot cli-
mates, the former with dry summer conditions and the
latter with humid conditions, both of which can challenge
air-conditioning demand response. he detailed simulation
models and source code are provided in Appendix B of
[28].

3.1. Residential Model

The reference house design is a two-storey structure
with a crawlspace and an attic. The space conditioning
unit is an all-electric direct expansion heat-pump with a
single speed compressor and fan, which are sized according
to the design conditions for the study cities, Seattle, Mi-
ami and Phoenix. Depending on the city, the homes are
expected to consume between 18 and 21 MWh annually
based on the local energy code. Widely varying contribu-
tion to space conditioning costs for heating and cooling are
expected based on the locale. Thermostat setback sched-
ules are employed. Service hotwater is provided by electric
resistance coils. The thermal parameters of the reference
house are derived by GridLAB-D [28] using a standard
second-order thermal response [30].
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The basic house thermal parameters are chosen so that
homes comply with the performance-based energy code,
as allowed for by the 2012 International Energy Conserva-
tion Code (IECC) [31] and summarized in Table 1. These
values were chosen to ensure that simulations results are
for typical homes in the locales and are most likely to
participate in demand response programs that utilities de-
ploy. Where necessary GridLAB-D implements ASHRAE-
compliant system sizing methods to determine the capac-
ity and efficiency of heating, cooling and ventilation sys-
tems.

Internal gains are based on hourly ELCAP load shapes
[32]. Because the ELCAP load shape data does not in-
clude subhourly fluctuations, the simulations assume that
internal gains are constant for any given 5-minute interval
during which the response to a change in price is consid-
ered. Modifications to the 1993 ELCAP load shapes are
necessary to bring the magnitudes up to date based on
the 2013 Residential Building Stock Assessment (RBSA)
load surveys by the Northwest Energy Efficiency Alliance
(NEEA) as shown in Table 2 [33].

The residential occupancy schedule is chosen for a typi-
cal dual-income family with 2 children in school, as shown
in Table 3. The occupancy comfort settings are based
on the settings observed in the Columbus demonstration.
The indoor air temperature setpoints are normally on a
setback schedule. The simulation studies employ setback
schedules suitable for a two-worker middle-income family
with children in public school, as shown in Table 3.

3.2. Electricity Prices

The customer cost of electricity varies according to the
tariff employed to compute electricity price. Three tariffs
are used in this study, one for customers paying conven-
tional fixed energy price, one for customers paying time-
of-use prices, and one for customer paying real-time prices.

The tariffs used in the study differ from those extant in
the study cities to facilitate direct comparison of regional
response signals with otherwise comparable characteris-
tics. For example, in Seattle the average price of electricity
was 9.6 ¢/kWh in August 2014. Customers in Miami paid
around 12.1 ¢/kWh in the summer of 2014. Customers in
Phoenix paid an inclining block rate in 2014. However, for
the purpose of making results comparable the same tariff
structures are used for all three study cities with price
adjustments to maintain revenue neutrality.

4. Results and Discussion

The individual houses are simulated using GridLAB-
D [28] in the four study cases for fixed prices, time-of-use
prices with and without demand response, and real-time
prices with and without demand response for both the
transactive thermostat design and the new thermostat de-
sign. In the case of TOU homes, the response results from

the change of setpoint from an occupancy schedule to a tar-
iff schedule. In the case of the RTP homes the response re-
sults from the change from a 1◦F (0.6◦C) deadband around
each setpoint to the ±∆P/K comfort setpoint offset from
the heating or cooling setpoints, where ∆P is the normal-
ized price differential (PC − PA)/PD.

The energy cost impacts are shown in Figure 5. The
most significant impacts are in winter. This is partly due
to the judicious use of auxiliary heating in the responsive
thermostats. But significant consumer cost savings are
observed in all cases where demand response is a significant
potential resource.

The discomfort degree hours for cooling and heating
are obtained by computing the time-integral of indoor air
temperature above (cooling) and below (heating) the max-
imum and minimum allowable temperatures. In the case
of the fixed and TOU homes this range is TC + 1

2D and
TH − 1

2D, respectively. For the RTP and new thermostat
homes it is TC + 3/K and TH − 3/K, respectively.

The performance evaluation simulations are run with
nominal demand response, i.e., for TOU a 2◦F (1.1◦C)
setback schedule that coincides with the tariff schedule,
and for RTP comfort gain settings for night, home, and
away of K = 1.0, 1.5, and 0.5, respectively.

The energy use impacts are shown in Figure 6. The
TOU demand response shows a reduction in energy con-
sistent with customers who change their thermostats from
the unresponsive occupancy-driven setpoint schedules to
responsive tariff-driven setpoint schedules. These results
are consistent with those of other studies of TOU demand
response [7].

The RTP results for heating shows a very significant
energy use reduction but cooling results are mixed and
modest in comparison. It should be noted that increases in
energy consumption were also observed in the Olympic and
Columbus results, although the magnitude of the increase
was much greater in the Olympic results because of an
error in the auxiliary heating control that originated in
the conventional thermostat retrofitted for TOU and RTP
operations and persists in the fixed and TOU controllers
in this study. The RTP controller is corrected and its
operation does not reflect the errors present in the Olympic
results.

In the Olympic study an increase in energy of about
16% was observed for heating conditions [15]. This in-
crease is believed to be caused by the unnecessary use of
auxiliary heating during thermostat set-up events in ex-
cess of 2◦F (≈ 1.1◦C). To date there has been no attempt
to rigorously study what the Olympic results would have
been had the auxiliary heating control not be misapplied.
It should be noted that this paper has completely cor-
rected the auxiliary control problem only in the RTP and
new thermostat, and the auxiliary heating can be engaged
during thermostat set-up in the winter. In any case this
result may provide initial evidence of what the Olympic
study would have yielded had the auxiliary heating con-
trol been implemented correctly then.
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The Columbus study also found increases in energy
use in cooling conditions of about 1% when congestion
pricing was extant. Decreases of about 5% were deduced
when congestion pricing was not in effect [16]. Because
congestion pricing typically expressed itself in short-term
price volatility, the summer results are consistent with the
observations from the Columbus study.

In general the heating energy use impacts of the new
thermostat are similar to those of the RTP thermostat.
However, the cooling energy use impacts of the new ther-
mostat are approximately double those of the RTP ther-
mostat. It is not clear exactly what is the root cause of this
increase, but it is possibly related to so-called “round-trip”
efficiency considerations that result from the increased use
thermal storage as a proxy for electric energy storage [34].
These round-trip efficiency impacts may be increased by
the minimum 5-minute runtimes under the new thermo-
stat, which preferentially increases the amount of thermal
storage being used for short-term events relative to long-
term events.

The consumer comfort impacts are examined using two
performance metrics. The heating/cooling relative set-
point errors are computed as the standard deviation of
the air temperature with respect to the prevailing setpoint.
The fixed and TOU setpoint errors are computed with re-
spect to the deadband of D = 1◦F (≈ 0.6◦C), so only
air temperatures observed outside ± 1

2

◦
F (≈ ±0.3◦C) are

considered. Such errors occur each time the setpoint is
changed either from a change in occupancy schedule or
price change, which explains why the setpoint errors are
relatively high for both fixed and TOU controls.

The RTP and new thermostat control setpoint errors
shown in Table 4 account for the comfort setting k = 1.0
and thus allow for larger fluctuations of the indoor air tem-
perature, provided it does not go outside the consumer’s
comfort preference. Because the price signal is generated
from a Gaussian distribution, we expect the RTP signal
to deviate by more than 3σ less than 1% of the time. The
new thermostat can deviate more because of the increased
probability of indoor air temperature overshoot. Such a
deviation occurs less than 1% the time with the new ther-
mostat.

We also apply a more sensitive evaluation of the com-
fort performance using the discomfort degree hour method,
as shown in Figure 7. The results suggest that while the
new thermostat is slightly less able to maintain the con-
sumer’s preferred comfort, it is very nearly as good as the
RTP thermostat when compared to the TOU thermostat
control strategy or indeed the conventional fixed thermo-
stat.

A feeder-scale simulation of 100 homes in Phoenix is
used to illustrate the open-loop response of the load to
changes in the price signal. A sample of the output is
shown in Figure 8. The result clearly illustrates how the
new thermostat (blue) remedies the RTP thermostat drift
problem (red) as they respond to the price signals (black).
Note that the feeder load control is simulated as an open-

loop control and thus the response gain K is not affected
by a market clearing process. Therefore any price above
average results in load shedding and any price above av-
erage will result in load running. This will be addressed
in future work when the bidding system is implemented to
close the feeder load control loop.

4.1. Principal Findings

The simulations studies show that the new thermostat
offers benefits to both consumers and utilities. The prin-
cipal features of the new thermostat design are as follows.

No Aggregate Load Drift: The new thermostat elim-
inates the hysteresis arising from the deadband in
the Schmitt trigger control element used in conven-
tional, TOU and RTP thermostats. As a result the
new thermostat does not exhibit an aggregate load
drift behavior between price clearing events in the
market.

Consumer Comfort Control: The new thermostat main-
tains satisfactory control of indoor air temperature.
The new thermostat enhances the favorable economic
and thermal control characteristics of conventional,
TOU and RTP thermostats. Most significant is the
new thermostat allows consumers to specify a com-
fort preference for each occupancy mode, e.g., home/awake,
night/sleep, away/work, and by extension any others
the consumer might add.

Load shifting and Cost Savings: The new thermostat
provides the desired energy shifting and cost savings
properties required for real-time price-responsive ther-
mostats and enhances those found in the conven-
tional and TOU thermostat, especially in the short-
term response time intervals.

Demand Elasticity: During peak times, the new ther-
mostat gives the entire residential load an energy
demand elasticity between 10% to 25%. Larger total
house demand elasticities could be achieved if a sim-
ilar control strategy were adopted for other thermo-
static end-use load such refrigerators, freezers, water
heaters, dish washers, clothes washers, and dryers.

Transactive Control Compatibility: The new thermo-
stat’s demand response implementation is consistent
and compatible with that the RTP thermostat de-
mand response design used in the Olympic and Colum-
bus transactive control studies. Thus it can operate
in the real-time distribution capacity auction sys-
tem and can provide all the benefits associated with
transactive systems, and particularly those environ-
mental benefits associated with increased integration
of renewable resources.

The most significant benefit arises from the overall im-
pact of increased participation of demand response as a
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controllable resource in electric system operation. Demand
response can be regarded as one of the most cost-effective
intermittency mitigation resources available to grid oper-
ators, provided it can be actuated quickly and accurately
[13] and given the right economic signals at the right time
[35]. The results of this work suggests that with appropri-
ately designed controls, residential thermostats can pro-
vide both of these key characteristics at scale and at rel-
atively low cost. Indeed, it would seem that simpler and
easier to use thermostat designs may indeed offer greater
intermittent resource mitigation potential than more so-
phisticated and difficult to use thermostats.

5. Conclusions

This paper presents an evaluation the performance of
a new control strategy for residential heating and cooling
thermostats that support the transactive control system
concept. The new thermostat outperforms conventional
thermostats by providing significant fast-acting demand
response resources and does so in a manner that is highly
conducive to aggregate load control by utilities using real-
time price signals. The new thermostat has all the features
and advantages of real-time price (RTP) and time-of-use
(TOU) thermostats and overcomes many disadvantages
typically associated with them.

From the utility’s perspective the new thermostat of-
fers one very significant advantage over the other demand
response thermostat designs. The new thermostat pro-
vides significantly better control tracking of the load for
the price given. In particular, the heating/cooling load un-
der control of the new thermostat will remain at the level
associated with the price given for the entire duration of
the pricing time-interval. Unlike conventional, TOU and
RTP thermostats, which cause the total load to change
when the deadband is exceeded, the new thermostat main-
tains the system load as dispatched until the new price is
received. Thus the impact of the error is shifted from
the utility where it cannot be addressed without resorting
to more complex bid/response compensation/anticipation
strategies to the consumer where its impact can be miti-
gated by the consumer’s comfort setting.
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Figure 1: Proposed new thermostat design

Figure 2: Capacity market clearing (left) and thermostat bid/set (right) mechanisms

9



Figure 3: Thermostat state diversity evolution cause (top) and example (bottom) of demand response control drift (Data courtesy Jason
Fuller, Pacific Northwest National Laboratory)

Figure 4: Single house simulation (left) and utility feeder simulation (right) structures
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Fixed TOU RTP New
($/month) ($/month) (%) ($/month) (%) ($/month) (%)

Seattle winter 180.1 146.2 −18.8 154.4 −14.3 155.8 −13.5
Seattle summer 98.1 99.5 +1.3 94.3 −4.0 96.6 −1.6
Miami summer 144.8 143.3 −1.0 139.0 −4.0 139.7 −3.5
Phoenix summer 175.0 173.8 −0.7 167.1 −4.5 168.4 −3.8

Figure 5: Energy cost with demand response active
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Fixed TOU RTP New
(kWh/day) (kWh/day) (%) (kWh/day) (%) (kWh/day) (%)

Seattle winter 79.4 75.9 −4.4 71.2 −10.3 72.2 −9.1
Seattle summer 43.3 43.3 +0.1 42.9 −0.9 44.1 +2.0
Miami summer 65.6 63.8 −2.7 66.2 +0.9 66.5 +1.3
Phoenix summer 75.9 74.2 −2.2 76.3 +0.6 76.8 +1.2

Figure 6: Energy use with demand response active
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Fixed TOU RTP New
(◦C.h) (◦C.h) (◦C.h) (◦C.h)

Seattle winter 46 4 12 11
Seattle summer 1 1 2 1
Miami summer 2 2 22 35
Phoenix summer 2 2 27 37

Figure 7: Heating and cooling discomfort degree hours (±0.6◦C)
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Figure 8: Feeder open-loop load control response to price
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Table 1: House design parameters

Parameter Seattle Miami Phoenix
Floor area (m2) 223 223 223
Envelope conductance(W/◦C) 283 227 227
Indoor air heat capacity (kJ/◦C) 1931 1735 1735
Building mass surface conductivity (W/◦C) 5884 5884 5884
Building mass heat capacity (kJ/◦C) 7828 7033 7033

Table 2: ELCAP loadshapes update with RBSA results

Winter Summer
End-use ELCAP RBSA Change ELCAP RBSA Change

(kWh/d) (kWh/d) (pu) (kWh/d) (kWh/d) (pu)

Lights See note (1) 3.62 − − 2.75 −
Plugs 14.47 21.71 1.50 11.00 16.50 1.50
Dishwasher 0.36 0.60 1.66 0.31 0.60 1.95
Freezer 3.68 1.40 0.38 5.03 1.91 0.38
Refrigerator 3.90 1.68 0.43 4.60 1.98 0.43
Microwave See note (2) 0.17 − − 0.14 −
Range 1.43 0.80 0.56 1.14 0.64 0.56
Waterheater 14.34 8.03 0.56 11.21 6.28 0.56
Clotheswasher 0.31 0.15 0.50 0.28 0.14 0.50
Dryer 3.12 2.00 0.64 2.56 1.64 0.64

Notes:

(1) In ELCAP lights and plugs are combined

(2) In ELCAP all cooking is combined

Table 3: Occupancy and thermostat setpoint schedule

Occupancy Weekday Weekend Heating Cooling Comfort
(◦C) (◦C) $/◦C

Night 20:00−6:00 23:00−7:00 20 24 0.56

Home
6:00−8:00

7:00−23:00 22 26 0.83
18:00−22:00

Away 8:00−18:00 − 19 27 0.28

Table 4: Heating and cooling relative setpoint errors

Heating Cooling
Fixed TOU RTP New Fixed TOU RTP New
(%) (%) (%) (%) (%) (%) (%) (%)

Seattle winter 6.0 1.2 0.4 0.2 0.0 0.0 0.0 0.0
Seattle summer 0.5 < 0.1 0.2 0.3 0.3 0.3 0.0 0.0
Miami summer 0.0 0.0 0.0 0.0 0.7 0.9 < 0.1 0.2
Phoenix summer 0.0 0.0 0.0 0.0 0.8 1.1 0.2 0.3
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