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Abstract— The HVAC (Heating, Ventilation, and Air-
Conditioning) system of commercial buildings is a complex
system with a large number of dynamically interacting compo-
nents. In particular, the thermal dynamics of each zone are
coupled with those of its neighboring zones. In this paper,
we study an agent-based approach to model and control
commercial building HVAC system for providing ancillary
services to the power grid. In the multi-agent-building-system
(MABS), individual zones are modeled as agents that can
communicate, interact, and negotiate with one another to
achieve a common objective. We first propose a distributed
characterization method on the aggregate airflow (and thus
fan power) flexibility that the HVAC system can provide to
the ancillary service market. A Nash-bargaining-based airflow
allocation strategy is then proposed to track a dispatch signal
while respecting the preference and flexibility of individual
zones. Moreover, we devise a distributed algorithm to obtain the
Nash bargaining solution via dual decomposition. Numerical
simulations illustrate that the proposed distributed protocols
are much more scalable than centralized approaches especially
when the system becomes larger and more complex.

I. INTRODUCTION

Renewable energy is “free” but at a cost of high un-
certainty and variability. The vast integration of renewable
energy resources into the grid creates daunting challenges for
the system operator to maintain the stability and reliability of
the power grid only through supply-side control. Demand-
side control presents a novel and viable way to assist in
managing the balance between supply and demand in the
power grid. Among different demand-side resources, build-
ings represent about 74% of the total electricity consumption
in the United States, where residential and commercial
buildings respectively accounting for 38% and 36% [1], [2].
In particular, there are about 5.6 million commercial build-
ings, comprising 87.4 billion square feet of floorspace. The
massive power consumption and enormous thermal storage
enable commercial buildings as a great flexible resource
for providing various grid services such as peak demand
reduction [3], [4] and ancillary services [5]–[8], which are
necessary to enable deep penetration of renewables.

In order to provide ancillary services to the power gird,
regulating resources in most Independent System Operators
(ISOs) in the United States are required to have a minimum
resource size (e.g., 0.5 MW in California ISO). When a
group of commercial buildings is considered for providing
ancillary services, the load aggregator needs to determine
the aggregate flexibility of this group and then bid into the
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Fig. 1. Aggregation of commercial buildings for ancillary services.

ancillary service market. After the system operator collects
all the bids, a co-optimization of energy and ancillary ser-
vices is conducted to determine the market clearing price
and the awarded capacity for each resource. In response to
the grid requirements at run-time, the system operator will
dispatch a grid signal (that is within the awarded capacity
limit) to the load aggregator. The load aggregator then
decides how to allocate the total dispatch power to different
buildings, and each building is obliged to follow the allocated
power signal. A schematic of using a group of commercial
buildings for ancillary service provision is depicted in Fig. 1.
There are two central problems to be resolved in order
to enable commercial buildings participate in the ancillary
service market. The first one is how to characterize the
power flexibility of a multi-zone commercial building. The
second one is how to control its power consumption so that
it can follow a dispatch power signal while respecting the
preference and comfort of individual zones.

It has been shown in [6], [9] that commercial build-
ing HVAC supply fan (which is controlled by a variable
frequency drive) is a great flexible resource for providing
ancillary services due to its fast and accurate responding
characteristics. In [6], it has been estimated that 15% of
the rated fan power can be used to follow a high-frequency
regulation signal. However, this flexibility is estimated by
only considering the proposed controller while requiring little
change on the indoor temperature. If the allowed temperature
deviation is large, the available flexibility from commer-
cial HVAC system might be much larger. Another type of
study focuses on using centralized Model Predictive Control
(MPC) method to characterize the flexibility of commercial
buildings and manage its energy consumption [10], [11].
Despite of its powerfulness, this kind of approach might not
be scalable; it could not be migrated straightforwardly from
one building to another one with a different type, structure,
or size. Additionally, developing an accurate monolithic



whole-building model is not a trivial task. Moreover, the
computational burden becomes overwhelming for buildings
with a large number of zones. On the other hand, in order to
track a dispatch signal, different control strategies have been
proposed for commercial buildings [6], [12], [13]. However,
these approaches could not take into account the different
preferences of individual thermal zones. For example, in [6],
the total airflow is proportionally distributed to each zone.
If the supply fan is aggressively providing ancillary service,
which means the airflow change from baseline is relatively
large, the proportional allocation strategy might not be fair,
and respect each zone’s preference and flexibility.

To tackle the above challenges, we propose in this paper
a scalable, distributed flexibility characterization method for
multi-zone commercial buildings, and a fair, and efficient
bargain-based airflow allocation strategy to respect the pref-
erence and flexibility of each zone. We first study an agent-
based approach to model multi-zone commercial buildings.
In this multi-agent-building-system, each zone is modeled as
an agent, and we design distributed coordination protocols to
enable them to interact and negotiate locally while achieving
a global objective. There are many benefits of modeling a
commercial building as a multi-agent-system. First, zonal
dynamics are easy to develop and calibrate. Second, it is
flexible, modular, and scalable. The proposed method can be
easily applied to heterogeneous buildings. Third, it allows
each zone to be more adaptive to structure change, external
disturbances, and setting adjustment. Moreover, compared
to centralized flexibility characterization approaches, our
approach relies on that each zone characterizing its own
flexibility based on local information, and thus, the modeling
and computational complexities are much lower.

We next propose a Nash-bargaining-based cooperative air-
flow allocation strategy for multi-zone commercial buildings.
The Nash Bargaining Solution (NBS) is an attractive ap-
proach for solving cooperative resource allocation problems
as it balances fairness and efficiency [14]. Unlike non-
cooperative game-theoretic approaches in which agents make
decisions independently and selfishly, NBS is a unique, and
Pareto-efficient solution that enables agents to collaboratively
make decisions to maximize the social welfare. Moreover,
using dual decomposition, a distributed bargaining protocol
is developed for individual zones to cooperatively reach the
optimal airflow allocation, while respecting the preference
and flexibility of each zone.

The remainder of this paper unfolds as follows. In Section
II, we study an agent-based modeling approach for multi-
zone commercial building HVAC system. Distributed flexi-
bility characterization and resource allocation strategies are
proposed in Section III and Section IV respectively. Section
V is devoted to numerical experiments. The paper ends with
conclusions and future work in Section VI.

II. AGENT-BASED MODELING OF MULTI-ZONE
COMMERCIAL BUILDINGS

The configuration of a typical multi-zone commercial
building HVAC system is depicted in Fig. 2. In this section,
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Fig. 2. Schematic of a typical commercial building HVAC system that
serves 11 zones.

we study an agent-based modeling approach for multi-zone
commercial buildings.

Definition 1: A Multi-Agent-Building-System (MABS)
refers to a multi-zone commercial building, in which each
thermal zone is modeled as an agent. Their interaction
topology is described by an information graph G = (N , E)
with nodes (zones or agents) set N = {1, . . . , n} and edge
set E ⊂ N × N . An edge (i, j) exists if zone i and zone
j are physically adjacent. The set of neighbors of zone i is
denoted as Ni := {j ∈ N : (i, j) ∈ E}. �

The thermal dynamic model of a n-zone building can be
constructed by interconnection of a network of Resistance-
Capacitance (RC) models of individual zones [6], [15], [16].
The thermal dynamics of the ith zone (i ∈ N ) are described
by the following RC model:

Ci
dT i(t)

dt
=
To − T i(t)

Ri
+
∑
j∈Ni

T (i,j)(t)− T i(t)
R(i,j)

+ cpm
i(t)(T is(t)− T i(t)) +Qi(t), (1a)

C(i,j) dT
(i,j)(t)

dt
=
T i(t)− T (i,j)(t)

R(i,j)
+
T j(t)− T (i,j)(t)

R(i,j)
, (1b)

where the variables and parameters, as well as their units, are
described in Table I. The first term 1

Ri (To−T i) on the RHS
(Right Hand Side) of (1a) represents the heat conduction
between zone i and the outside environment, the second
term

∑
j∈Ni

1
R(i,j) (T (i,j) − T i) describes the heat exchange

between zone i and its surrounding inside walls that separate
itself from neighboring zones, the third term cpm

i(T is −T i)
denotes the heat removal by the air conditioner, and the last
term Qi is the heat gain from reheating, solar, occupants,
lights, etc. Similarly, the first term 1

R(i,j) (T i−T (i,j)) on the
RHS of (1b) represents the heat exchange between zone i
and the wall separating zone i and zone j, and the second
term 1

R(i,j) (T j − T (i,j)) denotes the heat exchange between
zone j and the wall separating zone i and zone j.

In this paper, we consider the supply fan as the only source
of flexibility for ancillary services provision, as in [6], [9],
[17]. The supply fan is one of the most important components
in the HVAC system. Like a heart that pumps blood through
a human body, the fan distributes the supply air (usually
at 12.8oC) throughout the building over ducts. The power
consumption of the supply fan is approximately proportional
to the cube of its supply airflow [17], [18],

P (t) = c(m(t))3, (2)



TABLE I
DESCRIPTION OF PARAMETERS OF BUILDING THERMAL DYNAMICS

Parameter Description Unit
T i zone i’s indoor temperature ◦C
T (i,j) inside temperature of the wall that separates

zone i and zone j

◦C

Ci zone i’s thermal capacitance J/ ◦C
C(i,j) thermal capacitance of the wall that sepa-

rates zone i and zone j

◦C/W

Ri thermal resistance of the wall that separates
zone i and outside

◦C/W

R(i,j) thermal resistance of the wall that separates
zone i and zone j

◦C/W

mi zone i’s supply airflow kg/s
T is zone i’s supply air temperature ◦C
T i,∗ zone i’s temperature setpoint ◦C
cp specific heat of air J/g/◦C
To outside air temperature ◦C
Qi zone i’s heat gain from reheating, solar, etc. W

where c is a constant, and m(t) =
∑
i∈N m

i(t) is the total
supply airflow. As a result, given a value of the fan power,
it can be straightforwardly translated to the corresponding
supply airflow, and vice versa.

In this paper, we study two central problems that enable
buildings to provide ancillary services to the grid: (1) char-
acterization/quantification of the fan power (and thus supply
airflow) flexibility that can be offered to the grid, (2) optimal
allocation of the supply airflow to track a dispatched fan
power signal, while respecting the preference and flexibility
of each zone.

III. DISTRIBUTED FLEXIBILITY CHARACTERIZATION

In this section, we study characterization of the aggregate
airflow flexibility of a multi-zone commercial building. In
particular, we aim to quantify the maximum, minimum,
and the baseline airflow requirements in a considered time
horizon, while maintaining the indoor temperature of each
zone within a user-specified range. Recently, Model Predic-
tive Control (MPC) has become a popular tool for building
operation and control [11], [19]. However, for a large com-
mercial building with many zones, the number of variables
and constraints becomes inhibitally large, which makes it
challenging to use a centralized MPC-based approach to
characterize the airflow flexibility. Furthermore, the cen-
tralized characterization approach is not scalable, since it
strongly depends on the whole-building model, and it cannot
be easily migrated from one building to another one with a
different structure, configuration, or size.

To this end, we propose a multi-agent-based distributed
airflow flexibility characterization method. This multi-agent-
based approach represents a natural problem decomposition,
and is able to find innovative solutions by enabling agents to
interact locally to achieve a global objective. In the MABS,
each zone (agent) utilizes MPC to characterize its own
flexibility only based on its own zonal dynamics, and treats
the temperatures of its neighbors as exogenous variables,
which can be obtained by iteratively communicating with
its neighboring zones.

We consider a discrete time system, and use t to index the

current time step. The thermal model of each zone can be
written compactly in the following discrete form

T it+1 = f i(T it , u
i
t, w

i
t),

where the input uit ∈ R is the supply airflow rate mi
t, and

the disturbance vector wit = [Qit, To,t, T
j∈Ni

t ] ∈ R2+|Ni|

contains the zonal heat gain, the outside air temperature,
and the temperatures of neighboring zones. In this paper, we
assume there are K time steps in each prediction horizon,
and we use k ∈ K = {0, 1, · · · ,K − 1} to index the kth

step. For each zone, we aim to characterize the minimum
and maximum airflow requirements in the prediction horizon
to maintain its zone temperature within the user-specified
temperature band.

We first consider characterization of the minimum airflow
over the prediction horizon. More specifically, for each i ∈
N , we estimate its minimum airflow, {mi

t+k}k∈K, using the
following algorithm1:

min
mi

t→t+k−1

K−1∑
k=0

ωit+k m
i
t+k (3a)

subject to: T it+k+1 = f i(T it+k, u
i
t+k, w

i
t+k), ∀ k ∈ K, (3b)

T i,−t+k ≤ T
i
t+k ≤ T i,+t+k, ∀ k ∈ K, (3c)

mi,−
t+k ≤ m

i
t+k ≤ mi,+

t+k, ∀ k ∈ K, (3d)

T i,−t+K ≤ T
i
t+K ≤ T i,+t+K , (3e)

where ωit+k is a non-negative weight negotiating the impor-
tance of mi

t+k at time step t+k, and satisfies
∑
k∈K ω

i
t+k =

1. Additionally, T i,−t+k, and T i,+t+k are respectively the lower
and upper temperature bounds at time step t+ k. Moreover,
mi,−
t+k is the minimum airflow that is imposed to guarantee

a minimal ventilation level, and mi,+
t+k is the maximum

airflow limited by the size of the VAV box. Similarly, we
characterize the maximum airflow, {mi

t+k}k∈K, using the
following algorithm:

max
mi

t→t+k−1

K−1∑
k=0

ωit+k m
i
t+k (4a)

subject to: T it+k+1 = f i(T it+k, u
i
t+k, w

i
t+k), ∀ k ∈ K, (4b)

T i,−t+k ≤ T
i
t+k ≤ T i,+t+k, ∀ k ∈ K, (4c)

mi,−
t+k ≤ m

i
t+k ≤ mi,+

t+k, ∀ k ∈ K, (4d)

T i,−t+K ≤ T
i
t+K ≤ T i,+t+K . (4e)

However, for each zone i ∈ N , the above characterizations
rely on the temperature profiles of its neighboring zones in
the prediction horizon, i.e., {T jt+k}

j∈Ni

k∈K . In turn, zone i’s
temperature evolution {T it+k}k∈K also impacts the charac-
terizations of its neighbors. Upon observing this coupling
relationship, we propose in this paper a distributed iterative
characterization approach. At the initial step, for each zone
i ∈ N , we assume the temperatures of its neighboring zones
in the prediction horizon is the same as their respective
current temperature, i.e., T jt+k = T jt for all k ∈ K, and j ∈

1We comment that additional constraints can be added to customize the
characterization. For example, if the minimum airflow in the prediction
horizon are required to be equal, then constraint mi

t+k == mi
t+l for all

k, l ∈ K can be imposed.



Fig. 3. Information exchange during distributed flexibility characterization.

Ni. Next, we use algorithms (3) and (4) to characterize the
airflow flexibility of each zone. At the same time, we obtain
its temperature profiles from (3) and (4), and denote them as
{T it+k}k∈K and {T it+k}k∈K respectively. These temperature
profiles are then communicated to its neighboring zones
(see Fig. 3 for an illustrating example). With these updated
temperature profiles, each zone characterizes its airflow
flexibility and obtain new temperature profiles. We repeat
the above process until the downward and upward airflow
flexibility of each zone converges. The distributed iterative
airflow characterization method is given in Algorithm 1. Note
that this algorithm is fully distributed; it can be executed in
a parallel manner.

Algorithm 1 Distributed Flexibility Characterization Method
Require: ε;

1: assign mi
t+k = 0, mi

t+k = 0;
2: repeat
3: for i=1:n do
4: assign M i

t+k = mi
t+k, M

i

t+k = mi
t+k, ∀ k ∈ K;

5: get {T jt+k, T
j

t+k}
j∈Ni

k∈K from neighbors;
6: characterize {mi

t+k,m
i
t+k}k∈K using (3) and (4);

7: obtain {T it+k, T
i

t+k}k∈K from (3) and (4);
8: transmit new temperature profiles to its neighbors;
9: end for

10: until maxi(‖M i
t+k −mi

t+k‖+ ‖M i

t+k −mi
t+k‖) ≤ ε

11: return {mi
t+k,m

i
t+k}k∈K for all i;

Moreover, we use a similar iterative distributed MPC
approach to predict the baseline airflow and fan power. In
particular, each zone executes the following algorithm and
exchange temperature profiles with its neighboring zones to
characterize its baseline airflow in the prediction horizon,

min
mi

t→t+k−1

K−1∑
k=0

(
(T it+k − T i,∗t+k)

2 + ωimi
t+k

)
(5a)

subject to: T it+k+1 = f i(T it+k, u
i
t+k, w

i
t+k), ∀ k ∈ K, (5b)

mi,−
t+k ≤ m

i
t+k ≤ mi,+

t+k, ∀ k ∈ K, (5c)

where T i,∗t+k is the desired temperature of Zone i at time step
t+k, and ωi is a non-negative weighting parameter balancing

temperature tracking error and energy saving. After conver-
gence from iterations, the obtained solution {mi,∗

t+k}k∈K is
the baseline airflow of Zone i in the predicted horizon. As a
result, the baseline fan power is given by {P ∗t+k}k∈K, where
P ∗t+k = c(

∑
im

i,∗
t+k)3. The baseline fan power will be served

as a basis compared to which the HVAC system determines
how much more or less power to consume in order to track
a dispatched grid signal. If the actual power consumption is
greater than the baseline, it “absorbs” power from the grid;
if it is smaller, it “discharges” power to the grid. This makes
building behave as a virtual storage to absorb the uncertainty
of the grid.

Definition 2: The aggregate airflow flexibility from all
zones is defined as a set of airflow trajectories, {mt+k}k∈K,
such that

Ft =
{
mt+k, ∀ k ∈ K

∣∣∑
i

mi
t+k ≤ mt+k ≤

∑
i

mi
t+k

}
.

Correspondingly, the aggregate fan power flexibility that can
be offered to the grid is defined as

Pt =
{
Pt+k, ∀ k ∈ K

∣∣P t+k ≤ Pt+k ≤ P t+k}.
where P t+k = c(

∑
im

i
t+k)3 and P t+k = c(

∑
im

i
t+k)3.

�
The upward flexibility {P t+k − P ∗t+k}k∈N and downward
flexibility {P ∗t+k −P t+k}k∈N are the capacities that can be
bid into the ancillary service market.

So far, we have characterized the fan power flexibility
that a multi-zone commercial building can offer to the grid.
However, given a dispatch power profile {Pt+k}k∈K ∈ Pt,
the question of how to allocate the supply airflow so that
the fan power consumption tracks the dispatch signal while
respecting the flexibility of each zone is not answered.
Moreover, different zones in a commercial building have
different preferences or priorities. For instance, the indoor
air quality requirement of a laboratory zone might be more
stringent than a cafeteria zone. Therefore, the allocation
of supply airflow must respect the flexibility as well as
the preference of each zone. We propose in next section
a bargaining-based distributed airflow allocation strategy to
achieve the above objectives.

IV. BARGAIN-BASED AIRFLOW ALLOCATION STRATEGY

In this paper, we study a single-stage airflow allocation
problem, which only focuses on the current time step t.
Bargaining is a process in which players achieve interim
settlements step-by-step, where each settlement is a starting
point for further negotiations. Let S ∈ Rn be a convex and
compact set comprising all the outcomes of a bargain, and
d = (d1, · · · , dn) ∈ Rn be the disagreement points that
are assigned to the players if a bargain (negotiation) is not
successful.

Definition 3: A bargaining solution is a mapping B : S →
Rn. We call a bargaining solution q = (q1, · · · , qn) ∈ S
is Pareto-efficient if there does not exist a solution q̄ =
(q̄1, · · · , q̄n) ∈ S such that

ui(q̄i) ≥ ui(qi), ∀ i ∈ N ,



where ui is the utility function of player i. A bargaining
solution q ∈ S is called ε Pareto-efficient if

‖ui(qi)− ui(q̄i)‖ ≤ ε, ∀ i ∈ N ,
where q̄ ∈ S is a Pareto-efficient solution, and ε is a small
positive number. �

Consider a n-zone commercial building bargaining over
allocating a dispatched total supply airflow m∗t . Each zone
has airflow requirement mi

t ∈ [mi
t,m

i
t], where mi

t,m
i
t are

respectively the minimum and maximum airflow require-
ments of Zone i at time step t. With a change of variable,
qit = (mi

t−mi
t)/(m

i
t−mi

t), we scale the airflow requirement
of each zone so that qit ∈ [0, 1] for all i ∈ N . The preference
of each zone at time step t is modeled by a utility function
uit(q

i
t) : [0, 1]→ R+ with airflow allocation qit. In this paper,

we assume each utility function is concave, differentiable,
and uit(q

i
t) = 0 if qit = 0.

From a game theoretic perspective, each player in a
negotiation must always keep in mind that a strategy of
trying to unilaterally improve its own return at the expense
of the other players will typically be self-defeating [20].
Therefore, we consider a cooperative game, in which each
zone is motivated to negotiate with others in a collaborative
way to jointly maximize their utility functions. To solve the
airflow allocation problem, we consider the Nash Bargaining
Solution (NBS) concept. Formally, the Nash bargaining
problem is formulated as

max
qit’s

n∏
i=1

uit(q
i
t) (6a)

subject to:
n∑
i=1

mi
t + (mi

t −mi
t)q

i
t = m∗t , (6b)

0 ≤ qit ≤ 1, ∀ i ∈ N , (6c)

where the objective function is referred to as the Nash prod-
uct. Additionally, we have assumed the disagreement points
to be zero. The solution to the Nash bargaining problem (6)
is a fair and Pareto-efficient allocation that satisfies the four
axioms of Nash [14]. However, no bargaining procedure was
given to tell agents how to bargaining among themselves
to reach the Nash bargaining solution. Moreover, 70% of
the commercial buildings in the United States don’t have
building automation systems (BASs) that can be used to solve
the Nash bargaining problem (6). Therefore, a distributed
protocol is strongly preferred to enable zones to compute
and interact locally to reach the Nash bargaining solution.

To this end, we propose in this paper a distributed bar-
gaining protocol for zones to negotiate among themselves
to reach the optimal airflow allocation [21]. Since the utility
functions are concave and non-negative, the Nash bargaining
solution to (6) is equivalent to that of the following convex
optimization problem,

max
qit’s

f(q1t , · · · , qnt ) =
n∑
i=1

log(uit(q
i
t)) (7a)

subject to:
n∑
i=1

mi
t + (mi

t −mi
t)q

i
t = m∗t , (7b)

0 ≤ qit ≤ 1, ∀ i ∈ N . (7c)

Upon observing the separability of the cost function and
constraints, our insight is to take advantage of the dual
decomposition technique. Following straightforward algebra
from [22], [23], it can be shown that the optimal solution
of (7) can be obtained by using the following iterative
procedure. First of all, we broadcast an initial value λ0 of
the dual variable to all zones. Each zone then locally solves
the following convex optimization problem

max
qit

gi(λk) = log uit(q
i
t)− λkmi

t (8a)

subject to: 0 ≤ qit ≤ 1, ∀ i ∈ N , (8b)

where mi
t = mi

t + (mi
t −mi

t)q
i
t. The dual variable is then

updated locally using the following gradient decent algorithm

λik+1 = λik − γsik, (9a)

sik = m∗t −
n∑
i=1

(mi
t + (mi

t −mi
t)q

i,∗
t

)
, (9b)

where γ > 0 is an appropriately small step size, and
qi,∗t is the optimal solution of (8). We repeat (8)-(9) until
convergence is achieved, i.e., maxi ‖sik‖ ≤ ε for a small
positive number ε. The iterative gradient decent algorithm is
summarized in Algorithm 2.

Algorithm 2 Distributed Nash Bargaining Protocol
Require: ε,m∗t , and λ0;

1: assign k = 0;
2: repeat
3: for i=1:n do
4: solve optimization problem (8);
5: update subgradient sik using (9);
6: assign k = k + 1;
7: end for
8: until maxi ‖sik‖ ≤ ε
9: return qi,∗t for all i ∈ N ;

Remark 1: The above iterative process describes a bar-
gaining/negotiation process for zones to allocate a dispatched
total airflow. Given an initial “price” λ0 on the airflow, each
zone evaluates its own interest by solving (8), and bargaining
for a new allocation mi,∗

t = mi
t + (mi

t−mi
t)q

i,∗
t . They then

jointly propose a new allocation proposal (m1,∗
t , · · · ,mn,∗

t ).
If there is still airflow surplus, i.e., sk > 0, then a new
price is constructed using (9), and zones repeat the previous
bargaining process. This process is repeated until all zones
are satisfied with their current proposals or there is no more
airflow surplus. It is interesting to see that the above proce-
dure also describes a non-cooperative game, in which agents
independently and selfishly maximize their own benefits,
which are defined by the difference between the scaled pref-
erence, log uit(q

i
t), and the cost of airflow consumption, λkmi

t

[24]. The cooperative and non-cooperative bargaining games
have intimate relationship: the non-cooperative game serves
as a procedure to obtain the cooperative result, while the
cooperative bargaining solution serves as the non-cooperative
equilibrium [25]. �



V. NUMERICAL EXPERIMENTS

In this section, we compare our proposed distributed
flexibility characterization and resource allocation methods
with centralized approaches, and demonstrate the efficacy
and scalability of our distributed methods.

A. Centralized Airflow Flexibility Characterization

In this section, we first consider a centralized MPC ap-
proach as a benchmark to characterize the airflow flexibility
of multi-zone commercial buildings. The thermal model (1)
of a multi-zone building can be written compactly as

xt+1 = f(xt, ut, wt), (10)

where the state vector xt = [T 1(t), . . . , Tn(t), T (i,j)(t)′s] ∈
Rn+m collects the temperatures of n zones and m separating
walls, the input vector ut = [m1(t), . . . ,mn(t)] ∈ Rn
collects the airflow into each zone, and the disturbance vector
wt = [Q1(t), . . . , Qn(t), To(t)] ∈ Rn+1 contains the heat
gain of each zone, and the outside air temperature.

We first use the following algorithm to characterize the
minimum airflow requirement of the HVAC system in the
prediction horizon,

min
ut→t+N

Jt(xt, ut→t+N ) =

N−1∑
k=0

ωt+k mt+k (11a)

subject to: xt+k+1 = f(xt, ut, wt), ∀ k ∈ K, (11b)
ut+k ∈ Ut+k, ∀ k ∈ K, (11c)
xt+k ∈ Xt+k, ∀ k ∈ K, (11d)
xt+K ∈ Xt+K , (11e)

where ωt+k’s are non-negative weights negotiating the im-
portance of mt+k’s at different time steps, and Xt+k, Ut+k
are respectively the feasible sets of the systems states xt+k
and control inputs ut+k at time step t+ k, which are deter-
mined by user specified temperature band, and operational
constraints on the airflow. Similarly, we characterize the
maximum airflow requirements by maximizing the objective
function in (11). For such a centralized characterization
approach, at each time step, there are (n+m)×(K+1) state
variables, n×K decision variables, and (n+m)×K+n×
K × 2 + n×K × 2 + n× 2 constraints. The computational
burden and communicational requirements are overwhelming
when the number of zones in the building is large and their
interconnection is complex.

Numerical Example: We numerically compare the dis-
tributed and centralized airflow flexibility characterization
methods. The thermal models used in the simulations are the
same as those used in [6]. We discretize the thermal dynam-
ics by a sample time of 5 minutes, and predict the airflow
flexibility for the next 6 time steps, which is 30 minutes.
The distributed algorithm (Algorithm 1) and the centralized
algorithm (11) are both solved using YALMIP toolbox [26]
in MATLAB R© on a Macintosh PC with Yosemite operating
system, 3.4 GHz Intel core i5 processor, and 16 GB 1600
MHz DDR3 memory. We observe from Fig. 4 that the
characterized airflow flexibility using the distributed and
centralized characterization methods are the same. However,
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Fig. 4. Comparison of the characterized airflow flexibility between the
distributed and centralized characterization methods.

the computational time using the distributed characterization
method is about 10 seconds, and it is much smaller than that
using the centralized characterization method, which is about
100 seconds.

B. Raiffa Bargaining Protocol

We also consider a Raiffa bargaining procedure for airflow
allocation as a benchmark for comparison [27]. The Raiffa
bargaining protocol is a simple and straightforward step-by-
step bargaining procedure with each player repeating the
calculations of its own ideal point and middle point until
an ε Pareto-efficient solution is reached.

Definition 4: The ideal point of player i is defined as

Ii = arg max
qi

{ui(qi)|q ∈ S, uj(qj) = uj(dj),∀j ∈ N \ i}.

It is obtained by maximizing its own utility function while
making the other players’ utilities the same as those that
using their disagreement points. The middle point of player
i is defined as

µi =
1

n
Ii + (1− 1

n
)di = di +

Ii − di

n
.

It is obtained by “sharing the resource surplus evenly among
all the players”. The middle point will serve as the disagree-
ment point in the next bargaining iteration. �

The detailed bargaining protocol is described in Algorithm
3. Additionally, it is shown in [27] that the Raiffa bargaining
solution yields an ε Pareto-efficient solution after a suffi-
ciently large number of iterations of bargains.

Numerical Example: In this section, we assume the utility
function of each zone is given by a power function

uit = (qit)
αi

t , (12)

where the power coefficient αit that satisfies 0 ≤ αit ≤
1 measures the degree of risk aversion of zone i. In a
bargaining game, players with larger degrees of risk aversion
will obtain larger share of the resource. In allocating the
airflow, we use the power coefficient αit to measure the
importance/priority of zone i at time step t. For example,
if zone i is an occupied laboratory, it will be assigned with



Algorithm 3 Discrete Raiffa Bargaining Protocol
Require: d0 and ε

1: assign k = 0;
2: repeat
3: for i=1:n do
4: compute Iik;
5: compute µik = Iik + (1− 1

n )dik−1;
6: assign dik = µik;
7: k = k + 1;
8: end for
9: until maxi ‖µit − µit−1‖ ≤ ε

10: return µk = (µ1
k, · · · , µnk );

a larger value; if it is a unoccupied conference room, it will
be assigned with a smaller value.

For each time step, we characterize the airflow flexibility
for each zone, mi

t,m
i
t, using the algorithms in (3) and (4).

Let m∗t be the dispatched total airflow of the HVAC system
at time step t, we perform the following algorithm to find
the ideal point for each zone

max
qit

uit(q
i
t) = (qit)

αi
t (13a)

subject to: 0 ≤ qit ≤ 1, ∀ i ∈ N , (13b)

(qjt )
α
j
t = dj , ∀ j 6= i, (13c)

(qjt )
α
j
t ≥ dj , ∀ j = i, (13d)

n∑
i=1

(
(mi

t −mi
t)q

i
t +mi

t

)
≤ m∗t , (13e)

where dj is the disagreement point of zone j in the last
negotiation iteration. We then repeat the Raiffa bargaining
protocol Algorithm 3 until an ε Pareto-efficient solution is
achieved. We comment that the Raiffa bargaining protocol is
not distributed, since it requires information from all other
agents. At each step, each agent maximizes its own utility
while keeping the other agents’ utilities at their minimum
values, which correspond to those using the disagreement
points.

We next numerically compare the distributed Nash bar-
gaining protocol (Algorithm 2) with the Raiffa bargaining
protocol (Algorithm 3). In particular, the involved optimiza-
tion problems (8) and (13) are solved using CVX package
[28]. It is worth to mention that both protocols yield ε-
Pareto optimal solutions, but the computational time for
the distributed Nash bargaining protocol (with initial dual
variable λ0 = 1 and step size γ = 1) is about 40 seconds,
while it takes about 210 seconds for the Raiffa bargaining
solution. We comment that although the initial value of the
dual variable and the step size play an important role in
determining the rate of convergence, the distributed Nash
bargaining protocol is faster than the Raiffa bargaining
protocol in general cases. Moreover, the social welfare that is
defined as the Nash product with the two allocation strategies
are very different. The social welfare with the Nash bargain-
ing protocol is 0.835, which is larger than 0.686 obtained by
using the Raffia bargaining protocol. Besides comparing with
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Fig. 5. Commerical building HVAC system tracks a regulaiton signal.

the Raiffa bargaining protocol, we also compare the Nash
bargaining protocol with a proportional allocation strategy,
which allocates the airflow in the following manner,

mi
t = mi

t +
mi
t −mi

t∑n
j=1(mj

t −m
j
t )

(m∗t −
n∑
j=1

mj
t ), ∀ i ∈ N .

However, this airflow allocation strategy yield even smaller
social welfare, which is about 0.481. Moreover, it does not
take each zone’s preference into account.

C. Commercial Building Balancing the Grid

In this section, we conduct numerical simulations to
demonstrate commercial buildings providing frequency reg-
ulation service to the grid. Frequency regulation is one
of the most important ancillary services, which is used
to correct short term power imbalance between generation
and load. At each time step, we first use the proposed
distributed flexibility characterization method to estimate the
upward and downward regulation capacities that commercial
HVAC system can provide. We then construct the dispatch
signal by multiplying a normalized regulation signal (which
is a real regulation signal from Pennsylvania-New Jersey-
Maryland Interconnection [29]) by the building’s regulation
capacity. To track the dispatched regulation signal, the Nash
bargaining airflow allocation strategy is used to distribute the
dispatched airflow to each zone. Fig. 5 shows that the fan
power deviation from baseline is able to track the dispatched
regulation signal very well while the temperature of each
zone is strictly regulated within the pre-specified temperature
band [21.5, 24.5]. Additionally, the utility functions used in
the simulations are power functions (12), where the power



coefficients for the 11 zones shown in Fig. 2 are picked as
[0.5, 0.5, 0.5, 0.5, 0.1, 0.1, 0.1, 0.5, 0.5, 0.5, 0.9]. We observe
from Fig. 5 (b) that the larger the power coefficient a zone
has, the closer its temperature trajectory is to the lower
temperature bound. In particular, the average temperatures
of Zone 1, Zone 5, and Zone 11 over the one-day period
are respectively 22.629, 23.485, and 21.631. As a result, we
see that the Nash bargaining based airflow allocation strategy
respects each zone’s flexibility and preference.

VI. CONCLUSIONS AND FUTURE WORK

We studied an agent-based modeling, analysis, and control
method for commercial building HVAC system to provide
ancillary services to the grid. Each zone in the multi-agent-
building-system was modeled as an agent or player, and we
devised distributed protocols to allow them to communicate,
interact, and bargain with one another locally to achieve a
common global objective. A distributed flexibility characteri-
zation method was first proposed to aggregate the total power
flexibility that all zones can provide to the grid. In order
to track a dispatch signal, we proposed a distributed Nash
bargaining protocol to allocate the airflow to each zone while
respecting its preference and flexibility. Numerical experi-
ments were conducted to compare our proposed distributed
protocols with centralized approaches, and demonstrate the
efficiency and scalability of our distributed protocols.

In the future, we are interested in implementing the
proposed distributed flexibility characterization and resource
allocation methods using VOLTTRONTM, an agent-based
distributed sensing and control platform developed at our
Pacific Northwest National Laboratory, on a real commercial
building, and evaluating its performance in field tests. A sys-
tematic study of how prediction errors of exogenous inputs
such as occupancy and solar radiation impact the proposed
algorithms is also desired. Another interesting direction of
future research is to study a multi-agent building system and
distributed coordination strategies that take various compo-
nents of the HVAC system such as cooling tower, chiller,
boiler, supply fan, and VAV boxes into consideration.
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