
Adaptive MPC for a Reefer Container

Kresten K. Sørensena, Jakob Stoustrupb, Thomas Bakb

aLodam electronics, Kævej 77, 6400 Sønderborg, Denmark,
(email: [kks@lodam.com)

bDepartment of Automation and Control, Aalborg University,Denmark,
(email: [jakob, tba]@es.aau.dk)

Abstract

In this work the potential energy saving by adaptation to daily ambient temper-
ature differences for frozen cargo in reefer containers arestudied using a model
of the Star Cool reefer. The objective is to create a controller that can be imple-
mented on an embedded system and a range of methods are used toreduce the
computational load. A combination of MPC and traditional control is used and
the accuracy of the MPC is enhanced with an online update of model parameters.
Simulation experiments showing potential energy savings of up to 21% where the
MPC is allowed to control both the cooling capacity and the ventilation of the
cargo are. The largest cost reduction is achieved through a reduced ventilation
rate.

Keywords: Adaptive Control, MPC, Refrigeration, Parameter Estimation,
Set-Point Optimization, Reefer Container.

Nomenclature

Latin symbols
M Mass (kg)
Q Energy flow (W)
V Volume (m3)
T Temperature (C◦)
c Specific heat (J/(Kg K))
UA Heat transfer coefficient (W/K)

Subscripts
air Air in the cargo hold
amb Ambient
floor Floor of the cargo hold
cool Cooling capacity
fan Evaporator fan
cargo Cargo inside the cargo hold
sup Supply air to cargo hold
ret Return air from cargo hold
box Walls of the cargo hold
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1. Introduction

Today a large amount of perishable cargo is transported by sea in reefer con-
tainers. By mid-2008 the fleet consisted of 4500 reefer-vessels with a combined
reefer capacity of 11.4 million TEU1 and the capacity is predicted to grow by
69% by 2013, see [1]. The reefer containers are powered by electricity with
a consumption of up to 6kW per TEU, depending on the ambient temperature
and the temperature inside the container itself. With an average consumption of
3.6kW per TEU this yields a combined consumption 41GW which is, on average,
8.9MW per ship; see [2] and [3]. Previously this was seen to beinsignificant with
respect to the large amount of energy used to propel the ship,but due to rising oil
prices, harder competition in the shipping market and the environmental impact
of shipping it has become interesting to reduce the energy consumption of reefer
containers.

The control solutions currently employed are based on classical control theory
where the individual components are controlled by separatecontrollers, with a
limited amount of controller interconnections and gain scheduling. The objective
of these controllers is to keep the temperature inside the container close to a set
point at ambient temperatures between -20C◦ and +37C◦ (hot side). The set point
is in the range of -29C◦ and +25C◦ (cold side). Due to the large range of operation
on the hot and cold side and the non-linearities in the refrigeration system the
controllers used must be conservative in order to give stability over the entire area
of operation.

Fruit and vegetables are usually quite sensitive to variations in temperature and
atmosphere and this means that the cargo temperature and aircomposition in the
container must be kept within certain limits. This reduces the potential for control
optimizations with respect to energy consumption by using the thermal inertia of
the cargo as a buffer. It has been shown that the cost of operating a refrigeration
system may be lowered by using thermal inertias in the systemas a buffer to offset
cooling to periods where the cost is low. In [4] the cost of a running household
heat pump is lowered, using an MPC that is fed the forecasted cost of electricity.
Exploitation of ambient conditions to lower the energy consumption of building
HVAC systems, while respecting occupant comfort constraints are demonstrated
in [5, 6, 7, 8], and shown to significantly reduce energy consumption while en-
suring good occupant comfort. A learning based approach to pre-cooling of food-
stuffs to avoid saturation of the refrigeration system on hot days are demonstrated

1Twenty Foot Equivalent. The equivalent of a twenty foot reefer container.
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by [9], using an MPC that is updated online with the learning based constraints
and predicted future load. In [10] MPC is used to control the product quality of
chilled cargo in refrigerated containers with the main focus on modeling and con-
trol of the cargo quality, resulting in a reduction of mass loss in the cargo due to
evaporation and lower energy consumption due to reduced ventilation rate.

An existing energy saving control strategy in use is QUEST, see [11], which
is a control scheme for fruit and vegetables that allows for bigger supply air tem-
perature variances and lower fan speeds, based on a predefined set of rules. This
can be allowed because research has shown that there is no degradation of pro-
duce quality if the supply air temperature is varied around the set-point due to the
thermal insulation of the produce packaging and the slow metabolic rates of the
produce, see [12]. The rules for ventilation rate and temperature variation have
been found by testing a wide range of different types of fruitand vegetables and
ensuring that cargo quality remains unaffected by the variations. There are dif-
ferent rules for different product classes and they have been designed dependent
of the temperature set-point in order to make it easy to operate. This is important
because it is infeasible to educate loading crews all over the world in complex set
up procedures. For reefer containers without a VSD (Variable Speed Drive) on
the compressor, the energy savings from using QUEST can be asmuch as 53%
due to the fact that the refrigeration system is very inefficient at part load and for
containers with a VSD on the compressor the savings are smaller but still signifi-
cant.

For frozen goods, the rules that must be observed in order to preserve cargo
quality are more lenient than for chilled goods, and therefore the cargo thermal
inertia can be used to offset cooling from the periods where the system is less
efficient to periods where the system is more efficient. The ambient temperature
has a direct influence on the condensation pressure and thereby also the system
efficiency which leads to the possibility of moving some cooling from the day
where the ambient temperature is high to the night where the ambient temperature
is lower. Another way of reducing energy consumption is to reduce the amount of
ventilation inside the cargo hold because the power consumed by the fans has a
double impact on the cost of running the system. The fans consume energy that is
added to the cost of running the system but the kinetic energythe air receives from
the fans is eventually converted to heat inside the container which means that it
must be removed by the refrigeration system. Therefore it could be interesting to
investigate the potential in an optimization of how the fansare used.

Model Predictive Control (MPC) was introduced in the petro-chemical indus-
try in order to control difficult processes with long delays and unknown states but
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today it is used in a wide range of applications such as power plant control and the
automotive industry. MPC is used for optimizing control of processes with respect
to known future demands or known future changes in external conditions, while
keeping within a given set of constraints. The performance of MPC is dependent
on the quality of the model on which it is based because it is used to predict the
behavior of the system over the prediction horizon. For systems where the model
dynamics may change either a non-linear or adaptive linear approach must be used
in order to keep performance and avoid violating constraints.

A refrigeration system has several degrees of freedom, meaning that the same
cooling capacity can be obtained with different actuator set-points. It was shown
by [13] that selecting the correct set-points can have a highimpact on the ef-
ficiency of the refrigeration system and therefore any controller aiming to save
energy should observe this.

In this study the potential for energy saving by adaptation to daily ambient
temperature differences is studied for frozen cargo in refrigerated containers. The
observation that adequate cooling may be achieved at a lowerventilation rate that
was done in [10] is used to formulate control laws for an MPC that ensures optimal
utilization of the fans when they are running. Cargo parameters such as thermal
inertia and heat transfer coefficient are estimated and usedas basis for the MPC
model, resulting in flexibility towards changes in these parameters that does not
exist in QUEST. Furthermore the MPC is set up to exploit dailyvariations in
ambient temperature by cooling more when the ambient temperature is low and
the efficiency of the refrigeration system is higher. This extra cooling is ”stored”
in the cargo thermal inertia allowing for a smaller cooling effort during the day
when the ambient temperature is high and the refrigeration system efficiency is
low. The future ambient temperature is predicted from measurements from the
last 24 hours by an oscillator and a simple phase-locked loopand fed to the MPC.

In this paper we present an adaptive MPC controller that utilizes the same
principles as QUEST but with the added benefit of adaptation to cargo parameters
and daily cycles in ambient temperature for increased energy efficiency. The po-
tential energy savings at different ambient temperatures and fan control methods
are investigated and presented. The computational load is reduced due to different
step sizes in the prediction horizon and linearizing local controllers enabling the
use of a reduced linear model for the MPC.

In the following the methods used in this paper is described,starting with
a short introduction to the refrigeration system in Section2.1. Then follows a
description of the parameter and state estimators used by the controller in Section
2.2 and finally the controller itself is described in Section2.3.
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2. Methods

2.1. Refrigeration System Simulation Model

The refrigeration container used in this paper is built byMaersk Container
Industryand equipped with aStar Coolrefrigeration unit, see [14]. A Refrigera-
tion container is an insulated box with a door for cargo loading in one end and a
refrigeration system in the other, as shown in Figure 1.

Figure 1: Airflow in the Refrigeration Container

The cargo is kept cold by air that is circulated from the evaporator and towards
the back of the container through a T-profile floor that allowsair to enter small
gaps between the produce. The air is heated by the produce or the walls and
rises to the ceiling of the box where the hot air flows back to the evaporator.
Natural convection is not enough to ensure an even distribution of air in the box
and therefore the air flow is driven by fans located above the evaporator. The
energy from these fans ends up as heat in the box and has to be removed by the
refrigeration system. Therefore it is desirable to run the fans as little as possible.
It is however necessary to start the fans at regular intervals in order to be able to
measure the air temperature in the box itself because no air temperature sensors
is placed here, and in order to avoid local hot-pockets of airto build up and spoil
the produce.

The schematic of the refrigeration system used in this studyis shown in Figure
2. It is a two-stage cycle, using an economizer to increase the efficiency of the
system at high temperature differences between the cold andhot side.

The compressor has a high- and low pressure stage shown as twosingle-stage
compressors in the figure. The compressor is equipped with a VSD and the fans
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Figure 2: Refrigeration System Schematic

may be either stopped, at half speed or at full speed. The expansion valves are
pulse modulated, that is they can either closed or fully open, and therefore they
are controlled by a PWM signal with a period of six seconds.

The reefer container has been modelled in detail and a simulation model that
accurately reflects the refrigeration system and cargo dynamics at a one second
resolution, is available. The comparison of the different controllers must be done
under comparable ambient conditions in order to minimize the uncertainties on
the results and therefore the simulation model is used. It has 81 states and mod-
els the flow, energy and mass of the refrigerant of the components shown in the
system schematic in Figure 2. The simulation model has been verified against a
refrigerated container packed with 20,000kg of pork meat and the results of the
verification can be seen in Figure 3. The verification consists of a the simulation
model running in open loop for three hours using control inputs that was recorded
from a real container during a series of capacity steps. The output of the model
on the variables significant for control is then compared to the recorded mea-
surements of the same variables from the real system. Figure4 shows the error
distribution of the test from which it can be seen that the model is a good match
to the real system. The model verification is carried out at the same temperature
set point as the controller in this study is tested at.

2.2. Parameter and State Estimation

Model predictive control requires an accurate model of the system that is to
be controlled and a prediction of the trajectory of externalconditions relevant the
objective of the controller. In this subsection the methodsthat were used to predict
future ambient temperature and estimate the temperature, heat transfer coefficient
and heat capacity of the cargo are described.

6



0

1000

2000

3000

4000

C
oo

lin
g 

C
ap

 [W
]

 

 
QCool meas
QCool model

15

20

25

T
c 

[°
C

]

 

 
Tc meas
Tc model

−24

−22

−20

−18

T
su

p,
 T

re
t [

°C
]

 

 
Tsup meas
Tsup model
Tret meas
Tret model

0 20 40 60 80 100 120 140 160 180
−26

−24

−22

−20

−18

Time [min]

T
su

c,
 T

0 
[°

C
]

 

 
Tsuc meas
Tsuc model
T0 meas
T0 model

Figure 3: Simulation model verification results

2.2.1. Ambient Temperature Prediction
The ambient temperature must be predicted 24 hours into the future as a ref-

erence to the MPC in order to be able to exploit its daily cycles and an observer is
constructed for this. Because the temperature is an oscillation with a period of 24
hours an oscillator is used and synchronized by a Phase Locked Loop (PLL). For
simplicity the prediction is only based on measurements from the past 24 hours,
even if more data is available. In Figure 5 the predictions for the first 100 hours of
a container’s journey from a Danish port are shown, with five hours between each
of the predictions.

It can be seen that for the first 24 hours where the measurementset is incom-
plete the prediction is unreliable, but after that the PLL islocked and the prediction
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Figure 4: Simulation model error distribution

gets better. Due to a non-sinusoidal oscillation of the measured ambient tempera-
ture the amplitude estimate can be off but as shown later the most important thing
is that the phase is right and therefore this predictor is adequate for the MPC.

2.2.2. Cargo State and Parameter Estimation
The quality of the solution to the optimization problem in the MPC is depen-

dent on the accuracy of the linear model used. While the properties of the refrig-
eration system are well defined the properties of the cargo are very uncertain be-
cause reefer containers are used to transport a wide range ofdifferent goods. The
largest thermal mass is usually the cargo and therefore alsothe most interesting
property with respect to exploitation of daily variances inambient temperature. If
the cargo heat capacity is not known the lowest value must be used, in order to
ensure that the constraints are not violated, because the lowest heat capacity also
gives the fastest dynamics. Using the lowest possible heat capacity will limit the
degree to which the variations in COP can be exploited. To resolve this issue a
combined parameter estimator and unknown input observer isintroduced and the
estimates are then used to update the MPC online. The observer is based on the
model of the reefer containers cargo hold and cargo that is present in the simula-
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Figure 5: Prediction of future ambient temperature

tion model described in Section 2.1. It has been modified to simulate the unknown
states and estimate and update the parameters for the cargo when conditions allow.
Knowledge of parameter and state constraints are incorporated and used to ignore
corrections that are outliers and select sensible start conditions.

The unknown states and parameters that must be estimated areshown in the
following table:

Description Unit
Cargo heat capacity,Ccargo J/K
Cargo heat transfer coefficient,αcargo W/K
Cargo temperature,Tcargo

◦C
Aluminum T-floor temperature,Tf loor

◦C

The heat capacity is the amount of energy required to elevatethe cargo tem-
perature one Kelvin and the total heat transfer is the surface area of the cargo
multiplied with the heat transfer coefficient. The estimation has to be done on-
line and must be based on the available measurements and actuator signals which
are the air return temperatureTret, the air supply temperatureTsup, the ambient
temperatureTamband the fan speedVf an.

The state equations for the model of the cargo and cargo hold are given by
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Equations (1) to (3)

Ṫair =
QCargo→air +Qamb→air +Qf an+Qf loor→air −Qcool

Mair ·Cpair
(1)

Ṫcargo =
−Qcargo→air

Ccargo
(2)

Ṫf loor =
Qamb→ f loor −Qf loor→air

M f loor ·Cpf loor
(3)

The change in air temperature is given by Equation (1) as the sum of all energy
flows going to the control volume divided by the heat capacityof the air. This
equation is essential for the estimator because the amount of energy going from
the cargo to the air,Qcargo, can be derived from it. The average of the measured
supply temperatureTsup and return air temperatureTret is assumed to be equal to
Tair . In Equation (2) the change of the unknown stateTcargo is given as the energy
going from the cargo to the air divided by the estimated heat capacity of the cargo.
The last of the state equations (3) gives the change in temperature in the aluminum
floor of the container and this has been included in the model because it has a very
strong thermal coupling to the air end therefore also significantly slows down the
dynamics of the air temperature. The heat transfers in the above equations are
given by Equations (4) to (7):

Qamb→air = (Tamb−Tair) ·0.810·αbox (4)

Qamb→ f loor =
(

Tamb−Tf loor
)

·0.190·αbox (5)

Qf loor→air =
(

Tf loor −Tair
)

·α f loor (6)

Qcargo→air = (Tcargo−Tair) ·αcargo (7)

Qcool = f
(

Tsup,Tret,Vf an
)

(8)

Qamb→air is the heat transfer from the surroundings to the air in the container
through the walls, roof and ends of the cargo hold given by thetemperature dif-
ference multiplied with the heat transfer coefficientαbox and the fraction of total
surface area represented by the walls, roof and ends. The floor of the container is
also receiving some heat from the outside, given by Equation(5) as the tempera-
ture difference multiplied with the heat transfer coefficient αbox and the fraction
of total surface area represented by the floor. The heat transfer from the floor to
the air is given by Equation (6) where the heat transfer coefficientα f loor has been
found by simple step response experiments. The energy goingfrom the cargo to
the air,Qcargo→air , is given by equation (7) and it includes two unknowns; the
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cargo temperatureTcargo and the heat transfer coefficient from cargo to airαcargo.
Tair is the mean of the supply and return temperature for the air entering and leav-
ing the cargo hold which is measured and therefore very reliable.

There is an uncertainty on the heat influx through the container wall depending
on the air flow over the outside surface, rain and direct exposure to the sun. From
(1) it can be seen that this will give an uncertainty on the estimation ofQcargo→air

becauseQf an, Qf loor→air andQre f are known or can be measured.
The easiest state to estimate is the floor temperature because it will reach

steady state equilibrium between the ambient and air temperatures which are both
measured and therefore if the floor temperature is estimatedusing equations (5),
(6) and (3) the estimated floor temperature will over time track the actual floor
temperature.

The cargo temperature may be estimated using the same methodas for the
floor because it converges towards the air temperature, but this estimate includes
the uncertainty of the parametersαcargo andCcargo. If Equation (7) is inserted into
Equation (2) and rearranged

Ṫcargo = (Tcargo−Tair) ·
αcargo

Ccargo
(9)

it is clear that the change in cargo temperature is a first order filter on the temper-
ature difference between the air and the cargo, with a time constant that is given
by the two unknown parameters. Therefore the cargo temperature estimate will
converge towards the mean air temperature, but only be accurate if the estimates
of αcargo andCcargo are accurate as well.

A controller that use the thermal inertia of the cargo to offset cooling to more
efficient conditions will cool the cargo in pulses that in this case have a duration
of several hours, where the cargo is decreased towards the lower temperature con-
straint. This excitation of the cargo dynamics is exploitedto estimate the two
unknown cargo parametersαcargo andCcargo.

It is assumed that the system is linear and time invariant (LTI) and therefore it
can be assumed that the heat transfer constant and the heat capacity of the cargo
are constant over time. This can be used to estimateαcargo by combining Equation
(7) and Equation (10) and setting up two equations with two unknowns that is
solved forαcargo.
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Qcargo→air−calc = Qcool−Qamb→air −Qf loor→air −Qf an (10)

Qcargo→air−calc−t1 =
(

Tcargo−t1−Tair−t1
)

·αcargo (11)

Qcargo→air−calc−t2 =
(

Tcargo−t1+Tcargo−delta−Tair−t2
)

·αcargo (12)

αcargo =
Qcargo→air−calc−t2−Qcargo→air−calc−t1

Tair−t1−Tair−t2+Tcargo−delta
(13)

The measurementsQcargo→air−calc, Tcargo andTair in Equations (11) and (12)
must be taken at two different times that have a significant difference inQcargo→air−calc,
in order to produce a reliable estimate ofαcargo. Tcargo−delta is the estimated
change in cargo temperature between the two sample points and because the cargo
dynamics are significantly slower than the dynamics of the air, this change can be
obtained from the estimated cargo temperature given by Equation (2). In order to
prevent inaccurate estimates due to disturbances from the controller it is required
that the slope ofTsup is smaller than 0.01K/sbefore the first set of measurements
are acquired, because this means that cooling capacity is stable. After 15 min-
utes the second set of measurements are acquired and if the energy flows to the
cargo differs by more than 100W and update ofαcargo is performed. The maxi-
mum allowed change of the estimated heat transfer coefficient is±50 J

kg·K for each
update.

The heat capacity of the cargo are more difficult to estimate because the esti-
mate has to be inferred from the rate of change in air temperature measurements,
and the rate of change in the calculated energy flow from the cargo to the air. At
a temperature set-point of -20◦C the refrigeration system is able to cool the cargo
with up to 4kW which over a period of one hour is enough to cool the cargo used
in this study by 0.686K. This means that the slopes involved are very small, and
the result is sensitive to noise and disturbances. As forαcargo this may be resolved
by determine the slopes over a period of time, and thereby reduce the impact from
noise and disturbances.

The slope of the difference between the cargo temperature and the mean air
temperature is given by Equation (14)

Ṫcargo→air−di f f = Q̇cargo→air−calc ·αcargo (14)

Ṫcargo = Ṫcargo→air−di f f + Ṫair−mean (15)

Ccargo =
Qcargo→air−calc

Ṫcargo
(16)
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and the derivative of cargo temperature can therefore be calculated as in Equation
(15). In order to acquire accurate derivatives the period ofacquisition should be
as long as possible. The estimator requires an hour where thecooling capacity of
the refrigeration system is constant and large enough to ensure that at least 1kW
of cooling is applied to the cargo, before an update of the heat capacity of the
cargo is calculated as shown in Equation (16). On Figure 6 theresult of running
the estimator on data from a real reefer container packed with 20,000kg of bacon
can be seen. On the top axes the supply and return air temperatures are shown
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Figure 6: Cargo parameter estimator on reefer container measurements

together with the measured and estimated cargo temperature. The estimated heat
capacity of the cargo has been converted to mass in metric tons, using the specific
heat capacity for bacon which is 1050Jkg·K [15], and should therefore level out
around 20. The estimated heat transfer coefficient of the cargo has been divided
by 10 in order to better show the details of the results. The data was obtained from
a reefer that was located in an open field and therefore subject to the disturbances

13



from the weather.
The controller was an early attempt at offsetting some cooling from day to

night using MPC, but without the estimator for the cargo parameters. The cooling
that is applied, is mainly in pulses of 10 minutes which unfortunately is a poor
basis for estimating the cargo heat capacity, because the pulses are too short to
reliably estimate the change in cargo temperature through the air temperature.
Therefore the estimate of the cargo heat capacity is update only 15 times. The
heat transfer coefficient for this cargo has been estimated to be 550W/K from the
measured cargo and air temperature and the calculated powerto the cargo.

On Figure 7 the result of the parameter estimation algorithmrunning on re-
sults from the simulation model with anαcargo of 550W

K and a 20,000kg cargo
mass with a specific heat capacity of 1050J

kg·K is shown. Measurement noise has
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Figure 7: Cargo parameter estimator on simulation model

been added to the simulation results and the values ofαcargo andMcargo have been
scaled by 10 and 1000 respectively for easier plotting. It isexpected thatαcargo
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converge towards 55 and thatMcargo converge towards 20. The estimates quickly
converge towards the true values right after start up and within 24 hours the es-
timates are accurate. In this test the start values have beenset to demonstrate
convergence but it is often possible to deduce the type of cargo from the tem-
perature set-point and from that select better start valueswhich will enable faster
estimator convergence.

2.3. Controller Setup

A non-linear simulation model has been developed as described in Section 2.1
but this model has 81 states and a reduced model is desired, because the controller
eventually is to be used on an embedded hardware platform with limited resources.
The objective of this study is to exploit the daily cycles in ambient temperature
and COP. In order to exploit daily variations in ambient temperature the MPC
prediction horizon must be at least 24 hours and if it is to control the fast dynamics
directly the resolution must be high. This leads to a high computational load due
to the many steps in the prediction horizon and an alternative must be found. A
large part of the simulation model dynamics are much faster than the ones relevant
to the long term objective and therefore a reduced model containing only the slow
states is derived for the MPC. The proposed set up is shown on Figure 8.

Container
Parameter 

Estimator

MPC
Constraint

Calculator

Model Parameters

Measurements

Classical 

Controller

Figure 8: Overall Controller Block Diagram

Because the MPC only handles the slow dynamics a classical controller is in-
serted between the MPC and the plant (container) in order to do closed loop con-
trol of the fast dynamics, while accepting set points from the MPC, see [16, 17].
This has several benefits; Firstly the model for the MPC can beheavily reduced
because only the states directly relevant to the objective are needed. Secondly
the resolution of the prediction horizon can be reduced because the model for the
MPC only has slow dynamics. Thirdly it is possible to use linear MPC because of
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the linearizing effect of the classical controller. This isof course only obtainable
if the interface between the MPC and the classical controller can be chosen such
that the level of abstraction created by the classical controller is high enough to
mask the non-linear dynamics while still being able to effectively control all the
inputs relevant to the MPC objective.

2.3.1. Interface from MPC to Linearizing Controller
According to [18] the dominant dynamics of a refrigeration system are the

thermal constants of the metal surfaces in the heat exchangers and the refrigerant
mass time constants, with respect to control applications.The largest thermal
mass in the refrigeration system itself is the evaporator that has a mass of 23kg
yielding a heat capacity of 20.7 kJ/K but the T-floor has a heatcapacity of 2.7
MJ/K and a typical cargo of frozen meat has a heat capacity of 100 MJ/K. This
gives a separation of dynamical speed that is several ordersof magnitude, between
the cargo and the refrigeration system but the temperature of the air is problematic.
The heat capacity of the air in the box at -20 C◦ is 95.36 kJ/K and this is not far
from that of the evaporator but because of the thermal coupling to the T-floor and
cargo the actual dynamics of the air temperature are much slower. The important
factor is the response from the supply temperatureTsup to the return temperature
Tret and since the air has to flow over both the T-floor and the cargo,the response
is slowed considerably. The T-floor alone is enough to leave acomfortable gap in
dynamical speeds between the dynamics that must be controlled by the MPC and
the nonlinear refrigeration system dynamics.

It is chosen that the reference from the MPC to the classical controller shall
be the cooling capacityQre f , because it has a direct and nearly linear effect on the
cargo temperature. The proposed controller set up is shown on Figure 9.

The cooling capacity reference from the MPC is discrete, that is, it changes
instantly and stays constant until the next update from the MPC. It is infeasible for
the refrigeration system to follow such a reference and therefore an integrator on
the difference between actual and requested cooling capacity is added to remove
the error from lag in the refrigeration system.

2.3.2. Linearizing Controller
The linearizing controller is a non-linear feed forward, that is based on the

model, with a traditional PI controller to correct for inaccuracies and this ensures
that the system reaches the capacity requested by the MPC quickly. The actua-
tors controlled by this controller are the condenser fan, the compressor and the
expansion valves for the evaporator and the economizer. Thecompressor has a
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Figure 9: Controller Block Diagram

minimum on time of 30s that must be observed and therefore therules for this is
also built into the linearizing controller. The linearizing controller was tested on
the reefer container packed with bacon that is the basis of this study. The test re-
sults can be seen on Figure 3, where the reefer is taken through a series of cooling
capacity request steps that the reefer must then follow.

2.3.3. Model Predictive Controller
The MPC is constructed using Yalmip, see [19], with the objective of reducing

the amount of energy consumed by exploiting daily variations in temperature and
therefore the prediction horizon should be at least 24 hours. The maximum step
size is limited by the fastest dynamics that must be controlled, in this case the
air temperature. A step size of ten minutes is required in order to have adequate
control of the air temperature, but this leads to a prediction horizon of 144 steps
which is estimated to be too computationally heavy for the embedded hardware.
It is therefore chosen to solve this problem by dividing the prediction horizon, see
[20], in two sections with different step sizes; at first one with six ten-minute steps
and after those 23 steps of one hour each, as shown in Figure 10.

Figure 10: Prediction Horizon

The MPC runs once an hour and the first six ten-minute steps arethen imple-
mented one by one after which the process starts over again and the advantage of

17



this approach is that fine-grained control can be achieved while the total number
of steps and iteration frequency remains low. For this system fine grained control
is an advantage because the most efficient point of operationin some instances
delivers more cooling than needed to keep the temperature and therefore the best
option is to run at the optimal cooling capacity for shorter time and by dividing
the first hour into six smaller steps, the effective minimum capacity that can be
delivered per hour is reduced to a level that is more suitablefor this application.

2.3.4. Cost Calculation and Constraint Setup
The evaporator fan circulates the air that moves energy fromthe box to the

evaporator and therefore it is required to run while the compressor is turned on.
The power consumption of the fan has an impact on the cost of running the system
in two ways; There is the direct power driving the fan and the heat generated by
the fan that must be removed again, by the refrigeration system. Because the fan
speed is controlled in discrete steps it is important to model this behavior in the
actuator constraints of the controller. This is done by declaring the fan speed as
a binary variable, which transforms the problem to a mixed integer program. The
resulting constraint is shown in Equation (19).

The fan speed variable Mfan is 1 when the fan is turned on and Qmin and
Qmax are the constraints on the cooling capacity, calculated on basis of the current
operating point. From the above equation it is obvious that Qcool is required to be
zero when the fan is turned of and it is constrained by Qmin and Qmax when the
fan is turned on.

The maximal cooling capacity of the refrigeration system isdependent on suc-
tion pressure and thereby the temperature in the box and therefore Qmax and Qmin
from Equation 19 must be calculated from the box temperature. This is done from
manufacturer data given as polynomials according to [21].

In many real systems we encounter a nonlinear cost on a control input, typ-
ically due to decreasing efficiency as the speed of an actuator increases. This is
also the case for this system but only to a limited degree for the compressor. The
biggest change in COP for the refrigeration system is dependent on the ambient
temperature because it has a strong coupling to the discharge pressure that is a
determining factor on the amount of work done by the compressor. In Figure 11
the COP of the system is shown for a fixed set point of -20◦C and varying cooling
capacity and ambient temperature is shown.

The dotted line is the COP of the system when the compressor isrunning
in PWM mode where the compressor is stopped and started with aduty cycle
that matches the required cooling capacity. It is necessaryto do this when the
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Figure 11: The COP of the refrigeration system at varying ambient temperatures

cooling capacity required to keep the set-point in the container is lower than what
is provided by the refrigeration system at the lowest possible compressor speed.
The reason for the sharp decline of COP in PWM mode is that the evaporator
fan continues running while the compressor is off and therefore the contribution
from the fan compared to the cooling capacity is increased asthe duty cycle goes
towards zero. The expression for the COP in PWM mode is given in Equation
(17)

COPPWM=
D ·Qcool−min−Qf an

D ·Pcpr−min+Qf an
(17)

whereD is the duty cycle,Qcool−min is the cooling capacity at minimum compres-
sor speed,Pcpr−min is the consumed compressor power at minimum compressor
speed andQf an is the power consumed by the fan. The ambient temperature has
a big impact on both the level and the shape of the COP curve andin order to
effectively exploit this, the objective of the MPC must accurately reflect the cost
over the length of the prediction horizon. This requires knowledge of the future
ambient temperature which is not available and therefore the predictor outlined in
section 2.2.1 is used. The predicted ambient temperature isused to select the ap-

19



propriate COP curve that must be converted to an affine cost that reflects the shape
of the COP curve. The COP curve shown here has 9 points becauseit is generated
by simulating the model, described in Section 2.1, to steadystate at fixed com-
pressor speeds from 20Hz to 110Hz in increments of 10Hz. For the MPC a set of
COP curves is generated at higher resolution for the ambienttemperature in order
to ensure optimal conditions for the cost optimization.

A linear solver is used and therefore the COP data is converted to a series of
linear segments in the formy= ax+b such that they may be used in an epigraph
representation of the cost of running the compressor in the objective function. The
objective and constraints are listed in Equations (18) to (27):

Objective:
Pc(k)+Vf an(k) ·195+Ts(k) ·104 (18)

Constraints:

Vf an(k) ·Qmin(k)<= Qcool(k)<=Vf an(k) ·Qmax(k) (19)

Qcool(k) ·a1(k)+b1(k)<= Pc(k) (20)

Qcool(k) ·a2(k)+b2(k)<= Pc(k) (21)

Qcool(k) ·a3(k)+b3(k)<= Pc(k) (22)

Qcool(k) ·a4(k)+b4(k)<= Pc(k) (23)

Vf an−min <=Vf an(k)<= 1 (24)

0<= Ts(k), (25)

Tcargo−min−Ts(k)<= Tcargo(k)<= Tcargo−max+Ts(k), (26)

Tair(k)< Tair−max+Ts(k) (27)

The objective function shown in Equation (18) reflects the power used by the
container, expressed by the first and second term wherePc is the power used by
the compressor and condenser fan andVf an(k) ·195 is the power consumed by the
evaporator fans. The constraints given in Equations (20) to(23) are the linear ap-
proximation of the convex COP, where the parametersan(k) andbn(k) are derived
from the COP curve that matches the predicted ambient temperature at the time of
the solution point which results in a cost for the compressorthat forms a surface
with cooling capacity on one axis and time on the other.

The third term of the objective, the slack variableTs, is the cost of violating
the constraints for cargo and air temperature that is definedin Equation (26) and
(27) and it ensures that the controller will keep running andproduce solutions in
the event that one of the temperature constraints is violated. The cost of violating
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the constraint is very high and therefore the controller will prioritize getting back
inside the constraints over all other objectives, and this is the desired behavior.
The temperature constraints that have been selected for thecargo isTset±0.25K
and this ensures that the variation in cargo temperature remains small and thereby
reducing the risk of damaging the cargo. The model used for the controller lumps
the entire cargo into one big volume but in reality the temperature distribution
inside the container is non-uniform, see [10], and therefore the air temperature
has been constrained toTset+2K because this will ensure that the air is cooled and
circulated regularly which prevents the buildup of local hot-spots.

3. Results

The objective of the experiments carried out in this work is to identify poten-
tial reductions in energy consumption by introducing modern control methods and
two different scenarios are investigated at three different ambient temperatures in
an attempt to map the power saving potential. The traditional way of controlling
the evaporator fan is that it must always be running because the measurement of
the cargo temperature is done indirectly through the returnair temperature and this
measurement becomes invalid when the fans are turned off. But with the cargo
estimator it is possible to turn off the fans and use the estimate of the air and cargo
temperature instead, which results in a big reduction in consumed energy. It is
however interesting to know the fraction of the reduction that comes from cooling
storage in the cargo and how much that comes from savings on the fans. There-
fore the first scenario use the MPC with the fans forced to be always on and the
second scenario allows the MPC to control both the fans and the cooling capacity.
The references used in the experiments are simulations using the same linearizing
controller as for the MPC, but with a traditional PI controller for generation of
the cooling capacity reference. In Figure 12 a section of thesimulation results
for the reference and the two test scenarios are shown. The two panels on top are
the reference simulation, the two panels in the middle are the scenario where the
fans are always on and the two panels in the bottom are the scenario where the
controller are allowed to turn off the fans. In the referencesimulation the fans are
running continuously and the controller keeps the cargo andair temperature close
to the set-point. The compressor is running in PWM mode and itcan be seen that
the duty cycle and cooling request is increased at high ambient temperatures to
compensate for the higher influx of heat into the cargo hold.

For the scenario where the fans are always on it can be seen that the MPC uses
the cargo’s thermal inertia allowing the air and cargo temperature to rise to its
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Figure 12: Test results for the reference and the two test scenarios at 20◦C ambient temperature.

upper constraint during the period where the ambient temperature is at its highest.
The compressor is running in PWM most of the time because there is nothing to
gain by running the compressor faster, at a lower efficiency,if it is not possible to
turn off the fans for a longer period afterwards.

In the last scenario the fans are turned off when the compressor is not running
and the compressor is no longer running PWM but instead at a higher capacity
that allows the compressor and fans to be turned off for longer periods, thus sav-
ing power. During the periods of high ambient temperature the compressor is only
turned on to keep the air temperature below the upper limit while the cargo tem-
perature is slowly increasing and this show that the controller behaves as intended.

The power savings found in the six tests are listed in the following table:
Ambient Temperature Fans Always ON Fans ON/OFF

10± 5◦C 2.53% 21.9%
20± 5◦C 3.07% 11.1%
30± 5◦C 2.70% 3.96%

From the results it is obvious that the potential power savings are very de-
pendent on the operating conditions and the reason for this is found in the COP
curves on Figure 11 and in the way the refrigeration system was designed. During
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normal operation of the container, when the cargo is on its set-point, the system
is usually running at a fraction of the cooling capacity thatis available, because
the system is designed to be able to cool down a hot cargo within reasonable time.
But the system is also most efficient when it is running at low capacity because the
losses in the system are smaller at low capacity. The COP curve for the compres-
sor alone is monotonically decreasing as the speed increases but when the power
from the fans is added the COP curves shown in Figure 11 with a maximum in
the lower capacity range emerges. This means that when the amount of cooling
needed to keep the set-point in the cargo hold matches the most efficient capacity,
the potential energy reduction from being able to turn of thefans is zero. This
is reflected by the results that show that the energy savings drops as the ambi-
ent temperature increases. When the most efficient mode of operation is running
the fans continuously the cargo may still be used as a coolingstorage and there-
fore there will always be something to gain from using this control strategy. In
the present experiments a potential saving between 2.5% and3% is possible with
a 10K variation in ambient temperature and with a consumption of 8.9MW for
all of the containers on a ship a 2.5% reduction yields 403.7GJ over a 21 day trip
which is roughly 10000kg of heavy fuel oil. The six tests presented here show that
there is a big difference in potential savings depending on the cooling demand and
therefore the further tests should be run to test the entire range of operation of the
container, but the large savings will be found where the difference between tem-
perature set-point and ambient temperature is low. Therefore it is expected that
it is possible to save a larger percentage of the power for shipments of fruit and
vegetables that run at a higher set-point.

4. Conclusion

In this study a model predictive controller that reduced thepower consumption
of a refrigerated container by turning off the cargo hold fans when they were not
needed and using the cargo thermal inertia to store cooling,was presented. Sim-
ulation experiments were carried out using a detailed modelof the refrigeration
system at three different ambient temperatures, with savings in power consump-
tion found to be up to 21%, depending on the set-point. It is expected that larger
savings are possible for cargoes that requires a lower set-point. The largest sav-
ings were found to be possible only if the controller could control the fans and
turn them off when they were not needed. An estimator for cargo temperature,
heat capacity, and heat transfer value was developed and used to update the MPC
online, thereby enabling optimal exploitation of the available thermal inertia while
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keeping the cargo temperature within its constraints. The controller was divided
into two layers with the MPC on top providing a cooling power request to a lin-
earizing controller that handled the faster nonlinear dynamics of the refrigeration
system. A prediction horizon with varying step sizes led to areduction in the
computational demand from the MPC.
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