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Abstract

This paper deals with two stability aspects of linear systems of the form
Iẍ + Bẋ +Cx = 0 given by the triple (I,B,C). A general transformation
scheme is given for a structure and Jordan form preserving transformation
of the triple. We investigate how a system can be transformed by suitable
choices of the transformation parameters into a new system (I,B1,C1) with a
symmetrizable matrix C1. This procedure facilitates stability investigations.
We also consider systems with a Hamiltonian spectrum which discloses
marginal stability after a Jordan form preserving transformation.

1 Introduction
Systems of second order linear differential equations of the form

Aẍ+Bẋ+Cx = 0 (1)

are characterized by the set (A,B,C), where A, B and C are real quadratic matrices.
Such systems are frequently used as models in mechanics. The important issue
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here is the question of the stability of a given system. The stability is determined
by the roots λ of the characteristic polynomial given by

det(λ2A+λB+C) = 0 .

If all the eigenvalues have Re(λ)< 0, then system (1) is said to be asymptotically
stable. Here, we call the system (1) marginally stable if all eigenvalues lie on the
imaginary axis and are semi-simple. This case is in the literature often denoted
by ’completely’ (or totally) marginally stable. For simplicity we drop the word
’completely’. Thus, marginal stability basically means that all solutions are su-
perpositions of harmonic oscillations. In the modelling of a physical system the
matrices A, B and C represent the physical parameters. Therefore it can be inter-
esting to get an estimation of the stability limits expressed by properties of the
system matrices without carrying out a direct computation of the eigenvalues. In
2000 Adhikari [1] addressed simultaneous symmetrization of the damping matrix
B and the stiffness matrix C by a similarity transformation [2, 3] and by an equiv-
alence and congruence transformation. By using these methods one can simplify
the investigation of stability. The subject of this note is to use a structure preserv-
ing similarity transformation, which deals with all systems with the same Jordan
structure. The stability analysis will focus solely on the structure of the system
matrices. Algebraic criteria like Routh-Hurwitz are not taken under consideration
in this study.

2 Analysis
For simplicity we assume in what follows that the system given by (A,B,C) is
regular, that means that the matrix A is non-singular or det(A) 6= 0. Then without
loss of generality we suppose that A = I , where I is the identity matrix. The
system (1) can then be written

Iẍ+Bẋ+Cx = 0 . (2)

Introducing a new variable Y

Y =

[
x
ẋ

]
,

Equation (2) can be rewritten as a first order system

Ẏ = LY .
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The 2n×2n system matrix L is given by

L =

[
0 I
−C −B

]
. (3)

We want to find all second order systems (I,B1,C1) which are equivalent (also
called isospectral) to (I,B,C) in the sense that

L1 =

[
0 I
−C1 −B1

]
(4)

has the same Jordan form as L. This means that L and L1 have the same eigen-
values with the same partial multiplicities. Then L and L1 must be similar which
is expressed by L1 = T−1LT , where T is a 2n× 2n non-singular transformation
matrix. If we write T as

T =

[
T1 T2
T3 T4

]
, det(T ) 6= 0 , (5)

then the similarity between L and L1 can be expressed by[
T1 T2
T3 T4

] [
0 I
−C −B

]
=

[
0 I
−C1 −B1

] [
T1 T2
T3 T4

]
. (6)

The n×n matrices T1, T2, T3 and T4 must be chosen in such a way that T is non-
singular. To guarantee the preservation of the structure the matrices must fulfill

T3 = −T2C
T4 = T1 − T2 B (7)

−T4C = −C1 T1 − B1 T3

T3 − T4 B = −C1 T2 − B1 T4 .

By eliminating T3 and T4 we get for the transformation matrix

T =

[
T1 T2

−T2C T1−T2 B

]
. (8)

The last two equations in (7) leads to the the following

[C1 , B1]

[
T1 T2

−T2C T1 − T2 B

]
= [T1 − T2 B , T2]

[
C B
0 C

]
. (9)

From this we can determine the new equivalent system (I,B1,C1). We then have
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Theorem 1 A given second order system (I,B,C) is equivalent to a new second
order system (I,B1,C1), where the new matrices B1 and C1 are given by (9) and
the matrices T1 and T2 must be chosen such that the matrix T given in (8) is non-
singular.

In general the new system matrices B1 and C1 need not to be similar to B and C,
respectively. However, if we choose one of the transformation matrices T1 or T2
to be zero, e.g. T2 = 0, then we find immediately the similarity relations

B1 = T1 BT−1
1 ,

and
C1 = T1C T−1

1 .

If now C1 is symmetric, this could give the possibility for a stability prediction,
e.g. by the well-known theorem of Kelvin-Tait-Chetaev [9]. The idea for simul-
taneously symmetrizing the matrices B and C to symmetric forms B1 and C1 was
proposed by Inman [8], but was shown to have no practical importance for non-
conservative systems, when the matrix order exceeds n = 2, see [6, 7] .

To simplify Equation (9) further we introduce a new variable Z and new simi-
lar system matrices C̃1 and B̃1 by

C̃1 = T−1
2 C1T2 , B̃1 = T−1

2 B1T2 , Z = T−1
2 T1 , (10)

where we have assumed that det(T2) 6= 0 . Then (9) can be written

[C̃1 , B̃1]

[
Z I
−C Z − B

]
= [Z − B , I ]

[
C B
0 C

]
. (11)

The coefficient matrix of [C̃1, B̃1] satisfy the relation[
Z I
−C Z − B

] [
I −I
0 Z

]
=

[
Z 0
−C M

]
,

where we have introduced the abbreviation

M = Z2 − BZ + C . (12)

This shows that B̃1 and C̃1 are uniquely determined if Z and M are non-singular.
Multiplying (11) from the right by[

I −I
0 Z

] [
Z−1 0

M−1CZ−1 M−1

]
=

[
Z−1−M−1CZ−1 −M−1

Z M−1CZ−1 Z M−1

]
,
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we find

[C̃1 , B̃1] =
[
(Z−B)M− (Z−B)2 Z , M− (Z−B)2] [ Z−1−M−1CZ−1 −M−1

Z M−1CZ−1 Z M−1

]
,

After evaluating the above matrix product we find the following general expres-
sions for C̃1 and B̃1

C1 = M Z M−1C Z−1 , (13)
B1 = M Z M−1 − (Z − B) , (14)

where we for simplicity have removed the ˜ from the symbols. This leads to the
following theorem

Theorem 2 Given a second order system (I,B,C) and a matrix Z ∈ Rn×n chosen
in such a way that both Z and the matrix M = Z2 − BZ + C are non-singular.
Then the system is equivalent to a new second order system (I,B1,C1) given by
the equations (13) and (14) .

Using Theorem 2 we can construct all equivalent second order systems with the
same eigenvalues and multiplicities. Particularly in stability theory we are in-
terested to test if a given system (I,B,C) can be transformed into a new system
(I,B1,C1) for which C1 is symmetrizable with positive eigenvalues.

3 Transforming C into a symmetrizable matrix
In the framework of stability it is especially feasible if the stiffness matrix C is
symmetric and positive definite. To this end we recall the concept of symmetriz-
ability.

Lemma 1 Consider a real square matrix C. Then the following four conditions
are equivalent:

1. There exists a nonsingular matrix W such that W−1CW is symmetric.

2. C possesses only real eigenvalues and a full set of eigenvectors.

3. C is the product of two symmetric matrices, one of which is positive definite.

4. C becomes symmetric when multiplied by a suitable positive definite matrix.
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A real square matrix C satisfying any of these four conditions is called symmetriz-
able.

In mechanical systems of form (I,B,C) we can easily point out examples where
the stiffness matrix C is not symmetric. For example mathematical models of ar-
ticulated pipes or models of lateral vibrations of rotor systems are non-conservative
systems where the stiffness matrix C includes a skew-symmetric part due to in-
ternal damping or to non-symmetrical steam flow in turbines. And this skew-
symmetric part (also called circulatory) can cause instability of the system. We
will show, that a suitable choice of the transformation (14) may bring a non-
symmetric stiffness matrix C into a symmetrizable matrix C1 which is similar
to a symmetric form, see Item 1 in the above Lemma 1.

Example 1 Consider system (I,B,C) with

B =

[
5.8186 3.6667
−3.6667 0.1814

]
and C =

[
−0.5000 2.2500
−2.2500 −0.5000

]
.

This example was reported by Merkin [11] to show, that an inequality by Metelit-
syn sufficient for stability, see e.g. [12], was not satisfied. Neither B nor C is sym-
metrizable and the structure of the matrices does not disclose whether the system
is stable or not. If we choose the the generating matrix Z = (B+BT )−1(C−CT ),
then by Theorem 2 we find the new system matrices

B1 =

[
5.8186 −0.7264

9.9340 0.1814

]
and C1 =

[
5.1804 −0.7268

6.9658 0.0483

]
,

where C1 is real symmetrizable, since it has two different real eigenvalues, see
Item 2 in Lemma 1. Now the similarity transformation B2 =W−1B1W and C2 =
W−1C1W where W is an eigenvector matrix of C1 results in

B2 =

[
3.8858 −0.0367
1.5324 2.1142

]
and C2 =

[
3.8481 0

0 1.3805

]
.

Here 1
2(B2 + BT

2 ) and C2 are both positive definite. In contrast to the original
system the inequality of Metelitsyn [12] is now satisfied and shows asymptotic
stability. But for this purpose the Kelvin-Tait-Chetaev theorem [9] could be used
as well. �
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Example 2 Consider system (I,B,C) with

B =

 5 3 −2
−6 −3 6

1 0 4

 and C =

 10 −1 −4
−3 5 −5

1 −1 7

 .

None of these matrices are symmetrizable, since they possess imaginary eigen-
values. Taking Z = (B+BT )−1(C+CT ) the transformation given in Theorem 2
leads to a new system with a symmetrizable stiffness matrix C1 with both positive
and negative eigenvalues. If we instead choose Z = (I +C−CT )−1(I +B−BT )
we again get a system with a symmetrizable stiffness matrix C1, but now with pure
positive eigenvalues. �

In Example 1 and in Example 2 we found the matrix C1 to be real symmetrizable
by using Item 2 in Lemma 1. But this is equivalent to calculating the eigenvalues
of the original system. Therefore we will focus on Item 3 in Lemma 1 and on
Theorem 2. This approach will be demonstrated in the following.

3.1 Determination of Z

The procedure of determining Z is as follows.

Theorem 3 The transformed matrix C1 = MZM−1CZ−1 is real symmetrizable if
we have

1. Z = SC , S = ST , S ,C ∈ Rn×n , det(S) 6= 0 .

Thus C Z−1 = S−1 = (C Z−1)T is symmetric.

2. M Z M−1 = (M Z M−1)T , M = Z2 −BZ +C ∈ Rn×n .

Z = SC is similar to a real symmetric matrix. This means that the sym-
metric matrix S must be chosen in such a way that Z has real eigenvalues.

3. If the above Items 1. and 2. are satisfied we have

C1 = M Z M−1 S−1 , (15)
B1 = M Z M−1 − SC + B , (16)

7



and the matrix C1 is real symmetrizable if one of the symmetric matrices
M Z M−1 or S is positive definite.

Examples of the use of Theorem 3 are shown below.

Example 3 Given a system (I,B,C) by

B =

[
5 −3

1 2

]
and C =

[
5 1

−2 3

]
.

If we choose

S =

[
0.4818 1.0000

1.0000 2.5000

]
> 0

and Z = SC , then

M Z M−1 =

[
0.7475 −5.9307

−5.9307 58.2808

]
> 0 .

The new system matrices given by (15) and (16) are

C1 =

[
−8.1281 −1.6645

131.0553 24.7468

]
and B1 =

[
−2.6431 −0.6577

45.4129 9.6431

]
,

where C1 is real symmetrizable according to Lemma 1 , Item 3. �

Condition 2 in Theorem 3 is not easy to fulfill except for the case n = 2 , as
we shall see in the next example.

Example 4 This 2×2 system (I,B,C) is given by

C =

[
p q
−q p

]
, B =

[
r 0
0 r

]
,

where p,q,r > 0 . The example is taken from rotor dynamics, where q is repre-
senting a destabilizing circulatory force. According to Theorem 3 can Z be written
Z = SC . For simplicity we here take

S =

[
a b
b a

]
, a > |b| > 0 .
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Then CZ−1 = S−1 > 0 and Z has positive eigenvalues. We have

Z =

[
ap−bq aq+bp
−aq+bp ap+bq

]
,

and

CZ−1 =
1

a2−b2

[
a −b
−b a

]
.

At last we must determine Z such that MT M Z = ZT MT M to guarantee the
symmetry of H = MZM−1. This results in the four solutions given below for b as
function of a

b = ±

√
k1±
√

k2

2a(p2 +q2)
,

where

k1 = 2a3 (p2 +q2)−2r
(
a2 p+1

)
+a

(
r2 +2 p

)
,

k2 =
[
2r
(
a2 p+1

)
−a

(
r2 +2 p

)]2−4a2 (p2 +q2) .

As an example we now choose q as a parameter and take r = 3 and p = 16. To
estimate the stability limit we set a = 1 and select the solution (17) for b given by
the plus signs. If we write S−1 = W T W and make the similarity transformations
C2 = W C1W−1 and B2 = W B1W−1 then C2 = CT

2 > 0. The eigenvalues of
C2 and of the symmetric part of B2 , which is B2S = 1

2(B2 +BT
2 ) , are shown as

functions of q in Figure 1 on the next page. If q < 9.416 then B2S > 0 and the
system (I,B2,C2) is stable according to Kelvin-Tait-Chetaev [9]. A better estimate
of the stability limit can be obtained by using Theorem 2, Condition a) given in
[5]. From this theorem we obtain stability for q < 11.8018. These estimates
should be compared with the exact stability limit q0 = r

√
p = 12.
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Figure 1: Eigenvalues of C2 and B2S as functions of q .

For 9.416 < q < 12.00 the damping matrix B2S is indefinite and therefore in this
case we call the system gyroscopically stabilized. �

Theorem 2 also opens up for constructing other classes of systems with special
properties e.g. systems, which are marginally stable. We shall consider this par-
ticular problem in the next section.

4 Marginally stable systems

4.1 Marginal stability
As mentioned above, a system is called marginally stable if all the eigenvalues are
purely imaginary and the system is non-degenerate, that means that it must have
a full set of eigenvectors (please see note on terminology in Introduction). For
a general real marginally stable system (I,B1,C1) all the eigenvalues and eigen-
vectors are pairwise complex conjugate and can therefore be represented by the
two diagonal matrices Λ and Λ and the two eigenvector matrices Xand X respec-
tively, where Λ = iΛ0 , Λ0 ∈ Rn×n. Then the eigenvector equation for L1 given by
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Equation (6) is[
0 I

−C1 −B1

] [
X X

XΛ −XΛ

]
=

[
X X

XΛ −XΛ

] [
Λ 0
0 −Λ

]
. (17)

By premultiplying (17) by L1 we receive[
0 I

−C1 −B1

]2 [ X X
XΛ −XΛ

]
=

[
X X

XΛ −XΛ

] [
−Λ2

0 0
0 −Λ2

0

]
, (18)

which shows

Lemma 2 The eigenvalues of L2
1 of a marginally stable system are all of even

multiplicity and negative.

Now consider a system (I,0,C) with B= 0. Then by using the similarity trans-
formation given by (6) , we can find a new system (I,B1,C1) . By premultiplying
Equation (6) by L1 and rearranging we obtain[

0 I
−C1 −B1

]2 [ T1 T2
−T2C T1

]
=

[
T1 T2
−T2C T1

] [
−C 0
0 −C

]
. (19)

If we further assume that C is real symmetrizable there exists a real eigenvector
matrix TC and a real diagonal matrix ΛC for which

T−1
C CTC = ΛC ∈ Rn×n , TC ∈ Rn×n .

Then (19) can be rewritten as[
0 I

−C1 −B1

]2[ T1TC T2TC
−T2TCΛC T1TC

]
=[

T1TC T2TC
−T2TCΛC T1TC

][
−ΛC 0

0 −ΛC

]
. (20)

If ΛC > 0 then by Lemma 2 the system is marginally stable. Comparing Equation
(18) with (20) we see that ΛC = Λ2

0 and that the transformation matrix can be
chosen real . For T we have

T =

[
T1TC T2TC
−T2TCΛ2

0 T1TC

]
, det(T ) 6= 0 , T ∈ Rn×n . (21)

One can show that there is a unique correspondence between the complex eigen-
vectors X and X defining the transformation matrix given in (18) and the real
entities T1TC and T2TC defining the real transformation matrix given in (21) . The
proof is left to the reader. The above gives rise to
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Theorem 4 A system (I,B1,C1) is marginally stable if and only if it can be trans-
formed into a system (I,0,C), where C is real symmetrizable with positive eigen-
values.

As an example we consider a system with a positive definite stiffness matrix
C1 =CT

1 > 0 and a skew-symmetric damping matrix B1 =−BT
1 . It is well known

that such a system is marginally stable. A much more interesting case appears
if we deal with a positive definite stiffness matrix C1 and a symmetric indefinite
damping matrix B1 = BT

1 . Then the system (I,B1,C1) may be stable or unstable
depending on the properties of B1. For a certain class of indefinite matrices B1
which possess a Hamiltonian spectrum, see [10], there exists a positive number ε0
such that

Iẍ+ εB1ẋ+C1x = 0 (22)

is marginally stable for all |ε| ≤ ε0. This means that (22) is equivalent to a system

Iq̈+C(ε)q = 0 , C(ε) > 0 .

In general a non-degenerate system (I,B1,C1) with a Hamiltonian spectrum can
always be transformed into a system of the form (I,0,C). It can be shown that
C ∈ Rn×n can be determined by the quadratic matrix equation shown below

C2 + (B2
1 − B1C1B−1

1 −C1 )C + B1C1B−1
1 C1 = 0 .

The stability of the system is entirely determined by the eigenvalues of the matrix
C. If C is real symmetrizable with positive eigenvalues then according to Theo-
rem 4 the system is marginally stable and otherwise unstable.

We remind the reader that a test for positive eigenvalues can be done using
linear matrix inequalities, i.e. without explicitly computing any eigenvalues and
with a lower algorithmic complexity.

Example 5 Given a diagonal matrix D and a unitary skew-symmetric matrix U
by

D =


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

 , U =
1√
3


0 1 1 1
−1 0 −1 1
−1 1 0 −1
−1 −1 1 0

 , U UT = I .

The system (I,B1,C1) given by

C1 = D2 = CT
1 , B1 = DU −U D ,
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has a Hamiltonian spectrum. The system (I,εB1,C1) is non-degenerate for ε 6=
1. It can therefore be transformed into a system (I, 0 ,C(ε)). Figure 2 shows

Figure 2: Eigenvalues of C(ε) for 0 < ε < 1.

the eigenvalues of C(ε) as functions of ε. In [4] it is shown that the system is
marginally stable for |ε| < 1. For ε = 0.5 we find for C(0.5) and its eigenvalues
Λ (compare with Figure 2)

C(0.5) =


9.220 0.631 −798.583 −0.201

−2.962 3.793 292.664 −1.2345

0.000 0.000 1.138 0.000

−4.715 −1.379 465.944 14.182

 , Λ =


14.556

8.595

4.045

1.138

 .

�

4.2 Construction of marginally stable systems
We are now able to construct real marginally stable systems (I,B1,C1) with a set
of prescribed imaginary eigenvalues and which possess a full set of eigenvectors.
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This can be done by specifying a system (I,0,C0) where C0 is real symmetrizable
with positive eigenvalues. From Equation (13) and (14) we get

C1 = (Z2 +C0 )( I + ZC−1
0 Z)−1 , (23)

B1 = (C0 Z − ZC0 )(Z2 +C0 )
−1 . (24)

The use of Equations (23) and (24) is shown in the following example.

Example 6 Using the definition of D and U given in Example 5, we now define
the matrix C0 by

C0 = −DU DU ,

which has two positive eigenvalues {8/3,9} both with multiplicity two and a full
set of eigenvectors. Using

Z = D ,

Equations (23) and (24) determine a marginally stable system (I,B1,C1) given by

B1 =
1

2520


−144 60 −200 102

−480 −192 −384 −300

2520 756 192 −90

−2688 1680 320 144



C1 =
1

35


107 10 −15 6

30 192 −54 −30

−105 −126 237 −30

84 −140 −60 272

 .

Each eigenvalue of the system has the multiplicity two and the squares of the
eigenvalues are {−8/3,−9} as expected. �

4.3 Dissipative and gyroscopic marginally stable systems
The question is now if we can construct marginally stable systems where the sys-
tem matrices possess symmetry. To do this we assume that C0 is symmetric and
positive definite and that Z is symmetric or skew-symmetric, which means that
C0 = CT

0 > 0 and Z = ±ZT . Z must be chosen in such a way that

WW T = Z2 + C0 = C0 ± ZZT > 0 .
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If the above inequality is satisfied, then also I ± ZC−1
0 ZT > 0 . Using Equations

(23) and (24) we define the similar system C2 = W−1C1W , B2 = W−1B1W for
which we obtain

C2 = W T (I ± ZC−1
0 ZT )−1W , B2 = W−1(C0Z ∓ ZTC0)W−T . (25)

We have

Lemma 3 If Z = ±ZT and WW T = C0 ± ZZT > 0 where C0 = CT
0 > 0 , then

the system (I,B2,C2) given by (25) is marginally stable, and if

i. Z = +ZT ⇒ C2 = CT
2 > 0 , B2 =−BT

2 , the system is gyroscopic.

ii. Z = −ZT ⇒ C2 = CT
2 > 0 , B2 = BT

2 , the system is dissipative.

Lemma 3 is demonstrated in the next example.

Example 7 Let Z = 3−
1
2U = −ZT where U is the skew-symmetric unitary ma-

trix given in Example 5. If we e.g. choose C0 = diag[1,4,9,16] then Lemma 3
Item ii results in a marginally stable system with the symmetric matrices C2 and
B2

C2 =


0.7001 0.0558 −0.0090 −0.0565

0.0558 10.4352 0.8995 1.5890

−0.0090 0.8995 4.3508 1.1660

−0.0565 1.5890 1.1660 18.9534


and

B2 =


0.0000 −1.1094 −0.6396 −1.5471

−1.1094 0.0000 0.2957 0.2002

−0.6396 0.2957 0.0000 −0.5277

−1.5471 0.2002 −0.5277 0.0000

 .

�

5 Conclusions
We have investigated two kinds of a transformation which is based on all non-
degenerate systems with the same Jordan structure. In the first place we intro-
duced systems where a non-symmetric and non-symmetrizable stiffness matrix
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can be transformed into a symmetrizable matrix with the subsequent possibility
to obtain a symmetric stiffness matrix by a similarity transformation. Of course it
can happen that under this transformation the symmetric part of the new damping
matrix becomes indefinite, see e.g. Example 4. However, in that case it is possible
that the gyroscopic part of the new damping matrix can stabilize the system. This
last facility has not been addressed in this paper, but can be found in [5]. Secondly
we considered systems where a suitable transformation could remove the damping
part, which means that in the stable case the system is marginally stable. Several
examples are given and the general construction of marginally stable systems with
prescribed eigenvalues and a full set of eigenvectors is carried out. Moreover we
consider marginally systems where the system matrices possess symmetry as it is
the case with dissipative and gyroscopic systems.
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