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Abstract—With a growing emphasis on energy efficiency and
system flexibility, a great effort has been made recently in develop-
ing distributed energy resources (DER), including distributed gen-
erators and energy storage systems. This paper first formulates
an optimal DER coordination problem considering constraints at
both system and device levels, including power balance constraint,
generator output limits, and storage operational constraints
such as energy and power capacity and charging/discharging
efficiencies. An algorithm is then proposed to dynamically and
automatically coordinate DERs in a distributed manner. With
the proposed algorithm, the coordination agent at each DER
only maintains a local incremental cost and updates it through
information exchange with a few neighbors. Simulation results
are used to illustrate and validate the proposed algorithm.

Index Terms—Distributed control, distributed energy re-
sources, distributed generators, energy storage.

NOMENCLATURE

dt Total demand of period t.
Es Battery energy capacity.
E0 Initial value of energy stored in the battery.
ET End value of energy stored in the battery.
Et Energy stored in the battery at the end of period t.
N The number of generators in the power system.
pi,t Power generation of generator i at period t.
pmin
i , pmax

i Lower and upper bound of the power generation
of generator i, respectively.

st Power exchange between the storage device and
grid (measured at the grid connection point) dur-
ing period t, which is positive when injecting
power into grid, i.e., using generator convention.

sbatt
t Rate of change of energy stored in the storage

device at the end of period t, which is positive
when the storage device is discharged.

smin, smax Lower and upper bound of the power generation
of the storage device, respectively.

T The number of periods.
∆T The duration of the period.
η+, η− Discharging and charging efficiency of the storage

device, respectively, including components such
as conductor, power electronics, and battery.
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I. INTRODUCTION

A smart grid integrates advanced sensing and communi-
cation technologies as well as control methods into existing
power systems at both transmission and distribution levels.
Focusing on distribution system, a great effort has been made
in developing distributed generation and energy storage tech-
nology. These resources are commonly referred as distributed
energy resources (DERs). DERs are small and highly flexible
compared with conventional large-scale power plants, and are
playing an increasingly important role in the nation’s power
system. The deployment of DERs can help not only avoid (or
defer) investment in power system infrastructure, but also meet
additional reserve requirement from intermittent renewable
generation.

In order to effectively deploy DERs, proper coordination and
control need to be designed. One solution to this problem can
be achieved through a centralized control strategy where each
distributed resource is commanded from a single control center
that gathers information from and provides control signals to
the entire system. This centralized control framework may be
subjected to performance limitations, such as high communi-
cation requirement and cost, substantial computational burden,
limited flexibility, and disrespect of privacy. To overcome these
limitations and accommodate various resources in future smart
grid, it is desirable to develop an alternative distributed control
strategy, where the agent at each DER maintains a set of
variables and updates them through information exchange with
a few neighbors. During last few years, various distributed
coordination strategies have been proposed for distributed
generators (DGs) at a single period. The authors of [1] pro-
pose a ratio consensus distributed algorithm for optimal DG
dispatch problem. In [2], the authors present a strategy based
on the local replicator equation to define functions and tasks
assigned to each agent in a connected network and apply the
method to economic dispatch of DGs. Other algorithms that
can be applied to DER coordination include leader-follower
consensus algorithm [3], consensus based algorithm where
agents collectively learn the system imbalance [4], distributed
algorithm based on consensus and bisection method [5], and
minimum-time consensus algorithm [6], just to name a few.

Recent developments and advances in energy storage (ES)
technology are making its application a viable solution for
increasing flexibility and improving reliability and robustness
of power systems [7]. It is desirable to take the advantage



of ES and utilize it with DG to serve the smart distri-
bution systems. Realizing such as a need, the authors of
[8] propose a distributed algorithm based on consensus +
innovation method to coordinate DG and losses ES over
multiple time periods within a microgrid. As shown in [9]
and other existing studies, the optimal charging/discharging
operation and the corresponding benefits from a storage device
could vary significantly with its efficiencies. Therefore, in this
paper, losses during the charging and discharging operation
are considered. In addition, we exclude the cost function of
storage from the objective function, because there is no fuel
cost associated with discharging a battery, and the cost of
obtaining power and energy from a battery has already been
captured in generators’ cost when the battery is charged. Due to
these two changes in problem formulation, existing distributed
coordination algorithms cannot be applied. This paper develops
a novel distributed DER coordination strategy, where no cost
function for storage is required and charging/discharging losses
are handled.

The remainder of the paper is organized as follows: Sec-
tion II presents the formulation of multi-period optimal DER
coordination problem. A distributed coordination method is
then proposed in Section III. Section IV presents case studies
and simulation results. Finally, concluding remarks are offered
in Section V.

II. PROBLEM FORMULATION

For simplicity, this paper considers a distribution system
including N DGs and a storage device, but the idea can be
extended to cases with multiple storages. The objective of the
optimal coordination problem is to minimize the total produc-
tion cost on the premise that DGs and the ES cooperatively
serve the demand within individual generation and storage
capacity. Since there is only limited energy that can be stored
in ES, the operation of the storage system in different time
steps is interdependent. Thus, the coordination needs to be
made over multiple time steps concurrently, and a multi-step
optimization problem is formulated in (1).

PP: min
pi,t,st

T∑
t=1

N∑
i=1

Ci(pi,t) (1a)

s.t.
N∑
i=1

pi,t + st = dt, ∀t = 1, . . . , T, (1b)

pmin
i ≤ pi,t ≤ pmax

i , ∀t = 1, . . . , T, (1c)
smin ≤ st ≤ smax, ∀t = 1, . . . , T, (1d)

sbatt
t =

{
st
η+

if st ≥ 0,

stη
− if st < 0,

∀t = 1, . . . , T, (1e)

Et = Et−1 − sbatt
t ∆T, ∀t = 1, . . . , T, (1f)

0 ≤ Et ≤ Es, ∀t = 1, . . . , T, (1g)
ET = E0. (1h)

The objective expressed in (1a) is the total production cost
within the look-ahead window of T , and Ci(pi,t) is the cost
function of generator i for period t, which is assumed to be
quadratic as

Ci(pi,t) = aip
2
i,t + bipi,t + ci, (2)

where ai > 0. The O&M cost associated with ES is assumed to
be fixed, and therefore excluded from the objective function.
When discharging the battery, there is no need to consider
the cost of power/energy discharged from battery, because
the stored energy is essentially obtained from generators and
has been already included in generators’ production cost. In
addition, cost of energy losses associated with battery charg-
ing/discharging has also been taken into account in production
cost of generators through energy/power balancing constraint
and modeling of battery charging/discharging efficiency.

The constraints are described as follows. Constraint (1b) cor-
responds to the power balance requirement, where dt denotes
the demand in time period t. Constraint (1c) restricts power
output from generators to be within the lower (pmin

i ) and upper
bounds (pmax

i ). Constraints (1d) restricts the power exchange
between ES and grid to be within its charging and discharging
power capacity. Constraint (1e) expresses rate of change of
energy stored in storage device. Constraint (1f) models the
dynamics of energy stored in ES. Constraint (1g) restricts the
energy stored in the storage device to be within its lower and
upper bounds. Constraint (1h) restricts the end value of the
energy stored in ES is the same as the initial value.

A. Centralized Lagrangian Approach

In order to develop a distributed coordination algorithm,
we dualize problem (1) with respect to constraint (1b), which
couples the operation of all DERs. The other constraints are
not relaxed because there is no coupling among devices. Due
to the structure of the problem, there is zero duality gap. We
can solve the primal problem in (1) by considering its dual
problem.

Let Ωp,i be the set of all pi,t for which (1c) is satisfied, and
Ωs be the set of all st for which (1d)–(1h) are satisfied. Define
the Lagrangian

L(pi,t, st, λt)

=

T∑
t=1

{
N∑
i=1

Ci(pi,t)− λt

(
N∑
i=1

pi,t + st − dt

)}

=

T∑
t=1

{
N∑
i=1

[Ci(pi,t)− λtpi,t]− λtst + λtdt

}
.

The dual function is

D(λt)

= min
pi,t∈Ωp,i

st∈Ωs

L(pi,t, st, λt)



= min
pi,t∈Ωp,i

st∈Ωs

T∑
t=1

{
N∑
i=1

[Ci(pi,t)− λtpi,t]− λtst + λtdt

}

= min
pi,t∈Ωp,i

st∈Ωs

T∑
t=1

N∑
i=1

[Ci(pi,t)− λtpi,t]− λtst

︸ ︷︷ ︸
Φ(λt)

+

T∑
t=1

λtdt.

The dual problem is

DP: max
λt≥0

D(λt) := max
λt≥0

[
Φ(λt) +

T∑
t=1

λtdt

]
. (3)

Notice that Φ(λt) is a minimization problem across multiple
DERs and multiple periods, which can be decoupled as

Φ(λt) =

T∑
t=1

N∑
i=1

min
pi,t∈Ωp,i

(
Ci(pi,t)− λtpi,t

)
− min
st∈Ωs

T∑
t=1

λtst.

(4)
On the right hand side of (4), in the first term, there is no
coupling between generators or between time periods. The
second term is a minimization problem which only involves
ES over multiple time periods. Therefore, for any given λt,
the minimizer pi,t and st can be obtained in a decentralized
manner.

We can then apply the gradient method (5) [10] to solve the
dual problem in (3):

λt(k + 1)=λt(k) + γ(k)∆t(k), ∀t ∈ T , (5a)
pi,t(k + 1)=∇C−1

i (λt(k + 1)), ∀i ∈ N ,∀t ∈ T , (5b)

s(k + 1)=arg max
st∈Ωs

T∑
t=1

λt(k + 1)st, (5c)

∆t(k + 1)=dt −
N∑
i=1

pi,t(k + 1)− st(k + 1), ∀t ∈ T , (5d)

where

∇C−1
i (λt(k + 1)) = min(max(

λt(k + 1)− bi
2ai

, pmin
i ), pmax

i ),

T = {1, . . . , T}, N = {1, . . . , N}, s = [s1, s2, . . . , sT ]T, and
γ(k) > 0 is the step-size at time step k. The mismatch ∆t(k)
is the gradient of the dual function D(λt(k)). The update of
the dual variable (incremental cost) is according to (5a). The
update of DG generation is according to (5b), which is the
solution of the first part on the right hand side of (4). The
update of power output from ES is according to (5c), which is
the solution of the second part on the right hand side of (4).
This centralized algorithm will be implemented in a distributed
fashion in the next section.

III. DISTRIBUTED COORDINATION FOR DER

In this section, a consensus-based algorithm is proposed to
implement the gradient method in (5). To do so, we assign
each DER a coordination agent. Information exchange among
the agents is described by an undirected connected graph

G = (V, E ,A), where V = {1, . . . , N + 1} is an agent set,
whose first N agents correspond to DGs and the last agent
corresponds to the ES, and E ⊆ V×V is a set of edges indicat-
ing communication links among agents. In particular, an edge
(j, i) ∈ E denotes that agents i and j can obtain each other’s
information mutually. The A = [aij ] ∈ R(N+1)×(N+1) is the
weighting matrix, with aij > 0 if and only if (i, j) ∈ E and
aii = 0. We also define a Laplacian matrix associated with the
communication network as L = [`ij ] with `ii =

∑N+1
j=1,j 6=i aij

and `ij = −aij for j 6= i.

We are now ready to present the proposed leader-follower
consensus algorithm:

λi,t(k + 1)=
∑
j∈Ni

βijλj,t(k) + εiγ(k)∆t(k),∀i ∈ V,∀t ∈ T (6a)

pi,t(k + 1)=∇C−1
i (λi,t(k + 1)), ∀i ∈ N ,∀t ∈ T (6b)

s(k + 1)=arg max
st∈Ωs

T∑
t=1

λN+1,t(k + 1)st, (6c)

where Ni = {j ∈ V|(j, i) ∈ E} is the neighbor set of agent i,

βij =
|`ij |∑N+1
j=1 |`ij |

, (7)

εi = 1 if agent i is the leader and εi = 0 otherwise, and ∆t(k)
is given in (5d) and only evaluated at the leader.

The step-size γ(k) > 0 satisfies the following conditions:
∞∑
k=0

γ(k) =∞,
∞∑
k=0

γ2(k) <∞,

γ(k1) ≤ γ(k2) for all k1 > k2 ≥ 0. (8)

In the proposed algorithm in (6), each agent has a variable
λi,t, which is the local incremental cost of agent i at period
t. This variable is updated according to (6a) based on the
information received from its neighboring agents and possible
the mismatch depends on whether the agent is an leader. Since
B = [βij ] is a row stochastic matrix and the communication
network is connected, all λi,t(k) converge to a common value
according to classical consensus theory [11]. In addition to
the consensus term, there is a mismatch term in (6a) in order
to ensure that the power balance constraint can be met. The
update equations (6b) and (6c) are distributed implementations
of (5b) and (5c), respectively.

Remark 1: The optimization problem in (6c) is generally
piecewise linear because of (1e). Nevertheless, this problem
can be converted into a standard linear programming problem
by introducing some auxiliary variables. Please refer to [9] for
details.

The proposed distributed algorithm solves the primal
problem in (1), i.e., limk→∞ pi,t(k) = p∗i,t and dt −∑N
i=1 limk→∞ pi,t(k) = s∗t , where p∗i,t and s∗t are respectively

the optimal generation of DG i and the optimal power output
of ES during period t.
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Fig. 1. IEEE five-bus power system.

TABLE I
GENERATOR PARAMETERS

Bus ai (kW2h) bi ($/kWh) ci ($/h) Range (kW)
1 0.00024 0.0267 0.38 [30,60]
2 0.00052 0.0152 0.65 [20,60]
3 0.00042 0.0185 0.4 [50,200]
4 0.00031 0.0297 0.3 [20,140]

TABLE II
STORAGE PARAMETERS

Bus Es (kWh) smin (kW) smax (kW) η+ η−
5 960 -80 80 0.85 0.85

Remark 2: Note that for the case without ES and in a
single period, our proposed algorithm (6) reduces to the leader-
follower consensus algorithm in [3]. For the case with ES,
we need to choose the storage as the leader, i.e., εN+1 = 1
and εi = 0 for i ∈ {1, . . . , N}. Nevertheless, the proposed
strategy can also be used to incorporate ES in other leaderless
distributed algorithms in a similar way, such as two-level
consensus based algorithm [12] and consensus + innovation
consensus [8]. We have omitted the details due to the space
limitation.

IV. CASE STUDY

In this section, a case study is presented in order to illustrate
and validate the proposed algorithm. The IEEE 5-bus system
[13] shown in Fig. 1 is used as a test system, where buses
1, 2, 3, and 4 are connected with distributed generators and
bus 5 is connected to energy storage. The parameters of DGs
and ES are given in Table I, and Table II, respectively.
In this example, the topology of communication network is
assumed to be the same as the physical system. In general,
the communication and physical layers do not necessarily to
have the same topology, and the only requirement on the
communication network is that its associated graph must be
connected. Herein, all edge weights aij are set to be equal to 1.
These values are used to determine `ij of the Laplacian matrix
and then coefficients βij used in the update (6a) according to
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Fig. 2. Native load vs. Net load.
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Fig. 3. Charging (negative) and discharging (positive) power and state of
charge.

(7). Note that the convergence speed of the algorithm partially
depends on the eigenvalue of the matrix B = [βij ].

The demand to be supplied by these DERs is plotted in
red in Fig. 2. We apply the proposed distributed algorithm
(6) with εi = 0 for i = 1, 2, 3, 4, ε5 = 1, and the step-size
γ(k) = 0.2

k , to solve the optimal coordination problem. It is
found that the obtained solution agrees with the centralized
one. The resulted net load (load minus storage) is plotted in
blue in Fig. 2. The power output and state of charge (SOC) of
ES are provided in Fig. 3. As can be seen, ES cuts the peak and
fills the valley, i.e., ES is discharging during peak hours when
energy price is high and charging during off-peak hours when
energy price is low. The SOC are the same at the beginning
and end of the scheduling period, but the total charging energy
(area between the negative blue curve and x-axis) is more than
the discharging energy (area between the positive blue curve
and x-axis) because of losses. There are some time periods
when ES is idle (with zero output). This is because that the
system marginal cost is not high (or low) enough considering
the round-trip efficiency to make the discharging (or charging)
profitable.

The coordination of DGs are visualized in Fig. 4. In partic-
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Fig. 5. Iteration processes for generators 3 and 4 during hours 2 and 9.

ular, generator 1 is at its upper bound of power output all the
time because it is the cheapest among all DGs and therefore
generates as much as possible. Generator 2 is at its maximal
output from hour 9 to 20 of the day. The remaining net load
is supported by generator 3 and 4. In each hour, the marginal
costs are the same for all DGs that are not at their upper or
lower bounds. It is not difficult to see that the top boundary
of red area in Fig. 4 matches the blue curve in Fig. 2, which
means the total generation from all generators is equal to the
net load.

The iteration dynamics varies with DG and time period. As
an example, Fig. 5 plots the iteration processes for generators
3 and 4 for hours 2 and 9. For both generators, the optimal
generations in hour 9 is obtained earlier than hour 2. This is

because ES is idle in hour 9, and the demand is supported
by generators only. Hence, there is no temporal interdepen-
dent constraints on generator coordination and the output of
generators can be determined independently.

V. CONCLUSIONS

This paper considers the optimal coordination problem for
distributed generators and energy storage system. In the prob-
lem formulation, battery charging/discharging efficiencies are
explicitly considered. The cost of energy and power discharged
from battery is captured through power balance constraints and
battery efficiencies, rather than some virtual cost functions. A
distributed DER coordination strategy has been developed, and
a leader-follower consensus algorithm has been proposed using
such a strategy. The proposed algorithm has been illustrated
and validated by a case study. An interesting direction is to
extend the proposed algorithm to the optimal coordination
problem for other types of DER, such as thermostatically
controlled loads, plug-in electric vehicles, and residential de-
ferrable loads.
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