
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. YY, APRIL 2016 1

Improving Demand Response Potential of a
Supermarket Refrigeration System: A Food

Temperature Estimation Approach
Rasmus Pedersen, John Schwensen, Benjamin Biegel, Torben Green, and Jakob Stoustrup.

Abstract—In a smart grid the load shifting capabilities of
demand-side devices such as supermarkets are of high interest.
In supermarkets this potential is represented by the ability to
store energy in the thermal mass of refrigerated foodstuff. To
harness the full load shifting potential we propose a method
for estimating food temperature based on measurements of
evaporator expansion valve opening degree. This method requires
no additional hardware or system modeling. We demonstrate the
estimation method on a real supermarket display case and the
applicability of knowing food temperature is shown through tests
on a full scale supermarket refrigeration system made available
by Danfoss A/S. The conducted application test shows that
feedback based on food temperature can increase the demand
flexibility during a step by approx. 60 % the first 70 minutes and
up to 100 % over the first 150 minutes - thereby strengthening the
demand response potential of supermarket refrigeration systems.

Index Terms—Supermarket Refrigeration Systems, Tempera-
ture Estimation, Data Driven, Demand Response, Smart Grid.

I. INTRODUCTION

THE recent interest and research in the field of smart grid
technologies has yielded many suggestions for possible

flexible consumers [1]–[3]. Supermarket refrigeration systems
represent one such class of flexible consumers due to the
inherent thermal mass of the foodstuff. Hence, it is believed,
that supermarkets represent a potential for effectively storing
energy and thereby shifting consumption in time, see e.g.
[4], [5]. The overall concept is that by allowing the foodstuff
temperature to vary within predefined limits, it is possible to
shift consumption temporally. However, without an estimate of
the food temperature, the system is restricted to keeping the
temperature of the air surrounding the foodstuff within these
predefined limits, thus limiting the possible control action due
to the much smaller thermal mass of air compared to the
foodstuff. As a result, the possible load shift is reduced.

Currently, foodstuff temperature is rarely considered in
commercial systems because air temperature is much more
practical to measure. Air temperature is also the parameter
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which for example the Danish legislation is based on [6].
That is despite the fact that inspections conducted by the
food administration are performed with infrared thermometers
measuring the surface temperature of food items, and only in
case of suspected violation is the core and air temperature
noted [7]. The main reason for this procedure is that food
quality depends on food temperature and not on the current
temperature of air surrounding it. This demonstrates that if
the food temperature was known, the control action could be
based on keeping food temperature within bounds, instead
of air temperature. Furthermore, there is in general a broad
acceptance that for refrigeration systems to offer increased
flexibility, it must utilize the thermal mass of the contained
goods and it is therefore evident that a means of obtaining food
temperature, or estimates of it, is crucial for fully harnessing
the load shifting potential of these systems.

Knowledge of foodstuff temperature can be used for several
applications such as in [8] where it is used to plan daily
operation and defrost cycles for ensuring foodstuff quality and
safety. There, the foodstuff temperature is obtained through ex-
tensive knowledge and complex modeling of system dynamics.
In [9] and [10] knowledge of foodstuff temperature is used
to effectively shift refrigeration system power consumption
according to economic aspects of the individual systems, by
predictive control techniques. It is characterized by assuming
knowledge of foodstuff temperature in the predictive control
formulation.

Recently, means to measure the thermodynamical behavior
of refrigerated foodstuff have been introduced by Danfoss
A/S [11]. This sensor, besides adding an extra cost to the
system, is however also fixed to a specific dynamical behavior,
leaving it incapable to adapt to differences in display cases.
In [12] a method of estimating food temperature in closed
cabinets is presented. This method however can not handle
the disturbances an open supermarket display case is exposed
to. Further, in [13] a model based technique using an extended
Kalman filter was proposed for estimating the cold room
temperatures in supermarkets. This method allows not only
for temperature estimation but also prediction of future tem-
peratures, which could be used for planning demand response
events. However, for the method to be applicable, a model
for each individual supermarket setup needs to be derived and
verified. This quickly becomes a complex and time consuming
task.

In this paper we propose a data driven method for estimating
foodstuff temperature, where excitations such as defrost cycles
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Fig. 1. Illustration of the estimator and two feedback control loops consisting of: an inner loop controlling display case air temperature and an outer loop
controlling food temperature.

and step in air temperature reference are actively used. The
basic concept is to low-pass filter the measured air temperature
and estimate the filter’s time constant based on opening degree
of the display case expansion valve and system identification
techniques. This time constant is shown to be highly correlated
with the opening degree after each excitation. The estimated
time constant is then updated adaptively, where robustness has
been added by letting the estimated time constant be a function
of how well it fits with the opening degree data. The proposed
method requires no additional hardware as air temperature is
already measured and expansion valve opening degree is a
known computed controller output. No system modeling effort
is required as the method is purely data driven [14]. To further
strengthen the results, the method is validated on data from a
real display case.

The paper structure is as follows. In Sec. II, the system ar-
chitecture is presented. Following, in Sec. III the refrigeration
system used for testing the proposed method is introduced. In
Sec. IV we present the main result: that food temperature can
be estimated, based on opening degree of evaporator expansion
valve. Next, Sec. V describes the food temperature estimation
algorithm, followed by Sec. VI describing test results verifying
the proposed method. An application test and a simulation
example showing the potential benefits of knowing foodstuff
temperature, is given in Sec. VII. Finally, Sec. VIII concludes
the work.

II. SYSTEM ARCHITECTURE

In this section, an overview of the system architecture
is given and the interconnection between control loops and
estimator is explained. The setup consist of a food temperature
estimator and two feedback control loops: an inner loop
controlling the display case air temperature and an outer loop
controlling the food temperature. This setup is depicted in
Fig. 1 and in the following we briefly explain the role of the
control loops and the estimator.

A. Inner Control Loop

In a typical commercial supermarket setup, only the inner
control loop for each display case is present; this controller is
in charge of keeping the air temperature at given references. In
this setup, the existing air temperature controller is exploited in

the process of food temperature estimation, by examining the
variation in control signal once air temperature is in steady
state but food temperature is not. The inner loop controller
receives set-points from the outer control loop in a typical
cascade coupling.

B. Outer Control Loop

The outer control loop is used to ensure a referenced
food temperature. The outer loop controls the temperature by
applying set-points to the inner controller. Both the inner and
outer controllers are implemented as PI controllers.

C. Estimator

Knowledge of food temperature can be obtained by adding
sensory equipment such as the sensor described in [11].
There are, however, several disadvantages of using add-on
sensory equipment: besides adding an extra cost to the system,
the sensor has a predefined fixed dynamical behavior thus
not capable of capturing differences in display case content.
Therefore, we propose a food temperature estimation method
that doesn’t rely on additional sensors or modeling.

III. EXPERIMENTAL SETUP

The system used for gathering data and conducting tests is
a full scale supermarket refrigeration system made available
by Danfoss A/S. It consists of 6 display cases of which 4 are
medium temperature (MT) and 2 are low temperature (LT);
hence, the total setup mimics an ordinary smaller supermarket.

In addition to all the measurements obtainable through
the default commercial controllers, sensors are present for
both surface and core temperature of simulated foodstuff.
Each display case is equipped with one package of simulated
foodstuff, placed in the center forefront to capture the region
most exposed to thermal load from the surroundings i.e., the
region with the potential highest foodstuff temperature. The
thermal mass is largely provided by numerous containers of
ethylene- and propylene-glycol while the foodstuff sensors are
attached to blocks of foodstuff replicas made from tylose, a
type of cellulose gel, simulating meat [15], [16].

The controllers and display cases are commercially available
units typical for a supermarket. The operating mode of the



Fig. 2. The medium temperature section of the supermarket refrigeration
system with foodstuff replicas.

controllers is set to modulating control, a mode where a
continuous variable valve opening degree is approximated by
a PWM signal. Further, the sensors used for data acquisition
are used in commercial systems to document that temperatures
are within bounds, thus they are seen as being highly reliable.

The medium temperature cabinets of the laboratory setup
can be seen in Fig. 2 and the estimation procedure is applied
to the vertical shelfing unit on the far left.

A. Defrost Cycles

The temperature of refrigerant in the display case evapora-
tors is typically subzero in order to absorb enough heat from
the air. This will cause moisture to not only condense when
air passes over the surface of the evaporator, but subsequently
freeze and over time build up a layer of ice covering the evap-
orator. This will ultimately block the air flow and drastically
reduce the cooling capacity. To counter this problem, regular
defrost cycles are run, where the flow of refrigerant is stopped
and the continuing recirculation of hotter air will melt the
ice. For low temperature display cases an additional heating
element is turned on to actively melt this ice.

IV. CORRELATION BETWEEN FOOD TEMPERATURE AND
DISPLAY CASE DYNAMICS

In this section the main contribution of this paper is pre-
sented: that foodstuff temperature can be estimated based on
how the opening degree of the evaporator expansion valve
evolves over time. The proposed method is inspired by the
common approach to modeling a display case, see e.g. [17],
[18] or [19]. We will illustrate the theoretical correlation
between food temperature and opening degree, through this
common model; further, actual supermarket laboratory exper-
iments will support the theory by demonstrating this behavior.

In Fig. 3 a generic display case is shown from which the
energy balance equations in (1) and (2) are derived. This is
done under the assumptions that the air is perfectly mixed
and that heat loss is purely conductive. Further, we assume
that the food temperature is invariant across all food items,

i.e., we only find one food temperature. The energy balance
equations are given as follows

MCpair
dTair

dt
= Q̇load + Q̇food/air − Q̇e, (1)

MCpfood
dTfood

dt
= −Q̇food/air, (2)

with

Q̇load = UAload(Tamb − Tair),

Q̇food/air = UAfood(Tfood − Tair),

Q̇e = OD ·
c1︷ ︸︸ ︷

Kv

√
ρsuc(Prec − Psuc)(hoe − hie),

where MCpair and MCpfood are the product of mass and
specific heat capacity for the air and foodstuff inside the
display case, Tair and Tfood are temperatures of the air and
foodstuff, Q̇load is the heat flux (thermal load) to the display
case, Q̇food/air is the heat flux from foodstuff to air, Q̇e is
the heat flux (cooling capacity) of the evaporator, UAload
and UAfood are the heat transfer coefficients from ambient
air to display case air and from foodstuff to display case
air respectively, Kv is a valve specific constant, ρsuc is the
density of the refrigerant on the suction side, Psuc is the suction
pressure, Prec is the receiver pressure, hie and hoe are the
enthalpies at the inlet and outlet of the evaporator respectively,
and finally OD is the opening degree of the expansion valve.

This model is used to establish the relation between opening
degree and food temperature i.e., the parameter values are
assumed constant throughout the estimation period, and frost
buildup happens on a much slower time scale. Notice that the
mass changes as food items are removed from the display case,
and restocked, however this happens at a rate much slower
than the estimation period (also during peak opening hours).
Therefore, these parameters are not considered further, see e.g.
[17] for a thorough explanation of them.

Further, the assumption of heat loss being purely conduc-
tive, might affect the proposed estimation approach, when
applied to low temperature display cases, where the radiation
heat transfer is dominant. However, the main result of food
temperature being correlated with evaporator expansion valve
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Fig. 3. Generic model of open horizontal display case, with air temper-
ature controller. The controller uses a linear combination of the inflow
air temperature and the outflow air temperature for feedback, i.e. Tair =
βTair,in + (1− β)Tair,out.



opening degree should still be true. The evaluation of this has
been left for future work.

Due to the active control present for Tair, the steady state
set-point temperature is reached quickly and can therefore
be neglected, while Tfood has much slower dynamics, thus
reaching the set-point later. Focusing in this area of operation
Eq. (1) can be rewritten as

MCpair
dTair

dt
= Q̇load + Q̇food/air − Q̇e = 0

⇒ Q̇e = UAfood(Tfood − Tair) + UAload(Tamb − Tair)

⇒ OD =
1

c1
(UAfoodTfood + UAloadTamb

− (UAload + UAfood)Tair). (3)

The applied OD required to keep Tair constant is thus an affine
function of Tfood dependent on the current operating point.
Hence, OD and Tfood must exhibit similar dynamic behavior.
The assumption on load being purely conductive, could be
omitted as long as the air temperature reaches steady state
much faster than the food temperature, making the method
applicable to all kinds of cold storage.

To verify the theoretical results in a real life environment,
we conduct an experiment on one of the supermarket display
cases in the experimental setup. The results are seen in Fig. 4
where the air temperature is plotted along with both surface
and core temperature of foodstuff replicas and an estimate
of food temperature, which will be explained further in the
following section.

First, we apply a step down in air temperature reference,
where it is seen that air temperature overshoots and therefore
does not reach steady state much faster than the food temper-
ature. This is followed by three defrost perturbations, seen as
the sudden peaks in air temperature, where it is clear that air
temperature reaches steady state long before food temperature.
Lastly, a step up in air temperature reference is applied, where
the air temperature only shows a little overshoot and therefore
reaches steady state quickly compared to the food temperature.
However, what is clear from steps and defrost perturbations
is that we observe exactly the behavior outlined in the above
concept.

V. ESTIMATION OF FOOD TEMPERATURE

In this section we establish a method to automate food
temperature estimation, as shown in Fig. 4, without using any
measurements of food temperature. The concept is to use a first
order low-pass filtering of the air and find the time constant
of available opening degree data and use this as the filters
time constant. The structure of the designed food temperature
estimator is depicted in Fig. 5.

In Eq. (2) it is seen that the only variable affecting Tfood is
Tair and in steady state they would obviously have to be equal.
So food temperature is just a low-pass filtered version of air
temperature through a filter of unity gain and a time constant
found by measurements of OD, i.e. we utilize the relationship
between OD and Tfood established.

We denote the estimate seen in Fig. 4 the optimal first order
fit, which is obtained by using both measured air and food
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Fig. 4. Measured temperatures including first order optimal estimation of
food temperature for the chosen structure, τopt = 144 minutes. Data is
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changes abruptly.
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temperature and finding the optimal time constant in the least
squares error sense. In this presented example it results in a
time constant, τopt = 144 min. and a RMSE of 0.39 ◦C. This
gives the best possible result for the given structure and will
therefore be the benchmark which the following estimation
algorithm is evaluated against, i.e. it can be seen as the best
case scenario. It should be noted that the optimal first order
fit has been found from a much larger data set, where only a
subset is shown here to ease illustration. The challenge is to
approach this level of fit in a more realistic setup without the
measured food temperature.

In Fig. 4 there are four marked segments of data, each
between a pair of defrost cycles. To verify that the expected
correlation is indeed present, and to ease illustration, the open-
ing degree and measured food temperatures are normalized,
see Fig. 6. Notice it is only the transient behavior which
is of interest, as the filter has unity gain. Furthermore, the
figure shows the estimated time constants. The estimation
is performed using the Prediction Error Method (PEM) and
fitting a first order system to the scaled opening degree data
in order to obtain the time constant.

There is a clear difference in the accuracy of each of these
fits as expressed by the noted percentage of fit in Table I.
The poor fit from segment 1 is caused by air temperature
not reaching steady state sufficiently fast compared to food
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Fig. 6. Normalized data for each of the four segments. The transient behavior of OD is used to fit a first order system from which the time constant
is obtained. The vertical lines show the identified time constants for each segment. Data for each of the four segments has been normalized according to
norm(T ) = 1− (T − µ)/max(T − µ), with µ being the mean, in order to resemble a unit step and enable easy comparison of time constants.

TABLE I
TABLE OF THE FOUR SEGMENTS, THEIR ESTIMATED TIME CONSTANTS,

AND MODEL TO OD DATA FIT. THIS DATA IS BASED ON FIG. 6.

Segment Estimated Time Model to OD
Constant [min] Data Fit [%]

Best Fit 144 -
Seg. 1 2.2 0.6
Seg. 2 111 43
Seg. 3 117 62
Seg. 4 161 90

temperature, as seen in Fig. 4.
The estimation algorithm is based on updating the time

constant of the filter with the most recently calculated one.
The measure of fit, associated with each estimation can be
used to recursively update the time constant as

τ(n+ 1) = (1− α)τ(n) + ατnew(n), (4)

where τ is the adaptively updated time constant, τnew is the
newly obtained estimate of the time constant and n is the
segment number. Here, α will be a function of the measure
of fit (it can be seen as a confidence parameter, how much
do we believe in the newest estimation) and τ(n) will thus
be a weighted linear combination of all previous τ(n − i),
i = 1, . . . , n. The initial guess of time constant could be based
on display case type and content of it, or simply by obtaining
multiple sets of opening degree data and train the algorithm
before deployment.

VI. RESULTS

We now test the presented algorithm on the Danfoss su-
permarket refrigeration system; that is, food temperature is
estimated exclusively based on OD data. The algorithm is
initiated with a value of τ = 129 min. corresponding to a
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Fig. 7. Result of implementing the proposed algorithm on a single open
vertical display case described in Sec. III. The estimation filter time constant is
updated once during each defrost cycle and the initial guess is set to τ = 129
[min].

rise time of 9.9 hrs for 500 g ground beef found in [4], a
foodstuff very similar to the 500 g packs of meat replicas
used. It should be noted that if the food items are closely
packed the time constant will increase significantly [4]. The
confidence parameter α is set according to the model fits seen
in Table I, i.e. for seg. 1: α = 0.006, seg. 2: α = 0.43, etc.
The result of updating the food temperature at each defrost
cycle, after each segment is seen in Fig. 7.

The initial estimated food temperature was set to the mea-
sured air temperature resulting in the large discrepancy seen at
the beginning of the plot. It is observed that the initial guess
of time constant is close to the actual time constant, resulting
in very little improvement to be seen over the entire data
set. To demonstrate the adaptive capabilities of the algorithm,
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Fig. 8. Repeated experiment with an initial guess of time constant to be
τ = 70 [min].

TABLE II
ESTIMATION OF THE TIME CONSTANT AFTER EACH ITERATION AND THE

RESULTING RMSE FROM APPLYING THE TIME CONSTANT TO THE ENTIRE
DATASET. THE RMSE FOR THE OPTIMAL FIRST ORDER FIT IS 0.39 ◦C.

Iteration Test 1 Test 2
τ [min] RMSE [◦C] τ [min] RMSE [◦C]

Init. 129 0.41 70 0.67
1 128 0.41 69 0.67
2 121 0.42 87 0.56
3 118 0.43 105 0.47
4 156 0.40 155 0.40

the experiment is repeated with a worse initial guess of
τ = 70 minutes. This is shown in Fig. 8 where the response
of the estimated temperature is clearly too fast in the first
segment, but after a few iterations the algorithm has converged
to approximately the same time constant as seen in Fig. 7.

The results of the two tests are collected in Table II, where
also the resulting root mean square error (RMSE) between
estimate and measured surface temperature of food, is shown.
The RMSE is calculated based on letting the estimated time
constant from each iteration be applied to the entire dataset.
The reason for including RMSE is to illustrate that even a
poor estimate will result in very little temperature deviation.
What should also be noted is the robustness of the algorithm,
towards poor estimates; i.e. the estimate from segment 1 has
almost no influence on the adaptively update estimate of τ .

VII. APPLICATION EXAMPLES

The following examples should serve to illustrate the poten-
tial that lies in explicitly using the concept of food temperature
for refrigeration system control. In the first example, tests have
been performed on the entire setup described in Sec. III, that
illustrates the increase in load shifting potential when using
food temperature as feedback. Secondly, a simulation have
been performed, using the high fidelity model developed in
[17], to further motivate using foodstuff temperature in the
control strategy.

A. Test Scenario

The example considers two separate tests which are per-
formed to show the difference in load shifting abilities: First,
a baseline test where only the inner control loop in Fig. 1 is
present and no knowledge of food temperature is used. Second,
a test with food temperature estimation applied, i.e. the outer
loop is implemented in order to feed back food temperature.

One advantage of controlling food temperature is the ability
of storing energy faster through larger control action of the
actuator. It is important to note that while energy is in fact
removed from the display case system, through the evaporator,
it can effectively been seen as stored; in the sense that by
preemptively increasing power consumption above nominal,
allows for later decreasing below nominal without violating
capacity limits (in this case a maximum temperature).

Fig. 9 shows the power response, for both tests, resulting
from stepping the temperature reference 4◦C to 1◦C for all
MT-cases and −19◦C to −24◦C for all LT-cases. While the
use of food temperature feedback does appear to increase con-
sumption it is further clarified in Fig. 10 showing the energy
consumed relative to baseline. The relative consumption has
increased approximately 60 % during the first 70 minutes,
rising to a 100 % increase over the first 150 minutes.

This increased consumption will inevitably increase losses
in the system. Mainly to the surrounding environment, previ-
ously noted as Q̇load in Fig. 3 due to the larger temperature
difference. But potentially also through reduced coefficient of
performance (COP) of the system, depending on the control
methodology of the inner loop, since the temperature differ-
ence over which heat has to be transferred may need to be
increased. While these losses are not insignificant, and will
reduce the efficiency of the storage, they do not prevent the
concept of storing energy in refrigeration systems. Further,
the increasing amount of renewables in the Western electricity
markets cause a higher occurrence of extreme prices and at
the same time lower electricity prices - which is the ideal
scenario for the refrigeration storage system described in this
paper. For example, the Nordic system base price for 2016
(ENOYR16) [20] has dropped from 50 EUR/MWh in 2011
to around 17 EUR/MWh in end 2015, while the occurrences
of extreme imbalance prices, in for example Germany, has
increased so that prices higher than 500 EUR/MWh (and
lower than -500 EUR/MWh) happens every month. This
indicates that flexibility, e.g. from thermal storage solutions,
may become of very high value; further, the drawback of
increased electrical consumption may have a very limited cost
due to the low electricity prices.

B. Control Scenario

To further illustrate the increase in load shifting potential,
a simulation is carried out on the supermarket refrigeration
system model presented in [17], consisting of seven MT
display cases and four LT display cases. We consider the setup
depicted in Fig. 11, where a supermarket supervisor receives
a power reference signal from e.g., an aggregator [21]. In this
example the reference signal is similar to the one demonstrated
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in [22], where the supermarket is set to follow a demand curve
used for secondary reserve.

The supervisor is implemented as a PI controller followed
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by a dispatcher where the temperature references for the
individual display cases are weighted so they reach constraints
on temperature at the same time. This ensures that the overall
system dynamics are maintained for a much broader oper-
ating range. The reference following capabilities are shown
in Fig. 12, for a system utilizing foodstuff temperature and
for one using only air temperature. For this proof-of-concept
example an additional 1.49 kWh (10.8 %) is consumed during
the storage period (200-320 min.) relative to air temperature
control. Likewise, a reduction in consumption of 0.74 kWh
(10.5 %) is made during the release period (330-430 min.).
The air and food temperatures of a single display case are
shown in Fig. 13.

As expected, when using food temperature as feedback
instead of air temperature, the system is capable of following a
reference with a higher amplitude, thus potentially increasing
the value of a supermarket when offering flexibility to an
aggregator. The difference in behavior is clearly seen from
the food temperature in Fig. 13, where in the case of only
using air temperature the system utilizes almost none of the
foodstuff’s thermal mass. When actively utilizing this mass,
the air temperatures are allowed to vary much more enabling
the system to follow the power reference.



C. Business Case

The actual value of this increased flexibility is difficult to
estimate in a market that has not yet generally adopted the
use of smaller flexible users. As is the increased potential that
comes with an increasing market share of, often renewable,
highly varying power plants of different sizes. The value of
the proposed method of using estimated food temperature is,
that for many systems it requires little more than a software
update, when compared to only using air temperature. In
return a significant increase in available flexibility is achieved.
Although utilizing this added flexibility will likely have a
higher cost, it is also an additional product previously not
available at all. Thus the supermarket may choose to sell it
only when the extra costs are covered. Since the hardware
is exactly the same it should still be possible to deliver the
previously available amount with the same efficiency.

VIII. CONCLUSION

In this work, we established a method for estimating food
temperature in supermarket display cases based on measure-
ments of air temperature and knowledge of the evaporator
expansion valve opening degree. The benefits of the pro-
posed method were shown to be: no add-on sensory equip-
ment needed, no modeling of the underlying refrigeration
system, and a robust updating algorithm for handling poor
estimates. Moreover, the developed estimation method was
verified through test on a real supermarket display case and
showed that even poor estimates of the filter time constant
resulted in an RMSE below 0.7 ◦C. The demonstration clearly
indicated that the proposed method was able to capture the
main dynamics of the thermal mass in the supermarket display
cases.

To illustrate the benefits of having knowledge of food
temperature available, tests on a full scale supermarket refrig-
eration system were performed. These showed a significant
increase in added consumption from the start of the step,
reaching its maximum at 150 minutes into the step. Hereby
these tests verified the significantly larger flexibility potential
when limiting the allowable foodstuff temperatures instead of
putting these restrictions on the air temperature, as is currently
done.

To further motivate the proposed estimation method, a
simulation on a high fidelity supermarket model verified the
increased flexibility potential from knowing food temperature.

The work documented in this paper has resulted in the patent
described in [14].
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