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Abstract—Exploitation of flexible consumption in the future
smart grid requires new actors and infrastructure. In this paper,
we propose a hierarchical setup in which a central controller,
a so-called “aggregator,” is responsible for managing the flexi-
bilities of industrial thermal loads via a contract-based direct
control policy. The aggregator manipulates the consumption
profile in an optimal and robust manner in order to provide
upward and downward regulating power services. To this end,
we consider a robust model predictive control design at the
aggregator. The performance of the proposed controller is evalu-
ated by simulating specific case studies involving a supermarket
refrigeration system and a heating, ventilation, and air condi-
tioning chiller in conjunction with an ice storage. In addition,
we provide a comparison between heterogeneous and homoge-
neous aggregation of different thermal loads through simulation
examples.

Index Terms—Aggregator, regulating power, robust model
predictive control, thermal loads.

NOMENCLATURE

Indices

j Index of aggregators.
i Index of distributed energy resources (DERs).
t Index of time sample.

Parameters

n Number of aggregators and number of
DERs of each aggregator.

Ac1, Ac2, Bc1, Bc2 Constant parameters of the DER
continuous-time model.

A1, A2, B1, B2 Constant parameters of the DER
discrete-time model.
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αc1, αc2, βc1, βc2 Uncertainty of the continuous-time
model parameters.

α1, α2, β1, β2 Uncertainty of the discrete-time model
parameters.

[αq
l , β

q
l ] (l, q = 1, 2) Vertices of the uncertainty set.

Sl, Rl, Tl (l = 1, 2) Parameters which define the polytopic
sets, L1 and L2.

M Maximum of S1x(t) + R1u(t) − T1
inside the polytopic set, L.

m Minimum of S1x(t) + R1u(t) − T1
inside the polytopic set, L.

Mx Maximum of x(t) inside the polytopic
set, L.

mx Minimum of x(t) inside the polytopic
set, L.

Mu Maximum of u(t) inside the polytopic
set, L.

mu Minimum of u(t) inside the polytopic
set, L.

x(t) Thermal energy changes of a thermal
energy storage (TES).

u(t) Electrical power deviation from the
baseline power of a TES.

δ(t) Auxiliary binary variable to model the
logical part of the system.

z(t), y(t) Auxiliary real variables to model the
logical part of the system.

Pji Power reference to the DER “ji.”
Pj Power reference to the aggregator j.
�j Profit function of the aggregator j.
�j Cost function of the aggregator j.
Pji,min Minimum power consumption of the

DER ji.
Pji,max Maximum power consumption of the

DER ji.
Pji,base Baseline power consumption of the

DER ji.
Tji,on On-time period of the DER ji.
Tji,off Off-time period of the DER ji.
Preference Power reference to the top-level con-

troller.

Robust Setup

X(t) Vector of thermal energy changes for a portfolio
of n DERs.
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U(t) Vector of electrical power deviation from the base-
line and the auxiliary variables (z, y, δ) for a
portfolio of n DERs.

A, B Constant matrices of the model parameters for a
portfolio of n DERs.

�a, �b Matrices of parameters’ uncertainty for a portfolio
of n DERs.

F, G, H Constant matrices to describe the model constraints
for a portfolio of n DERs.

Ti,on On-time period of the DER “i.”
Ti,off Off-time period of the DER i.
Ton Maximum of the on-time periods.
Toff Maximum of the off-time periods.
Ti,on Desired on-time period of the DER i.
Ti,off Desired off-time period of the DER i.
Xi,act Desired state of the DER i during the activation

time.
Ui,act Desired input of the DER i during the activation

time.
Xi,off Desired state of the DER “k” during the off-time

period.
Ui,off Desired input of the DER i during the off-time

period.
Xi,on Desired state of the DER i during the on-time

period.
Ui,on Desired input of the DER i during the on-time

period.
Nact Number of samples during the activation time.
Ni,off Number of samples during the off-time period for

the DER i.
Ni,on Number of samples during the on-time period for

the DER i.
Noff Maximum value of Ni,off for i = 1, . . . , n.
Non Maximum value of Ni,on for i = 1, . . . , n.
N Number of samples during the extended activation

time.
X (t) Desired value of X.
U(t) Desired value of U.
Q, R, � Constant weighting matrices.

I. INTRODUCTION

THE CURRENT power grid requires a fundamental
change in infrastructure to meet the future challenges and

to take full advantage of modern technologies. Environmental
concerns together with decreasing fossil fuel resources drive
many countries to increase the share of renewable energy in
power generation. Unlike the traditional resources, wind and
solar power are intermittent which necessitate more sophis-
ticated control strategies to stabilize the frequency of power
grid [1]. Moreover, the current power grid is changing from
the centralized topology to the distributed form with grow-
ing use of DERs such as combined heat and power plants,
electric vehicles (EVs), etc. This also adds new requirements
for congestion management and safe operation of the distribu-
tion grid [2]. At the same time, modern sensors and advanced
communication technologies enable two-way and automated
data exchange between the grid operators, generation side, and

intelligent consumers [3]. The future power grid, known as
smart grid, utilizes modern technologies and control strategies
to overcome the new challenges and consequently, enhance
the reliability, efficiency, and sustainability of the power
grid [4].

One of the key components of a smart grid is the flex-
ible consumer. In this context, flexible demand refers to
those consumers that can advance or postpone their consump-
tion in response to a grid operator command or incentive
signal. Utilization of consumers in power management sys-
tems, known as demand side management (DSM), is over 40
years old. Generally, DSM programs fall into two categories,
demand response (to flatten the demand pattern) and energy
efficiency and conservation (to reduce the energy consump-
tion) [5]. Early DSM programs were limited and expensive due
to lack of advanced technologies. Smart grid, with the possi-
bility of two-way communication, real-time data exchange and
using smart meters and monitoring, facilitates the DSM pro-
grams in recent years. There are many works in the literature
which have investigated the DSM problems in the smart grid.
Some of the works have studied the residential consumption
units. For example, home appliances have drawn lots of atten-
tion, where the aim is to optimize the energy consumption
using smart metering and communication within a home or
in a neighborhood level [6]–[8]. DSM at the household levels
are not restricted to the home appliances. Building structure
can retain the thermal energy, either in the form of warm-
ness or coldness, for a period. The long time constant of
the building thermal model can be utilized for load shifting
or optimal component operation by manipulating the heating
or cooling systems. Not only the building structure, but also
external energy storages such as water tank can be used as
well. Basically, in these works, advanced control methods such
as model predictive control (MPC) are applied which incor-
porate weather forecast, energy prices, etc. to achieve energy
efficient building, i.e., providing a satisfactory comfort level
at a lower cost [9]–[12].

However, smart DSM is not only a means of optimizing
local energy consumption, but it also facilitates active par-
ticipation of consumers in the electricity market. The notion
of a “smart grid” gives consumers the opportunity to evolve
from a mere consumption unit to an active player in the elec-
tricity market [13]. It is obvious that the consumers cannot
offer in the market individually; since each consumption alone,
is not large enough to bid in the market and it is practi-
cally impossible to manage from the grid operator point of
view. The term “aggregator” has been recently used for a new
entity which is in charge of handling the consumer services
or their integration to the smart grids [14]. This is a general
definition though, and the exact function of the aggregator
might be different from case to case. There could be var-
ious types of aggregator depending on the control strategy,
provided services, type of demand, etc. In general, we can
classify the control strategies into two main categories, direct
control and indirect control [15]. In summary, in direct con-
trol strategies the consumers receive control commands from
a grid operator to follow. In most cases, this implies a two-
way communication and data exchange between the operator
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and consumers. On the contrary, indirect control is a one-way
communication approach where the grid operator distributes
an incentive signal, such as price, to change the consumption,
but the consumer independently decides to act on the incen-
tive or not. The aggregator may aim to offer different type
of services such as up/down regulation services, primary, sec-
ondary and tertiary reserves, voltage control, etc [16]. Finally,
various types of consumers ranging from home appliances to
industrial enterprises can be aggregated.

For example, aggregation of EVs have been studied in sev-
eral works, where the aggregator controls the charging process
to provide regulation services [17], [18]. Another example is
the aggregation of residential thermostatically controlled loads
(TCLs) such as water heaters, refrigerators, air conditioners,
etc. For instance, Sanandaji et al. [19] investigated the aggre-
gation of TCLs to provide fast regulation services (seconds to
1 min time scale). Other example for the TCLs aggregation can
be found in [20]–[22]. A general market model for residen-
tial demand response in smart grid is given in [23]. Literature
review regarding the aggregator design reveals that most of
the works are dedicated to small energy consumers, whereas
the works on industrial consumers are rather limited. As an
example, Vrettos et al. [24] proposed a hierarchical control
scheme to aggregate the heating, ventilation, and air condition-
ing (HVAC) systems of commercial buildings for secondary
frequency control provision. Similar work for the aggregation
of HVAC units to follow the regulation and load following
signals is given in [25].

In [26], we proposed an aggregator setup with the following
features.

1) We have chosen industrial consumers which is less
addressed in the literature. A few of industrial enter-
prises are large enough to bid in the electricity market.
Thus, we can implement a central aggregator which has
the consumers under its direct jurisdiction in practice.
Moreover, industrial consumers have less privacy issues
compared to the households. This facilitates the informa-
tion exchange between the consumers and the aggregator
which is necessary for the proposed setup.

2) Such aggregator operates in a three-level hierarchical
structure consists of three levels, a top-level controller
that can be located at the transmission system operator
(TSO), distribution system operator (DSO), or balance
responsible party (BRP), an aggregator in the middle
and a number of consumers at the bottom. We consider
a power reference following scenario as follows: “the
aggregator and the grid operator sign a contract which
allows the grid operator to activate the aggregator for
a certain period of time, called the activation time. The
aggregator is asked to follow a specified power refer-
ence within the activation time.” The power reference
following service can be of interest to any grid opera-
tor in the electricity market. For instance, in the current
Nordic electricity market, BRPs are trading companies,
which have the responsibility of supplying energy to a
number of consumers under their jurisdiction during a
given period of time. They trade power in different mar-
kets. For example, in the day-ahead market, BRPs bid

their power schedules a day before the actual consump-
tion/production based on the anticipated consumption.
By utilizing the flexibility of consumers, BRPs will
be able to reduce the cost of deviation between the
power which is bought/sold one day ahead and the actual
consumption/production. In other words, the actual con-
sumption is becoming closer to anticipated consumption.
TSO is a noncommercial organization, which is respon-
sible for reliable and secure operation of the whole
power grid. To maintain the balance continuously, TSO
should provide regulating powers as upward and down-
ward regulation, meaning increase and decrease in pro-
duction, respectively. The proposed aggregator can bid
in the regulating power market by providing upward and
downward regulating power with decreasing and increas-
ing the consumption instead. At the low-voltage level,
DSOs are responsible for the physical grid, here, avoid-
ing congestion and controlling the voltage level of the
feeders are the main issues. The power reference fol-
lowing service can ensure the DSO that a feeder of
interest will never be higher loaded than specified by
the DSO.

3) The aggregator optimizes the power distribution for two
cases: a) when the power reference is greater than the
aggregated baseline consumption; and b) when it is
lower.

4) In the proposed setup, we deliberately used simpli-
fied models of the consumers at the aggregator, even
though the physical systems are known to be more
complicated. Otherwise, the setup is not applicable in
practice. To compensate for the deviation arising from
the model mismatch, we considered a simple feedback
mechanism in which we represented the discrepancies
as state-dependent uncertainties. We then redistributed
the discrepancies among the consumers.

In this paper, we first generalize the hierarchical setup by
considering a number of aggregators and explain the interplay
between the aggregators and the top-level controller. Rather
than assuming a specific case study for the aggregator design,
same as [24] and [25], our proposed aggregator design can be
applied to any large-scale thermal load. For simulation exam-
ple, we choose the supermarket refrigeration system and the
HVAC chiller connected to an ice tank. Though the simula-
tions, we provide a comparison between the heterogeneous and
homogeneous aggregation. As the main contribution of this
paper, instead of the aforementioned feedback mechanism, we
include the uncertainties inside the controller at the aggrega-
tor. This approach leads to a robust MPC framework in which
the model structure is known. However, the model parameters
are allowed to vary within a predefined convex set.

The rest of this paper is organized as follows. In Section II,
we illustrate the general setup including the heterogeneous and
homogeneous framework and interaction between the play-
ers. In Section III, we present the robust MPC design. In
Section IV, simulation results are provided. We consider two
simulation scenarios. One scenario is related to the compari-
son of heterogeneous versus homogeneous aggregation. In the
other scenario, we investigate the performance of the proposed
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Fig. 1. Three-level hierarchical aggregation setup. DERji( j = 1, . . . , n
i = 1, . . . , nj) stands for the ith DER belonging to the aggregator j. Pj and
Pji are the power references.

robust MPC. In Section V, we conclude this paper. Note that
throughout this paper, all symbols represent real scalars, unless
specifically stated.

II. GENERAL SETUP

A. Heterogeneous Versus Homogeneous Aggregation

The general hierarchical setup is depicted in Fig. 1. It con-
sists of a top-level controller that can be located at BRP, TSO,
or DSO, a number of aggregators in the middle and a number
of flexible thermal loads, which can be seen as DERs under
the control of each aggregator at the bottom. In the homoge-
neous setup, each aggregator is connected to the DERs of a
same type, while in the heterogeneous aggregation, the aggre-
gator utilizes the flexibility of DERs with different flexibility
characteristics.

B. Model of Consumers

In this paper, we solely focus on a specific class of flexible
consumers; TESs. Excess electrical energy can be stored in
form of thermal energy in TESs for later use in the future.
In modeling a TES, we aim to represent the thermal energy
changes that result from input excess/shortage of electrical
power. Thus, we define the system state, x ∈ R, and the system
input, u ∈ R, as below.

1) x(t) � thermal energy changes from the baseline.
2) u(t) � electrical power deviation from the baseline

power.
In order to avoid complex notation, we omit the subscript
ji from all the variables in this section. We look at the
whole consumption unit as a lump TES. As stated above, a
simplified model of the real complicated system can be uti-
lized at the aggregator for our purpose. Simulation results
in [27] also reveal that a first order model can reasonably
approximate the behavior of a supermarket refrigeration sys-
tem as an example of a TES. Assume

[
x
u

]
∈ L, where

L ⊂ R × R is a polytopic set. Then, the general model
of a TES is expressed by (1)–(3). We consider a piece-wise
linear dynamic system including two separate linear mod-
els. In this way, we can explain those systems which are
operated in two different modes with significant difference

between the system parameters. For instance, the system
dynamics might vary significantly from day-time to night-
time because of coefficient of performance (COP) effects.
Another example could be the two separate modes (ice-making
and direct cooling) in cooling and air conditioning systems.
Instead of increasing the number of models, small changes
in system parameters are modeled by considering uncertain
parameters in each mode. Note that we consider multiplicative
uncertainties

ẋ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(Ac1 + αc1)x(t) + (Bc1 + βc1)u(t) if

[
x

u

]
∈ L1

(Ac2 + αc2)x(t) + (Bc2 + βc2)u(t) if

[
x

u

]
∈ L2

(1)

L1
⋂

L2 = ∅, L1
⋃

L2 = L (2)

Ll =
{[

x
u

]
: Slx + Rlu ≤ Tl

}
, l = 1, 2 (3)

where Ac1, Ac2, Bc1, Bc2 ∈ R are known parameters of the
continuous model and the sets Ll are polytopes defined by
Sl, Rl, Tl ∈ R. The corresponding discrete-time system is given
in (4). A polytopic uncertainty set is assumed as shown in (5),
where Co denotes the convex hull and [αq

l , β
q
l ] (l, q = 1, 2)

are vertices of the uncertainty set

x(t + 1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(A1 + α1)x(t) + (B1 + β1)u(t) if

[
x

u

]
∈ L1

(A2 + α2)x(t) + (B2 + β2)u(t) if

[
x

u

]
∈ L2

(4)

[αl, βl] ∈ Co
{[

α1
l , β1

l

]
,
[
α2

l , β2
l

]}
, l = 1, 2. (5)

To model the logical part of the system, we define an
auxiliary binary variable, δ(t) ∈ {0, 1} such that (6) holds

[
x
u

]
∈ L1 ⇐⇒ δ(t) = 1. (6)

Moreover, two auxiliary real variables, z(t) and y(t), are
needed as (7) and (8). Thereafter, the system dynamics can
be represented as follows:

z(t) � x(t)δ(t) (7)

y(t) � u(t)δ(t) (8)

x(t + 1) = (A2 + α2)x(t) + (B2 + β2)u(t)

+ (A1 + α1 − A2 − α2)z(t)

+ (B1 + β1 − B2 − β2)y(t). (9)

Equation (6) cannot be directly used in the optimization
problem and (7) and (8) are also products between the two
decision variables. We use the techniques proposed in [28]
to convert these equations to mixed-integer linear inequali-
ties. Equation (6) can be replaced by inequalities (10)–(13)
and (7)–(8) can be replaced as follows:

S1x(t) + R1u(t) − T1 ≤ M(1 − δ(t)) (10)

S1x(t) + R1u(t) − T1 ≥ ε + (m − ε)δ(t) (11)
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M � max[x,u]∈L{S1x(t) + R1u(t) − T1}
(12)

m � min[x,u]∈L{S1x(t) + R1u(t) − T1}
(13)

z(t) ≤ Mxδ(t) (14)

z(t) ≥ mxδ(t) (15)

y(t) ≤ Muδ(t) (16)

y(t) ≥ muδ(t) (17)

z(t) ≤ x(t) − mx(1 − δ(t)) (18)

z(t) ≥ x(t) − Mx(1 − δ(t)) (19)

y(t) ≤ u(t) − mu(1 − δ(t)) (20)

y(t) ≥ u(t) − Mu(1 − δ(t)) (21)

Mx � maxx∈L{x} (22)

mx � minx∈L{x} (23)

Mu � maxu∈L{u} (24)

mu � minu∈L{u}. (25)

Furthermore, each dynamical system is subject to physical
constraints. Thus, we need to consider the input and state
constraints as

umin ≤ u(t) ≤ umax (26)

xmin ≤ x(t) ≤ xmax. (27)

In the model presented above, we assume the system input
can be changed continuously. ε is a small positive number in
the above equations.

This model is sufficient to describe the salient features of
a TES. Various types of TESs are distinguished by the fol-
lowing key features: 1) leakiness, i.e., loss during storage;
2) efficiency in conversion; 3) power capacity; and 4) energy
capacity.

Fig. 2 depicts the salient features of such a simplified ther-
mal storage. The parameters (A1 + α1) and (A2 + α2) specify
whether the TES is leaky or not in each operation mode.
Efficiency in conversion (from electrical to thermal power) or
the COP of the system is reflected in (B1 +β1) and (B2 +β2).
Power and energy capacity are defined with input and state
constraints as (26) and (27). We can list more features in addi-
tion to the aforementioned features. For instance, there may
be other constraints in addition to the power and energy con-
straints in the process of energy conversion such as pressure
constraints, etc. However, the aggregator is not responsible
for controlling the consumers in detail, such as every single
pump or valve. These are the responsibilities of local con-
troller. Thus, it is not necessary to have complex models at
the aggregator.

C. Objective Function

The objective of the setup shown in Fig. 1 is as follows:
“the top-level controller aims to keep the power consump-
tion of the whole portfolio at a specified level, Preference,
during a specific activation time.” To meet the objective,

Fig. 2. Salient features of a thermal storage.

the interactions between the top-level controller and the aggre-
gators and also between one aggregator and the consumers
at its disposal, should be determined. The latter is explained
in detail in [26]. Here, we provide a brief summary together
with the first interaction. Assume Pj and Pji (j = 1, . . . , n
and i = 1, . . . , nj) denote the power references from the top-
level controller to the aggregators and from the aggregators
to the consumers, respectively. Under normal circumstances,
when there is no activation, consumers consume the amount
of power they require to run their systems in the optimal
manner defined by the local controller. This power is called
the baseline power. To formulate the objective function at
the aggregator, we consider two general cases, when the
power flow to the aggregator is above its aggregated baseline
consumption (down-regulation) and when it is below (up-
regulation). First, let us consider the down-regulating scenario.
During the down-regulation activation time, the total consump-
tion is above the aggregated baseline power. In this situation,
the aggregator has the chance to save some extra energy in its
thermal storages during the activation. Right after the activa-
tion, the aggregator can benefit from this saving by using the
stored energy and lowering its consumption to under baseline
consumption. Thus, the optimal is to retrieve as much energy
as we can after the activation. The objective function at the
aggregator j for the down-regulating scenario is formulated as

max
uji,zji,yji,δji(i=1,2,...,nj)

�j =
nj∑

i=1

(
Pji,base − Pji,min

)
Tji,off (28)

Pj1 + Pj2 + · · · + Pjnj = Pj (29)

(9)–(11), (14)–(21), (26), (27)

where Tji,off (off-time period) represents the period after the
activation when the consumer decreases its consumption from
the baseline, Pji,base, to the minimum level, Pji,min. In case
of no activation, the consumer needs to consume at least the
baseline consumption during this period. Thus, the consumer
is able to save power corresponding to Pji,base −Pji,min at each
time instant during Tij,off. In fact, �j is the energy saving after
the activation. Reducing the power consumption to the mini-
mum level minimizes the time needed for regaining the stored
energy and consequently minimizes the heat loss to the sur-
rounding. In other words, it is optimal to deplete the energy
as fast as possible to minimize the loss. The problem in the
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up-regulating scenario is symmetric to the down-regulation.
During the up-regulation activation time, the total consump-
tion is below the aggregated baseline power. In this case, the
aggregator needs to store some energy before the activation
in order to deliver it during the activation time. The objective
function at the aggregator j for the up-regulating scenario is
formulated as

min
uji,zji,yji,δji(i=1,2,...,nj)

�j =
nj∑

i=1

(
Pji,max − Pji,base

)
Tji,on (30)

Pj1 + Pj2 + · · · + Pjnj = Pj (31)

(9)–(11), (14)–(21), (26), (27)

where Tji,on (on-time period) is the period before the activa-
tion when the consumer increases its consumption from the
baseline to the maximum level, Pji,max to store the required
energy. The consumer has to consume Pji,max − Pji,base more
than its normal operation at each time instant during Tji,on.
�j is the cost, in terms of energy consumption, that should
be paid by the aggregator. Similar to the first case, it is bet-
ter to save the energy as fast as possible during the Tji,on
to minimize the loss. That is why the consumer consumes its
maximum power before the activation. In above optimizations,
uji = Pji − Pji,base.

In the hierarchical setup shown in Fig. 1, we assume
several aggregators and the grid operator aims to provide
Preference from all of them. Therefore, a question arises: how
the power distribution from the grid operator to the aggregators
should be, where there are different aggregators with different
capacities and costs. For this level, we consider a one-time
optimization. The mechanism is as follows. Each aggregator
communicates the cost (�j)/profit (�j) curves to the grid oper-
ator which illustrate the cost/profit, in terms of energy, per a
specified power reference. Based on this information, the top-
level controller performs a one-time optimization to produce
P1, P2, . . . , Pn

min
P1,...,Pn

n∑
j=1

�j (up-regulation) (32)

max
P1,...,Pn

n∑
j=1

�j (down-regulation) (33)

subject to: P1 + P2 + · · · + Pn = Preference (34)

Pj,min ≤ Pj ≤ Pj,max (j = 1, . . . , n) (35)

where Pj,min and Pj,max are the minimum and maximum
power consumption of the total consumers controlled by
“Aggregator j.” These power flows (P1, . . . , Pn) will be fixed
during the activation period.

III. ROBUST MPC ON AGGREGATOR LEVEL

A. Model With Uncertainties and Constraints

In this section, we assume only one aggregator which has
n TESs (i = 1, . . . , n) under its control. For the sake of
simplicity, we delete the index j related to the aggregators.

Each consumer has the following model:

xi(t + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Ai,1 + αi,1)xi(t)

+ (Bi,1 + βi,1)ui(t)

[
xi

ui

]
∈ Li,1

(Ai,2 + αi,2)xi(t)

+ (Bi,2 + βi,2)ui(t)

[
xi

ui

]
∈ Li,2.

(36)

Thus, the model of the whole portfolio is as follows:

X(t + 1) = (A + �a)X(t) + (B + �b)U(t)

X(t) � [x1(t) . . . xn(t)]
T

U(t) � [u1(t) z1(t) y1(t) δ1(t) . . . un(t) zn(t) yn(t) δn(t)]
T

A �

⎡
⎢⎣

A1,2 0
. . .

0 An,2

⎤
⎥⎦

n×n

�a �

⎡
⎢⎣

α1,2 0
. . .

0 αn,2

⎤
⎥⎦

n×n

B �

⎡
⎢⎣

B1,2 0
. . .

0 Bn,2

⎤
⎥⎦

n×4n

�b �

⎡
⎢⎣

β1,2 0
. . .

0 βn,2

⎤
⎥⎦

n×4n

Bi,2 � [Bi,2 Ai,1 − Ai,2 Bi,1 − Bi,2 0]

β i,2 � [βi,2 αi,1 − αi,2 βi,1 − βi,2 0] (i = 1, . . . , n)

(37)

and the model is subject to mixed constraints in which both
physical constraints (26) and (27) and constraints related to the
mixed logical models (10), (11), and (14)–(21) are included

FX(t) + GU(t) ≤ H (38)

where F ∈ R
14n×n, G ∈ R

14n×4n, and H ∈ R
14n are constant

matrices with appropriate dimensions, related to the above-
mentioned constraints for n units plus the power reference
following equation.

B. Control Formulation

In Section II, the objective function at the aggregator level
has been formulated for the up/down-regulation scenarios. The
proposed objective functions rely on the off-time and on-time
periods of the consumers. In general, for each TES, off-time
and on-time periods are nonlinear functions of the state of the
charge at the end and at the beginning of the activation, respec-
tively. For the piece-wise linear dynamic (1), the function is
a logarithmic function whose parameters can vary depending
on the set definitions, L1 and L2. For example, in a special
case, when S1 = T1 = S2 = T2 = 0, R1 = −1, and R2 = 1,
they can be obtained as below for the consumer i

Ti,off = −1

Ai,c1 + αi,c1
ln

(
1 − (Ai,c1 + αi,c1)xi(Nact)

(Bi,c1 + βi,c1)(Pi,base − Pi,min)

)

(39)

Ti,on = 1

Ai,c2 + αi,c2
ln

(
1 + (Ai,c2 + αi,c2)xi(1)

(Bi,c2 + βi,c2)(Pi,max − Pi,base)

)

(40)

where xi(Nact) and xi(1) are the state of the charge of the
systems at the end and at the beginning of the activation time.
Nact is the number of samples during the activation time. Ti,off
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is the time after the activation time which takes to fully deplete
the stored energy at the end of the activation time for the
TES i. Ti,on is the time before the activation time which takes
to store the required energy at the beginning of the activation
time for the TES i. Based on these definitions, (39) and (40)
are obtained, considering the fact that the solution of the first
order linear model has the exponential form.

To apply a robust algorithm at the aggregator level in a
real time situation, we propose a two-step strategy. The first
step is performed long before the activation time. The aggrega-
tor solves a one-time optimization problem using the objective
functions (28) and (30). In the second step, based on the infor-
mation obtained from the first step, the aggregator solves an
optimization problem every sampling time during the extended
activation time. The extended activation time refers to the acti-
vation time, when the units are required to follow the power
reference, plus the on-time or the off-time periods. In the
following, we will explain each step in details.

1) For the down-regulating scenario, the aggregator per-
forms a profit optimization to maximize the profit function as
formulated in equation (41)

max
ui,zi,yi,δi(i=1,...,n)

n∑
i=1

(Pi,base − Pi,min) × Ti,off. (41)

In this optimization, the aggregator uses those system parame-
ters, within the uncertainty set, which produces the maximum
profit. Since the profit function is a function of Ti,off, then the
aggregator should use the system parameters which produces
the maximum Ti,off for i = 1, . . . , n. Analytically, it is not
straightforward to say which parameters will generate the max-
imum profit. For example, for the special case in (39), Ti,off
decreases with the increase in βi,c1 at first glance. However,
xi(Nact) also increases with the increase in βi,c1, since it is
dependent on βi,c1. Moreover, off-time period for one system
is also dependent on off-time period of the other systems and
we are interested in maximizing the total profit. Nevertheless,
as we explained in Section II, we know the physical interpre-
tation of the system parameters. Ac1 and Bc1 model the heat
loss and efficiency in conversion (COP) of a TES, respec-
tively. Thus, the greater αc1 and βc1 we have, the more profit
we achieve. In other words,

∀[αi,c1, βi,c1] ∈ Co
{[

α1
i,c1, β

1
i,c1

]
,
[
α2

i,c1, β
2
i,c1

]}

� ≤ �|max{αi,c1},max{βi,c1} (i = 1, . . . , n). (42)

For the up-regulating scenario, the aggregator performs a
cost optimization as follows:

min
ui,zi,yi,δi(i=1,...,n)

n∑
i=1

(Pi,max − Pi,base) × Ti,on. (43)

In this scenario, the aggregator uses those system parame-
ters, within the uncertainty set, which provide the maximum
cost. With the same argument as the down-regulating scenario,
we can say the maximum cost is achieved for the minimum
αc2 and βc2. Thus, the below statement should hold

∀[αi,c2, βi,c2] ∈ Co
{[

α1
i,c2, β

1
i,c2

]
,
[
α2

i,c2, β
2
i,c2

]}

� ≤ �|min{αi,c2},min{βi,c2} (i = 1, . . . , n). (44)

Let us denote the optimum state and input sequences
obtained from the optimizations (41) and (43) by
{Xi,act(t)}t=Nact

t=1 and {Ui,act(t)}t=Nact
t=1 . The optimizations

also generate the optimum values of off-time and on-time
periods for each consumer: Ti,off and Ti,on, when the
consumers consume the minimum and maximum power,
respectively. Thus, during the off-time and on-time periods,
the system inputs are

{
Ui,off(t) = Pi,min − Pi,base

}t=Ni,off
t=1 (45)

{
Ui,on(t) = Pi,max − Pi,base

}t=Ni,on
t=1 (46)

where Ni,off and Ni,on are the number of samples dur-
ing the off-time and on-time periods corresponding to
each consumer, i. Hereupon, we have {Xi,off(t)}t=Ni,off

t=1 and

{Xi,on(t)}t=Ni,on
t=1 . Afterwards, we construct the following

vectors:

up-regulating

Xi �
[
01×(Non−Ni,on) Xi,on(1 : Ni,on) Xi,act(1 : Nact)

]
(47)

Ui �
[
01×(Non−Ni,on) Ui,on(1 : Ni,on) Ui,act(1 : Nact)

]
(48)

down-regulating

Xi �
[
Xi,act(1 : Nact) Xi,off(1 : Ni,off) 01×(Noff−Ni,off)

]
(49)

Ui �
[
Ui,act(1 : Nact) Ui,off(1 : Ni,off) 01×(Noff−Ni,off)

]
(50)

where each vector has the length of N. N = Nact + Non
and N = Nact + Noff for up-regulating and down-regulating,
respectively. Each consumer has its own on-time and off-time
periods. We choose the maximum value among the whole
portfolio. Hence, Non = maxi{Ni,on} and Noff = maxi{Ni,off}
(i = 1, . . . , n). The rest of the vector is filled up with zeros.
Fig. 3 shows a typical power consumption profile and the
stored thermal energy of a consumer for up-regulating and
down-regulating scenarios. tstart and tend denote the beginning
and end of activation time when the consumers need to follow
a time-varying power reference. This time is extended with
on and off-time periods when the consumers receive a con-
stant power reference. Outside of this region, each consumer
consumes its baseline power, which is optimal from the local
controller’s point of view. Here, we assume the baseline con-
sumption is constant. In practice, the time-varying baseline
consumption can be communicated to the aggregator during
the service activation.

2) During the time of service activation, the aggregator runs
the optimization with the quadratic cost function as formulated
in equation (51) every sampling time

min
U

N∑
t=1

(X(t) − X (t))TQ(X(t) − X (t))

+ (�U(t) − U(t))TR(�U(t) − U(t)) (51)

subject to:
∑

�U(t) = ureference (tstart ≤ t ≤ tend)

(37), (38) (52)

where X (t) = [X1(t) . . .Xn(t)]T and U(t) = [U1(t) . . .Un(t)]T .
Q ∈ R

n×n and R ∈ R
n×n are constant weighting matri-

ces. � ∈ R
n×4n is a matrix with 0 and 1 elements used
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Fig. 3. Typical power consumption profile and the stored thermal energy of a
consumer i for up-regulating (top) and down-regulating (bottom). [tstart, tend]
denote the activation time, whereas [t1, tN ] indicates the prediction horizon in
the second step. Ton and Toff are the maximum on-time and off-time periods
among the whole portfolio.

for converting U to u. N is the prediction horizon for the
MPC. The above optimization starts at t1 and finishes at tN .
At each sampling time, the optimization provides the opti-
mum input for the whole prediction horizon and only the
first element is applied to the system. At the first sampling
time t1, U(t) and X (t) are available for t = 1, . . . , N from
the optimization in the first step. As we proceed, we need
to update them every sampling time by eliminating the first
element and adding zero to the end. For instance, at t1 + τ

(τ is the sampling time), U(N) = X (N) = 0n×1, at t1 + 2τ ,
U(N−1 : N) = X (N−1 : N) = 0n×2 and so on. Equation (52)
represents power reference following. In (37), we use the min-
imum value of �a and �b for up-regulating scenario and we
use the maximum value of �a and �b for down-regulating sce-
nario. If the real system parameters are different from these
in the time of service activation, we can expect the follow-
ing output: in the up-regulating scenario, the aggregator might
ask some of the units to consume less than their maximum
power consumption during the on-time period. In the down-
regulating scenario, some of the units might consume greater
than their minimum consumption during the off-time period.
However, in both cases, the aggregator can follow the power
reference during the activation time.

IV. SIMULATION EXAMPLES

Two specific case studies are selected for simulation:
1) supermarket refrigeration systems; and 2) chillers in air

conditioning systems. For the first one, cold rooms and dis-
play cases can act as a thermal storage where we store energy
in refrigerated foods. For the second one, an ice storage con-
nected to the chiller serves as a thermal storage. In [27], we
presented appropriate models of these consumer types for opti-
mization purposes. In brief, cold rooms and display cases
at the supermarket can be seen as a thermal storage with a
leakage because of heat load from the surrounding, whereas
an ice tank is a storage with no leakage, since it is well-
isolated. We assumed constant COP for the supermarket. For
the chiller, we assumed two constant COPs associated with
direct cooling and charging modes. The chiller is operated
in charging mode when the input power is above the base-
line power. Thus, the extra power is used to make ice. When
the input power is below the baseline, part of the cooling
load is provided by melting the ice. In this situation, the
chiller is utilized in conjunction with the ice tank in direct
cooling mode. To compare the heterogeneous and homoge-
neous setup, we consider two supermarkets and two chillers.
All in all, the following equations describe the model of the
consumers:

Supermarket 1

x1(t + 1) = (A1,1 + α1,1)x1(t) + (B1,1 + β1,1)u1(t). (53)

Supermarket 2

x2(t + 1) = (A2,1 + α2,1)x2(t) + (B2,1 + β2,1)u2(t). (54)

Chiller 1

x3(t + 1) =
{

x3(t) + (B3,1 + β3,1)u3(t) u3(t) ≥ 0

x3(t) + (B3,2 + β3,2)u3(t) u3(t) < 0.
(55)

Chiller 2

x4(t + 1) =
{

x4(t) + (B4,1 + β4,1)u4(t) u4(t) ≥ 0

x4(t) + (B4,2 + β4,2)u4(t) u4(t) < 0.
(56)

A. Heterogeneous Versus Homogeneous Aggregation:
Performance Comparison

The setup consists of two aggregators. In the homoge-
neous setup, “Aggregator 1” controls the supermarkets and
“Aggregator 2” controls the chillers. In the heterogeneous
setup, “Supermarket 1” and “Chiller 1” are under the con-
trol of the “Aggregator 1,” “Supermarket 2” and “Chiller 2”
are under the control of the “Aggregator 2.” In this part, we
assume fixed model parameters for the consumers. As we
discussed above, we consider a two-level optimization prob-
lem, a static optimization and a dynamic optimization, which
provide the optimum power distribution from the top-level
controller to the aggregators and from each aggregator to the
connected consumers, respectively. For the static optimization,
each aggregator needs to communicate the cost/profit curves,
per a specified power reference, for up/down-regulating sce-
narios. Fig. 4 shows these curves for our simulation models.
Depending on the consumer type, each aggregator can offer
different power ranges to follow in homogeneous and het-
erogeneous setup. For instance, the supermarkets have less
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Fig. 4. Top: cost curves (extra energy consumption) that are communicated by each aggregator in up-regulating scenario while bottom: profit curves (extra
energy saving) in down-regulating scenario. The left figures are related to the homogeneous setup while the right figure are related to the heterogeneous setup.
The real communicated values are shown with dashed red lines while the blue solid lines show the fitted second order polynomial.

Fig. 5. Static optimization at the top-level controller: α = (P1/Preference),
where P1 is the input power to the “Aggregator 1” and Preference is the
input power to the top-level controller. Top: optimum value of α for the
homogeneous setup while bottom: for the heterogeneous one.

capacity compared to the ice storages in our simulation exam-
ples. That is why the aggregator with just the supermarkets
offers a smaller range of power to follow. In order to use these
values in the optimization (32)–(35), we fit the curves with
second order polynomials, shown with the blue solid lines.

There are two aggregators in the setup, n = 2. Thus the
top-level controller should provide P1 and P2 from the static
optimization, which are the input power to each aggregator.
Fig. 5 shows the results of the optimization at the top-level
controller, where α indicates the ratio of the power of the first
aggregator to the power reference that the top-level controller
is asked to follow. Therefore, we have

P1 = αPreference (57)

P2 = (1 − α)Preference. (58)

The homogeneous setup can follow a greater range of
power, [10.1–50.3 kW], compared to the heterogeneous setup,
[10.2–50.1 kW]. However, the difference is not significant.
The baseline power of the whole portfolio is Pbase = 28.1 kW,
which is shown with the dashed line to distinguish the up-
regulating and down-regulating scenarios. Again, the value of
α for each setup and for each scenario depends on the con-
sumer characteristics. For instance, assume the heterogeneous
setup and up-regulating scenario. In the beginning, α decreases
as the deviation from baseline power increases. This means
the use of “Aggregator 1” increases since P1 decreases and
“Aggregator 1” needs to reduce its consumption more than
before. However, for Preference = 18.7 kW, α = 0.2246, and
then P1 = 4.2 kW. This is the minimum power that can be
followed by “Aggregator 1” in heterogeneous, up-regulating
scenario. Thus, α should increase as the deviation increases
from this place in order to keep P1 at 4.2 kW.

During the time of activation, a dynamic optimization
is run at each aggregator every sampling time to define
the optimum power distribution from the aggregators to the
relevant consumers. Above, we can see the results of the
dynamic optimization for some fixed model parameters in
a 1-h activation time. For each up-regulating and down-
regulating scenario, we consider two power references to
show the results of large and small deviation from the base-
line power. In addition to power distributions, the thermal
energy changes are also shown. Fig. 6 illustrates the het-
erogeneous setup. As we can see, for small deviations from
the baseline (Preference = 26 kW and Preference = 31 kW),
only “Aggregator 1” is utilized in both up-regulating and
down-regulating scenarios. However, for large deviations from
the baseline (Preference = 15 kW and Preference = 42 kW),
both aggregators are required to change their consumption.
In our simulation examples, “Supermarket 1” has a higher
COP than “Supermarket 2.” Although “Supermarket 1” has
a higher heat loss than “Supermarket 2,” the difference in
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Fig. 6. Dynamic optimization at the aggregators for the heterogeneous setup. Top: power distributions for the four consumers for different power references
and bottom: associated thermal energy changes during a 1-h activation time.

Fig. 7. Dynamic optimization at the aggregators for the homogeneous setup. Top: power distributions for the four consumers for different power references
and bottom: associated thermal energy changes during a 1-h activation time.

COPs are more important for our examples. On the other
hand, “Chiller 2” is more efficient than “Chiller 1” since it
has a lower difference between the two COPs of cooling and
charging modes. Thus, the combination of “Supermarket 1”
and “Chiller 2” is more efficient than the other two. Another
thing that can be seen is that there is a switching between
the supermarket and the chiller which are connected to each
aggregator in such a way that the supermarket is mostly uti-
lized in the beginning in the up-regulating and at the end
in the down-regulating scenarios. This is reasonable due to

the leaky nature of the supermarket. Fig. 7 shows the results
for the homogeneous setup. Again, different power distribu-
tions can be seen for different power references. Between the
two supermarkets of “Aggregator 1,” there could be several
switchings depending on the system dynamics. For instance,
for Preference = 15 kW, “Supermarket 1” is utilized first
due to the higher heat loss than “Supermarket 2,” while for
Preference = 42 kW, “Supermarket 2” is utilized first for the
same reason. Between the two chillers of “Aggregator 2,” the
one (“Chiller 1” in our example) with the higher ratio of
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Fig. 8. Total cost (extra energy consumption) and total profit (extra energy
saving) for the homogeneous and heterogeneous setup.

Fig. 9. Power distributions and thermal energy changes for the heteroge-
neous setup with two identical supermarkets and chillers and down-regulating
scenario. The both ice storages are fully charged at the beginning of activation
time.

(COPcharging/COPcooling) is utilized first as long as there is
ice in the tank and the maximum power is not reached. After
that, the second chiller becomes active.

Total profit and total cost for the whole range of power
reference are shown in Fig. 8. The heterogeneous setup has
lower cost and higher profit compared to the homogeneous
setup. The difference is greater for larger deviations from the
baseline.

We assumed that the consumers are naturally available to
increase their power consumption. In above simulations, we
assumed the temperature of cold rooms and display cases
at the supermarket are normally kept at the maximum level
in order to reduce power consumption. Moreover, there is

Fig. 10. Uncertainty set of the model parameters for the up-regulating
scenario.

Fig. 11. Uncertainty set of the model parameters for the down-regulating
scenario.

also enough space at the ice tank in normal situation. Let
us consider a situation in which the both ice tanks are fully
charged at the beginning of activation time. Fig. 9 shows the
result of simulating this situation for the heterogeneous setup,
where we assume two identical supermarkets and chillers
(“Supermarket 2” and “Chiller 2” in our examples) in order
to eliminate the power distribution problem from the top-level
controller to the aggregators. Hence, each aggregator receives
(Preference/2) to follow. The top-level controller should fol-
low Preference = 40 kW during a 1-h activation time while
the Pbase = 29 kW. Thus, the service is down-regulating. The
chiller is not able to consume more than its baseline, 8.3 kW,
since the ice tank is fully charged and the supermarket can-
not consume the rest of power, 11.7 kW, for 1 h since the
minimum temperature of the cold rooms will be violated. The
heterogeneous aggregator can handle this situation in this way:
in the beginning of activation time, the chiller consumes a lit-
tle bit below its baseline power. So, it needs to melt some
ice to provide the cooling load from the building. Melting ice
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Fig. 12. Robust MPC setup. The four figures on the left show the power distributions in the up-regulating scenario and the four figures on the right show
the power distributions in the down-regulating scenario during the extended activation time.

Fig. 13. Robust MPC setup. The four figures on the left show the thermal energy changes in the up-regulating scenario and the four figures on the right
show the thermal energy changes in the down-regulating scenario during the extended activation time.

in this period provides some space in the ice tank. Then the
chiller is able to consume above its baseline and the supermar-
ket can decrease its consumption to decrease the rate of energy
saving. As we can see, several switchings occur between the
supermarket and chiller during the ice building period. At the
end of the activation time, we again have a fully charged
ice tank. This flexibility is not available in the homogeneous
setup.

B. Robust MPC

The setup consists of one aggregator which controls two
supermarkets and two chillers. In this part, we examine the
effect of changes in model parameters and the proposed robust
MPC setup. Uncertainty sets of the system parameters for the

up-regulating and the down-regulating scenarios are shown in
Figs. 10 and 11. For the supermarkets, we assume that the
parameters A1,1 and A2,1 are changed randomly every 30 min,
since these parameters describe the heat loss to the surrounding
and are dependent on the customers’ behavior at the super-
markets. B1,1 and B2,1 reflect the COP of the compressors.
We assume these parameters decrease during the activation
time, since the consumers are operated outside of their opti-
mum region. For the chillers, B3,1 and B4,1 represent the
COP in charging mode (COPcharging), whereas B3,2 and B4,2
reflect the COP in cooling mode (COPcooling). We also assume
these parameters decrease during the activation with the same
rate, such that the differences (B3,1 + β3,1 − B3,2 − β3,2 and
B4,1 + β4,1 − B4,2 − β4,2 ) which appear in the final models,
are fixed.
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Fig. 14. Robust MPC setup. The left figures show total power and total energy during the activation time plus the maximum on-time period of the four
consumers (Ton) in the up-regulating scenario and the right figures show total power and total energy during the activation time plus the maximum off-time
period of the four consumers (Toff) in the down-regulating scenario.

Simulation results for the up-regulating and down-regulating
scenarios for Preference = 12 kW and Preference = 40 kW are
depicted below. Figs. 12 and 13 show the electrical power
and the thermal energy changes of each consumer during the
extended activation time, respectively. The red dashed lines
are the desired values, which are obtained from the offline
optimization with the fixed model parameters long before the
activation time, whereas the blue solid lines are the real values
during the service activation, when the model parameters are
time-varying. As we described earlier, an online optimization
is run during the service activation which aims to minimize the
deviation between the desired and real values with a quadratic
cost function. On-time and off-time periods of each consumers
are also shown in the figures. The chillers have quite longer
on-time periods in the up-regulating scenario compared to
the supermarkets for our simulation examples. The difference
between the desired and real power is also greater for the
chillers in up-regulation.

Total electrical power and thermal energy changes of the
four consumers are shown in Fig. 14. The values are shown
during Tact + Ton for the up-regulating scenario and during
Tact + Toff for the down-regulating scenario, where Ton is the
maximum on-time period and Toff is the maximum off-time
period of the four consumers. Tact denotes the activation time.
The results are as we expected. In both scenarios, the aggre-
gated power consumption is equal to Preference during Tact.
For the up-regulating scenario, the actual power consumption
is lower than the value which is obtained from the offline
optimization. This is reasonable since the offline optimiza-
tion has been performed for the worst case in which the
cost is maximum. However, the situation is better during
the service activation and accordingly, lower energy con-
sumption is needed during Ton. On the other hand, in the
down-regulating scenario, the offline optimization has been
performed for the best case in which the profit is maximum.

That is why the power consumption is above the offline
value during the off-time period, which means the lower
profit.

V. CONCLUSION

This paper proposes a three-level hierarchical structure to
employ the flexibility of industrial thermal loads in the future
electricity market. The setup consists of a top-level controller
which is located at the grid operator (BRP, TSO, or DSO)
and a set of aggregators, each of which controls a number
of consumers. Based on a contract agreement, each aggrega-
tor is asked by the top-level controller to follow a specified
power during an activation time. Likewise, the aggregator
is given a permission to send power references to the con-
sumers. We consider an optimal controller at the top-level
which receives cost/profit curves per a specified power refer-
ence. Having this information, it provides the optimal power
distribution. At the aggregator, a robust MPC is considered
for optimal power distribution. The aggregator requires a
model of consumption units to run the optimization. In this
paper, we assume a piece-wise linear model for the industrial
thermal loads.

Simulation of the proposed robust MPC for our particular
case studies reveals that the robust design can handle the mis-
match between the actual and assumed model of consumers
pretty well. Moreover, we consider two types of aggrega-
tion: 1) homogeneous aggregation in which each aggregator
controls the same consumer type; and 2) heterogeneous aggre-
gation in which each aggregator controls a heterogeneous
portfolio of consumers. Simulation results for the two different
consumers, supermarket and chiller, shows the heterogeneous
aggregation outperforms the homogeneous one. First, the het-
erogeneous aggregation has a lower cost and greater profit
from energy consumption point of view. Second, unpredictable
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situations can be better handled with the heterogeneous aggre-
gation. In other words, the heterogeneous aggregation is more
flexible than the homogeneous one.

Future work involves testing the proposed strategy on actual
commercial consumers.
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