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Abstract—Driven by smart grid technologies, distributed en-
ergy resources (DERs) have been rapidly developing in recent
years for improving reliability and efficiency of distribution sys-
tems. Emerging DERs require effective and efficient coordination
in order to reap their potential benefits. In this paper, we consider
an optimal DER coordination problem over multiple time periods
subject to constraints at both system and device levels. Fully
distributed algorithms are proposed to dynamically and auto-
matically coordinate distributed generators with multiple/single
storages. With the proposed algorithms, the coordination agent
at each DER only maintains a set of variables and updates them
through information exchange with a few neighbors. We show
that the proposed algorithms with properly chosen parameters
solve the DER coordination problem as long as the underlying
communication network is connected. Simulation results are used
to illustrate and validate the proposed method.

Note to Practitioners—This paper was motivated by the prob-
lem of coordinating distributed energy resources (DERs) in order
to increase the reliability and efficiency of distribution systems.
Existing approaches are centralized, where a single control center
gathers information from and provides control signals to the
entire system. This centralized control framework may be sub-
jected to performance limitations, such as high communication
requirement and cost, substantial computational burden, limited
flexibility, and disrespect of privacy. To overcome these limitations
and accommodate various resources in the future smart grid, in
this paper, we develop an alternative distributed control strategy,
where each DER only communicates with its neighbors, without
a need for a central coordinator. In this paper, only distributed
generators and energy storage devices are considered. In future
research, we will extend the proposed algorithms to include other
types of flexible resources, such as thermostatically controlled
loads, plug-in electric vehicles, and deferrable loads.

Index Terms—Consensus and gradient algorithm, distributed
coordination, energy storage, multi-agent systems, multi-step
optimization, smart grid.

NOMENCLATURE

Dt Total demand of period t.
Emax
i Energy capacity of storage device i.

Ei,t Energy stored in storage i at time period t.
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N Number of distributed generators.
M Number of distributed storage devices.
pi,t Power from generator or storage i during period

t. The power from storage is measured at the
grid coupling point, and is positive when injecting
power into grid, i.e., using generator convention.

pmin
i , pmax

i Lower and upper bound of the power limits of
device i, respectively.

pbatt
i,t Rate of change of energy stored in storage device

i at the end of period t, which is positive when
storage device is discharged.

T Number of time periods.
∆p

i
, ∆pi Lower and upper bound of ramping rates of

generator i, respectively.
∆T Time step size.
η+
i , η−i Discharging and charging efficiency of storage

device i, respectively, including components such
as conductor, power electronics, and battery.

I. INTRODUCTION

A smart grid integrates advanced sensing and communi-
cation technologies as well as control methods into existing
power systems at both transmission and distribution levels.
Distributed generation (DG) and energy storage (ES) are
important ingredients of the emerging smart grid paradigm.
For ease of reference, these resources are often referred to
as distributed energy resources (DERs) [1]–[3]. Much of the
DERs emerging under the smart grid are targeted at the
distribution level. They are small and highly flexible compared
with conventional large-scale power plants. The deployment
of DERs will not only defer infrastructure investment, but
also meet additional reserve requirement from intermittent
renewable generation. As the electric power grid continues to
modernize, DERs can help facilitate the transition to a future
smart grid [4], [5].

In order to effectively deploy DERs, proper coordination
and control need to be designed. One solution to this problem
can be achieved through a completely centralized control
strategy, where a single control center gathers information
from and provides control signals to the entire system. This
centralized control framework may be subjected to perfor-
mance limitations, such as high communication requirement
and cost, substantial computational burden, limited flexibil-
ity, and disrespect of privacy [6]–[8]. To overcome these
limitations and accommodate various resources in the future
smart grid, it is desirable to develop an alternative distributed
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control strategy, where the agent at each DER maintains a set
of variables and updates them through information exchange
with a few neighbors. During the past few years, various
distributed coordination strategies have been proposed for DGs
for a single period. The authors of [9] propose a distributed
ratio consensus based algorithm. This distributed algorithm
is later robustified against potential packet drops in commu-
nication networks and applied to DG coordination in [10].
In [11], a strategy based on the local replicator equation is
presented. In [12], an efficient decentralized algorithm called
Combinatorial Optimization Heuristic for Distributed Agents
is designed to optimally coordinate distributed resources in
a fully decentralized manner. Other algorithms that can be
applied to DG coordination include a leader-follower consen-
sus algorithm [13], a consensus based algorithm where agents
collectively learn the system imbalance [14], a distributed
algorithm based on the consensus and bisection method [15],
a minimum-time consensus algorithm [16], and a distributed
algorithm based on the push-sum and gradient method [17],
just to name a few.

Recent developments and advances in ES technology are
making its application a viable solution for increasing flexibil-
ity and improving reliability and robustness of power systems
[18]. In [19], a distributed coordination algorithm is proposed
to utilize batteries of plug-in electric vehicles to shift load and
therefore minimize the energy cost. However, the utilization
of DGs and their coordination with storage devices are not
considered. In order to fully explore the benefits of DERs,
the authors of [20] propose a distributed algorithm based on
the consensus + innovation method to coordinate ES and DG
over multiple time periods in a microgrid. In the formulation
of the optimal coordination problem, a quadratic generation
cost function of ES is included in the objective function. With
such an assumption, the objective function is strictly convex
and thus charging/discharging power can be determined for
a given marginal cost during the iteration process, similarly
as for generators. However, unlike generators, there is no
fuel cost associated with discharging a storage. The cost of
power and energy discharged from storages has already been
captured in generators’ cost when the storage is charged.
Moreover, the charging and discharging efficiencies are not
modeled. As shown in [21], [22] and other existing studies, the
optimal charging/discharging operation and the corresponding
benefits from a storage device could vary significantly with its
efficiencies.

To overcome these two shortcomings, we have previously
developed a distributed DER coordination strategy, where no
artificially assigned cost function is needed for storage and
charging/discharging losses are modeled [23]. In that work,
we considered DER coordination with a single storage and
proposed a distributed algorithm based on the leader-follower
consensus algorithm with the leader to be the storage. This
paper extends our previous work to the multi-storage case.
Moreover, the proposed algorithms in this paper do not require
any leader and therefore are fully distributed. In the proposed
algorithms, each agent only maintains a few variables and
updates them through information exchange with neighboring
DERs. The algorithms are based on the consensus and gradient

strategy for the local incremental cost update, where the
consensus part ensures that the incremental cost at all agents
asymptotically approach the same value based on only local
information exchange, and the gradient part ensures that the
power balance condition is met. We show that the proposed
algorithms with appropriately chosen parameters solve DER
coordination as long as the underlying communication network
is connected.

The remainder of the paper is organized as follows: In
Section II, some preliminaries on graph theory and notations
are introduced. Section III presents the formulation of multi-
step optimal DER coordination problem. In Section IV, a
fully distributed DER coordination algorithm with multiple
storages is first developed, and a simplified distributed DER
coordination algorithm is proposed for the single storage case.
Section V presents case studies and simulation results. Finally,
concluding remarks are drawn in Section VI. Appendix A
provides the technical proof of Theorem 2.

II. PRELIMINARIES

We first recall some basic concepts from graph theory [24].
A weighted directed graph G is defined by a triple (V, E ,A)
where V = {1, . . . , n} is a node set, E is a set of pairs of
nodes indicating connections among nodes, and A = [aij ] ∈
Rn×n is the weighting matrix, with aij > 0 if and only if
(i, j) ∈ E and aii = 0. Each pair in E is called an edge.
The graph is undirected if (i, j) ∈ E if and only if (j, i) ∈ E
and moreover aij = aji. A path from node i1 to ik is a
sequence of nodes {i1, . . . , ik} such that (ij , ij+1) ∈ E for
j = 1, . . . , k− 1. An undirected graph G is connected if there
exists a path between any pair of distinct nodes. For a graph
G, a matrix L = [`ij ] with `ii =

∑n
j=1 aij and `ij = −aij

for j 6= i, is called the Laplacian matrix associated with the
graph G. If the undirected weighted graph G is connected, then
the Laplacian matrix L has a simple eigenvalue at zero with
corresponding right eigenvector 1 and all other eigenvalues are
strictly positive.

Given a matrix A, A′ denotes its transpose and ‖A‖ denotes
its induced norm. We denote by A⊗B the Kronecker product
between matrices. In denotes the identity matrix of dimension
n× n.

III. PROBLEM FORMULATION

We consider a distribution system including N DGs and
M storage devices, where the first N systems are generators
and the last M systems are storage devices. The objective
of optimal coordination is to minimize the total production
cost on the premise that all the DGs and storage devices
collectively provide a required amount of power within in-
dividual generation and storage capacity. Since there is only
limited energy that can be stored in a storage device, the
operation of storages in different time steps is interdependent.
Thus it is indispensable to optimize over multiple time steps
concurrently. In order to take into account these inter-temporal
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constraints and to make efficient use of storage devices, we
formulate the following multi-step optimization problem:

P: min
pi,t,pbatt

i,t,Ei,t

T∑
t=1

N∑
i=1

Ci(pi,t), (1a)

s.t.
N+M∑
i=1

pi,t −Dt = 0 ∀t ∈ T (1b)

∆p
i
≤ pi,t − pi,t−1 ≤ ∆pi ∀t ∈ T , ∀i ∈ N (1c)

pmin
i ≤ pi,t ≤ pmax

i ∀t ∈ T , ∀i ∈ L (1d)

pbatt
i,t =

{
pi,t
η+i
, if pi,t ≥ 0

pi,tη
−
i , if pi,t < 0

∀t ∈ T , ∀i ∈M (1e)

Ei,t = Ei,t−1 − pbatt
i,t ∆T ∀t ∈ T , ∀i ∈M (1f)

0 ≤ Ei,t ≤ Emax
i ∀t ∈ T , ∀i ∈M (1g)

Ei,T = Ei,0 ∀i ∈M (1h)

where T = {1, . . . , T}, N = {1, . . . , N}, M = {N +
1, . . . , N +M}, and L = {1, . . . , N +M}. Note that pi,0 and
Ei,0 are initial values prior to coordination, which therefore
become parameters in the optimization problem. The objective
function and constraints are described below:
• The objective expressed in (1a) includes the total production

cost within the look-ahead window of T . Ci(pi,t) is the cost
function of generator i for period t, which is dominated
by fuel cost. A quadratic function is used to represent
generation cost as a function of power output [25], which
is given by

Ci(pi,t) = aip
2
i,t + bipi,t + ci, (2)

where ai > 0. The operating and maintenance cost as-
sociated with energy storage is assumed to be fixed, and
therefore excluded from the objective function. When dis-
charging the storage, there is no need to consider the
cost of power/energy obtained from storage, because the
stored energy is essentially obtained from generators and
has been already included in the generators’ production
cost. In addition, cost of energy losses associated with
charging/discharging operation of storage has also been
taken into account in production cost of generators through
the energy/power balancing constraint and modeling of
storage charging/discharging efficiency.

• Constraint (1b) corresponds to the power balance at each
time step, i.e., the total output from generators and storage
devices must be equal to the system load at each period.
In power system operation, it is typically required that the
load can be served solely by generators in order to ensure
the system reliability, i.e.

N∑
i=1

pmin
i ≤ Dt ≤

N∑
i=1

pmax
i . (3)

Constraint (1c) enforces ramping up/down constraints for
generators. The ramping rates of storage devices are usu-
ally very high and can be excluded from the constraints.
Constraint (1d) corresponds to power output limits of each
device. Constraint (1e) expresses rate of change of en-
ergy stored in storage devices. Constraint (1f) captures the

dynamics of energy stored in storage device. Constraint
(1g) restricts the energy stored in the storage device to
be between its lower and upper bounds. Constraint (1h)
specifies the energy stored in a storage device at the end
of the scheduling period. It is equal to the initial energy
state in this formulation but can be set to other feasible
values.

It should be noted that the cost of discharging energy and the
corresponding energy losses in storage devices are captured by
the cost functions in (1a) through the power balance constraint
in (1b) and charging/discharging efficiency model in (1e). For
example, charging 1 kWh energy during an off-peak hour into
storage i only yields η+

i η
−
i kWh energy discharged during

peak hours. Because of the power balance constraint in (1b),
that 1 kWh charging energy must be provided by generators
during the off-peak charging hour. The corresponding cost of
1 kWh charging energy (including η+

i η
−
i for discharging and

1−η+
i η
−
i for losses) is captured in the generators’ cost in that

hour.
In this paper, we assume information exchange between

DGs and storage devices is described by an undirected con-
nected graph composed of N + M nodes, where the first
N nodes correspond to generators and the last M nodes
correspond to storage devices. Our objective is to solve the
global optimization problem (1) in a distributed fashion.

A. Modified Equivalent Problem

For ∀i ∈ M (storage), let Ωp,i be the set of all pi ∈ RT
for which (1d)–(1h) are satisfied, where

pi =
(
pi,1, pi,2, . . . , pi,T

)′
. (4)

Due to non-convex constraint (1e), the set Ωp,i is in general not
convex, and thus the original problem (1) is difficult to solve
even in a centralized manner. Hence, we need to convert the
original problem to its convex equivalency. To do so, define

pi,t = p+
i,t − p

−
i,t, ∀t ∈ T , ∀i ∈M (5)

where

0 ≤ p+
i,t ≤ p

max
i , 0 ≤ p−i,t ≤ −p

min
i , t ∈ T , ∀i ∈M (1i*)

and replace constraint (1e) by

pbatt
i,t =

1

η+
i

p+
i,t − η

−
i p
−
i,t . (1e*)

Hence, the original non-convex problem in (1) is equivalent
to

P′ : min
pi,t,p+i,t,p−i,t,pbatt

i,t,Ei,t

T∑
t=1

N∑
i=1

Ci(pi,t), (6)

subject to (1b), (1c), (1d), (1e*), (1f), (1g), (1h), and (1i*). It
should be noted that we can express some decision variables as
functions of other decision variables using some equality con-
straints, and eliminate the decision variables and constraints
from P′. Nevertheless, herein, we keep all the constraints
because each of them has its own physical meaning, and list
all the decision variables to differentiate them from parameters
in the optimization problem.
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Since a physical storage device cannot be charged and
discharged at the same time, we need to ensure that either
p+
i,t or p−i,t needs to be zero, i.e.,

p+
i,t p
−
i,t = 0, ∀t ∈ T , ∀i ∈M. (7)

However, when η+
i or η−i is strictly less that 1, there is no

need to add (7) to P′, because the optimal solution of P′
automatically satisfies (7) as shown in the following theorem.

Theorem 1: Any solution with a pair of p+
i,t and p−i,t to be

nonzero cannot be an optimal solution of P′ when η+
i η
−
i < 1.

Proof : We prove this theorem by contradiction. Suppose {p�i }
is an optimal solution of (6), in which there exist a period t1
and a storage i1 ∈M such that

p�+i1,t1 p
�−
i1,t1
6= 0 .

According to (1e*), we have

p�batt
i1,t1 =

1

η+
i1

p�+i1,t1 − η
−
i1
p�−i1,t1 . (8)

Let {p†i} be another set of variables where operations of all
generators and storages are the same as those in {p�i } for all
the periods except t1, as expressed in (9)

p†i,t = p�i,t, ∀t ∈ T \ t1. (9)

In addition, for time t1, let i2 be the index of a generator whose
power output can be reduced without violating the ramping
constraints or its lower bound. In the unlikely scenario that
such i2 does not exist, we can use the extra energy which
is wasted at time t1 earlier at some time t2 to reduce one
of the generators and therefore the associated cost and use
a storage device to carry energy over unless there is some
time t2 ≤ t3 ≤ t1 where the storage device is completely
empty. If that is not possible we can use the energy at some
later time t4 to reduce one of the generators and therefore
the associated cost and use a storage device to carry energy
over unless there is some time t1 ≤ t5 ≤ t4 where the
storage device is completely full. We note that the only way
the above fails if there exists some interval [t3, t5] where we
cannot reduce any generator while at the same time the storage
devices are filled from completely empty to completely full. In
order words, there exists some t, when pi,t = pmin

i for ∀i ∈ N
and pi,t < 0 (charging) for ∀i ∈M. To ensure the feasibility
of the problem, constraint (1b) must be met. Hence, we have
Dt =

∑N+M
i=1 pi,t <

∑N
i=1 p

min
i , which contradicts to (3).

Let us return to the original case where we can reduce one
of the generators at time t1. Next, we choose the variables for
all generators except i2 and all storages except i1 to be the
same as those in {p�i }, as expressed in (10)

p†i,t1 = p�i,t1 , ∀i ∈ L \ {i1, i2}. (10)

For storage i1, we set

p†+i1,t1 = p�+i1,t1 − η
+
i1
η−i1ε and p†−i1,t1 = p�−i1,t1 − ε . (11)

where ε is an arbitrarily small positive constant. Therefore,

p†i1,t1 = p†+i1,t1 − p
†−
i1,t1

= (p�+i1,t1 − p
�−
i1,t1

) + ε(1− η+
i1
η−i1)

= p�i1,t1 + ε(1− η+
i1
η−i1). (12)

For generator i2, we set

p†i2,t1 = p�i2,t1 − ε(1− η
+
i1
η−i1). (13)

Note that it follows from (1e*), (11) and (8) that

p†batt
i1,t1

=
1

η+
i1

p†+i1,t1 − η
−
i1
p†−i1,t1

=
1

η+
i1

p�+i1,t1 − η
−
i1
p�−i1,t1

= p�batt
i1,t1 .

Thus, {p†i} satisfies all the constraints in (6) and is a feasible
solution.

Since Ci2(·) is strictly convex,

Ci2(p†i2,t1) < Ci2(p�i2,t1) . (14)

This together with (9) and (10) implies
T∑
t=1

N∑
i=1

Ci(p
†
i,t) <

T∑
t=1

N∑
i=1

Ci(p
�
i,t) ,

which contradicts with our assumption that {p�i } is an optimal
solution of (6).

Let Ω̃M,i be the set of all p+
i , p

−
i ∈ RT for which (1e*),

(1f)–(1h), and (1i*) are satisfied, where i ∈M,

p+
i =

(
p+
i,1, p

+
i,2, . . . , p

+
i,T

)′
and

p−i =
(
p−i,1, p

−
i,2, . . . , p

−
i,T

)′
.

We also denote ΩN ,i as the set of all pi ∈ RT for which (1c)
and (1d) are satisfied, where i ∈ N and

pi =
(
pi,1, pi,2, . . . , pi,T

)′
.

It is clear that both Ω̃M,i and ΩN ,i are convex polytopes since
all constraints are linear.

IV. DISTRIBUTED COORDINATION APPROACH

In this section, we first propose a fully distributed algorithm
to solve the modified equivalent problem P′. It is shown that
the proposed algorithm with appropriately chosen parameters
is convergent. We then show that the algorithm can be simpli-
fied for the case with a single storage device.

In problem P′, both sets ΩN ,i and Ω̃M,i are convex poly-
topes which contain local constraints for generators and stor-
age devices, respectively. In addition, the local cost function∑T
t=1 Ci(pi,t) which needs to be minimized is also convex.

Motivated by the recent development in the area of distributed
optimization in [26]–[28], we can thus solve these N + M
optimization problems locally via a Lagrangian method with
only power balance constraint (1b), i.e., each node runs the
local optimization with an estimate of the optimal dual variable
λi, which is the marginal cost of bus i. These estimates
are updated using the consensus and gradient strategy: i) the
consensus part ensures that all estimates (consensus variables
λi) asymptotically approach the same value based on only
local information exchange, because it is necessary for an
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Algorithm 1 Multiple storage devices–Part I
1: Initialize k = 0 and λi(0) = 0 ∈ RT for ∀ i ∈ L.
2: repeat
3: procedure LOCAL OPTIMIZATION
4: for each node i = 1, . . . , N do

5: pi(k) = arg min
pi∈ΩN ,i

T∑
t=1

Ci(pi,t)− λi(k)′pi

6: end for
7: for each node i = N + 1, . . . , N +M do
8: {p+

i (k), p−i (k)} = arg min
{p+i ,p

−
i }∈Ω̃M,i

λi(k)′
(
p−i − p

+
i

)
9: pi(k) = p+

i (k)− p−i (k)
10: end for
11: end procedure
12: procedure CONSENSUS AND GRADIENT
13: for each node i = 1, . . . , N +M do
14: λi(k + 1)

15: = λi(k)− β
N+M∑
v=1

`ivλv(k)︸ ︷︷ ︸
consensus part

−αk
(
pi(k)−Di

)︸ ︷︷ ︸
gradient part

16: end for
17: end procedure
18: k = k + 1
19: until Error small enough
20: for each node i = 1, . . . , N do
21: psol

i = pi(k − 1)
22: end for

optimal solution to have the same marginal cost; ii) the
gradient part guarantees that the power balance is satisfied.
The iterations of these two procedures yield the optimal dual
variable. This naturally leads to Algorithm 1 and 2, where
αk, β are weight parameters, λi =

(
λi,1, . . . , λi,T

)′
, Di =(

Di
1, . . . , D

i
T

)′
for i ∈ L, psol

i is the final solution obtained
from the algorithm. These algorithms terminate when the error
is small enough, in the sense that ‖λi(k) − λi(k − 1)‖ < ε1
and maxi,j∈V ‖λi(k) − λj(k)‖ < ε2, where ε1 and ε2 are
small constants depending on the desired accuracy. In order to
implement Algorithm 1 and 2, each generator or storage agent
i needs to be aware of part of the load Di

t for t = 1, . . . , T
such that

∑N+M
i=1 Di

t = Dt.
Remark 1: Since the objective function in (6) is strictly

convex with respect to the power of each DG, the power
of DG is uniquely determined according to Algorithm 1.
However, the objective function is only convex but not strictly
convex with respect to power of each ES. Thus in general the
optimal solution for storage may not be unique. Our proposed
Algorithm 2 is able to find one of the optimal solutions.

We next present our main result which shows that Algo-
rithm 1 and 2 with properly chosen parameters solve the DER
coordination problem. The proof of this theorem is rather
technical and will be presented in Appendix A.

Theorem 2: Algorithm 1 and 2 solve the optimization
problem (6) if

0 < β <
2

µN+M
(15)

Algorithm 2 Multiple storage devices–Part II
1: Initialize m = 0 and λi(0) = 0 for ∀i ∈ L.
2: repeat
3: procedure LOCAL OPTIMIZATION
4: for each node i = 1, . . . , N do
5: pi(m) = psol

i

6: end for
7: for each node i = N + 1, . . . , N +M do
8: {p+

i (m), p−i (m)}
9: = arg min

{p+i ,p
−
i }∈Ω̃M,i

‖p+
i − p

−
i ‖

2 − λi(m)′
(
p+
i − p

−
i

)
10: pi(m) = p+

i (m)− p−i (m)
11: end for
12: end procedure
13: procedure CONSENSUS AND GRADIENT
14: for each node i = 1, . . . , N +M do
15: λi(m+ 1)

16: = λi(m)− β
N+M∑
v=1

`ivλv(m)︸ ︷︷ ︸
consensus part

−αm
(
pi(m)−Di

)︸ ︷︷ ︸
gradient part

17: end for
18: end procedure
19: m = m+ 1
20: until Error small enough
21: for each node i = N + 1, . . . , N +M do
22: psol

i = pi(m− 1)
23: end for

where µN+M is the largest eigenvalue of the Laplacian matrix
L and αk > 0 is a decreasing sequence such that

∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞. (16)

In particular, Algorithm 1 yields

lim
k→∞

pi(k) = p∗i , ∀i ∈ N

and Algorithm 2 yields

lim
m→∞

pi(m) = p∗i , ∀i ∈M

provided that psol
i = p∗i for all i ∈ N , where p∗i for all i ∈ L

is the centralized optimal solution of the optimization problem
(6).

Remark 2: The typical choice for a sequence αk satisfying
(16) is

αk =
a

k + b
,

where a > 0 and b ≥ 0.

A. Special Case with Single Storage

In the case of a single storage device at node N + 1, the
uniqueness of p∗N+1 actually follows much easier from the
power balance constraint (1b). In order to solve the optimal
coordination for this case, we therefore replace Algorithm 2
with a simplified Algorithm 3. The procedures in Algorithm 1
remain the same.
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Algorithm 3 Single storage device–Part II
1: procedure INITIALIZATION
2: for each node i = 1, . . . , N do
3: vi(0) = (N + 1)(Di − psol

i )
4: end for
5: vN+1(0) = (N + 1)DN+1

6: m = 0
7: end procedure
8: repeat
9: for each node i = 1, . . . , N + 1 do

10: vi(m+ 1) = vi(m)− β
N+1∑
j=1

`ijvj(m)

11: end for
12: m = m+ 1
13: until Error small enough
14: psol

N+1 = vN+1(m− 1)

Corollary 1: In case of single storage device, if the pa-
rameters β and αk are chosen as those given in Theorem 2,
Algorithm 1 and 3 solve the optimization problem (6).

Proof : As shown in the proof of Theorem 2, running
Algorithm 1 yields

lim
k→∞

‖pi(k)− p∗i ‖ = 0, ∀i ∈ N .

It thus remains to show that Algorithm 3 yields

lim
m→∞

‖vN+1(m)− p∗N+1‖ = 0. (17)

We first note that according to the consensus theory [29], [30]

lim
m→∞

vN+1(m) =
1

N + 1

N+1∑
i=1

vi(0)

= DN+1 +

N∑
i=1

(
Di − psol

i

)
.

This together with the fact that psol
i = pi(k − 1) → p∗i as

k → ∞ and that the optimal solution satisfies the balance
equation (1b) yields the required result (17).

V. CASE STUDIES

In this section, a case study is presented in order to illustrate
and validate the proposed algorithms. Due to space limitations,
we only present the results for multi-storage case. The IEEE
6-bus system shown in Fig. 1 is used as a test system, where
Buses 1–4 are connected with distributed generators and Bus 5
and 6 are connected to energy storage devices. The parameters
of DGs and ESs are adopted from [31], [32], as listed in
Table I, and Table II, respectively. In this example, the
topology of the communication network is assumed to be the
same as the physical system. In general, the communication
and physical layers do not necessarily have the same topology,
and the only requirement on the communication network is
that its associated graph must be connected. Herein, all edge
weights aij are set to be equal to 1. These values are used to

6

2
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a36

a24
a35

a12
a23

1
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G

GS

4

G

a45

a16

Fig. 1. IEEE six-bus power system.

TABLE I
GENERATOR PARAMETERS

Bus ai (kW2h) bi ($/kWh) ci ($/h) Range (kW)
1 0.00024 0.0267 0.38 [30,60]
2 0.00052 0.0152 0.65 [20,60]
3 0.00042 0.0185 0.4 [50,200]
4 0.00031 0.0297 0.3 [20,140]

TABLE II
STORAGE PARAMETERS

Bus Es (kWh) pmin (kW) pmax (kW) η+ η−
5 500 -50 50 0.8 0.8
6 400 -40 40 0.88 0.88
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k
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Native load (w/o storage)

Net load (w/ storage)

Fig. 2. Native load vs. Net load.

determine `ij of the Laplacian matrix used in Algorithm 1 and
2. Note that the convergence speed of the algorithm partially
depends on β and αk.

The demand to be supplied by these DERs is plotted in red
in Fig. 2. We have applied Algorithm 1 and 2 to coordinate
four DGs with two storages over a 24-hour period. It was
found that the obtained solution agrees with the centralized
one. The resulting net load (load minus storage) is plotted in
blue in Fig. 2. The power output and state of charge (SOC)
for both storages are provided in Fig. 3.

As can be seen, two storage devices are coordinated to
cut the peak and fill the valley, i.e., they are discharged
during peak hours when the energy price is high and charged
during off-peak hours when energy price is low. For each
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Fig. 3. Charging (negative) and discharging (positive) power and state of
charge.
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Fig. 4. Generations from DGs.

storage device, SOC is the same at the beginning and end
of the scheduling period, but the total charging energy (area
between the negative blue curve and x-axis) is more than
the discharging energy (area between the positive blue curve
and x-axis) because of losses. The storage devices are idle
when the energy price is not high (or low) enough to make
the discharging (or charging) profitable considering the round-
trip efficiency. In other words, the generator output levels are
not increased (or decreased) to charge (or discharge) storage
because cycling energy using storage in these hours is not
efficient due to energy losses. Storage 1 is idle all the time
except Hour 3-5 and 14-15 because of its low efficiency, while
Storage 2 is engaged more often due to its higher efficiency.

The coordination of DGs is visualized in Fig. 4. In particu-

lar, Generator 1 is at its upper bound of the power output all the
time because it is the cheapest among all DGs and therefore
generates as much as possible. Generator 2 is at its maximal
output from Hour 9 to Hour 20 of the day. The remaining
net load is supported by Generator 3 and 4. In each hour, the
marginal costs are the same for all DGs. It is not difficult to
see that the top boundary of red area in Fig. 4 matches the
blue curve in Fig. 2, which means the total generation from
all generators is equal to the net load.

VI. CONCLUSIONS

This paper considered the optimal coordination problem of
DERs, including distributed generators and energy storage de-
vices. Storage charging/discharging efficiencies were explicitly
modeled. In addition, the cost of energy and power discharged
from storage is captured through power balance constraints
and efficiencies. We first showed that the DER coordination
problem can be modified to an equivalent problem that is
convex. For this modified problem, we then proposed fully
distributed algorithms based on the consensus and gradient
strategy for multiple/single storages. We showed that the pro-
posed algorithms with properly chosen parameters converge
to the centralized solution. The proposed algorithms have
been illustrated and validated by case studies. An interesting
direction is to extend the proposed algorithms to the opti-
mal coordination problem including other types of flexible
resources, such as thermostatically controlled loads, plug-in
electric vehicles, and deferrable loads.

APPENDIX A
PROOF OF THEOREM 2

We first define the average process

λ̄(k) = 1
N+M

N+M∑
i=1

λi(k). (18)

It then follows from the update for λi(k) and the property of
the Laplacian matrix that λ̄(k) satisfies

λ̄(k + 1) = λ̄(k)− αk

N+M r̄(k), (19)

where

r̄(k) =

N+M∑
i=1

pi(k)−D, (20)

with D =
(
D1, . . . , DT

)′
.

Next define

λe(k) =
(
λ1(k)− λ̄(k), . . . , λN+M (k)− λ̄(k)

)′
. (21)

It is easy to show that λe(k) satisfies

λe(k + 1) = (I − β(L⊗ IT ))λe(k)− αkr(k), (22)

where

r(k) =

 p1(k)−D1 − 1
N+M r̄(k)

...
pN+M (k)−DN+M − 1

N+M r̄(k)

 . (23)
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Since (15) is satisfied, the matrix W = I − β(L⊗ IT ) has T
eigenvalues in 1, which are maximal in modulus. Moreover,
the corresponding eigenvectors are xi = 1 ⊗ ei, where 1 is
a vector in RN+M consisting of only ones while ei denotes
the i’th basis vector in RT . Note that it follows from (20) and
(23) that x′ir(k) = 0 for all i ∈ L and all k. Therefore,

‖W jr(k)‖ ≤ µ̄j‖r(k)‖, (24)

where
µ̄ = max

i
{ |µ̄i| | µ̄i 6= 1 }

while µ̄1, . . . , µ̄N+M are the eigenvalues of W .
Since the constraints (1d) are satisfied, we know that there

exists M1 such that ‖r(k)‖ < M1 for all k. Note that it follows
from λi(0) = 0 that λe(0) = 0. Thus from (22), we have

λe(k) = −
k−1∑
j=0

αjW
k−j−1r(j) (25)

and therefore

αk‖λe(k)‖ ≤M1

k−1∑
j=0

αkαj µ̄
k−j−1. (26)

It then follows from (16) that
∞∑
k=0

αk‖λe(k)‖ <∞. (27)

We now proceed our analysis by considering two cases. We
show that Case 1 will lead to a contradiction while Case 2
will yield the required convergence to the optimal value.
• Case 1: We have that

∑N+M
i=1 pi(k) is bounded away from

D. In that case choose λ∗ to be the optimal dual variable
for the problem.

• Case 2: If {λ̄(k)}, {p1(k)}, . . . , {pN+M (k)} has a conver-
gent subsequence with limit λ∗, p∗1, . . . , p

∗
N+M such that∑N+M

i=1 p∗i = D.
Note that we have

p∗i = arg min
pi∈ΩN ,i

T∑
t=1

Ci(pi,t)− (λ∗)′pi (28)

for distributed generator i ∈ N while for storage i ∈M,

(p∗+i , p∗−i ) ∈ arg min
{p+i ,p

−
i }∈Ω̃M,i

(λ∗)′
(
p−i − p

+
i

)
(29)

where p∗+i − p
∗−
i = p∗i . Because of lack of strict convexity,

p∗+i and p∗−i are solutions of the above optimization problem
but are in general not uniquely determined (in case of a single
storage device, uniqueness follows from the power balance
equation (1b)).

Since p∗i ∈ ΩN ,i for i = 1, . . . , T , we conclude that

(2aip
∗
i + bi − λ∗)′ (pi(k)− p∗i ) ≥ 0 (30)

for i = 1, . . . , N while

− λ∗ (pi(k)− p∗i ) ≥ 0 (31)

for i = N+1, . . . N+M . Here we have used the standard fact
that if x∗ is the minimizer of some convex function F (x) over

a convex set X , and F (·) is differentiable, then ∇F (x∗)′(x−
x∗) ≥ 0 for all x ∈ X , where ∇F is the gradient of F , see,
e.g., [33, Proposition 3.1].

Recall that

pi(k) = arg min
pi∈ΩN ,i

T∑
t=1

Ci(pi,t)− λi(k)′pi

for i = 1, . . . N and

(p+
i (k), p−i (k)) ∈ arg min

{p+i ,p
−
i }∈Ω̃M,i

λi(k)′
(
p−i − p

+
i

)
for i = N+1, . . . N+M . Since pi(k) ∈ ΩN ,i for i = 1, . . . , T ,
applying the similar analysis as for obtaining (30) and (31)
yields

(2aipi + bi − λi(k))
′
(p∗i − pi(k)) ≥ 0 (32)

for i = 1, . . . , N while

− λi(k)′ (p∗i − pi(k)) ≥ 0 (33)

for i = N + 1, . . . N + M . By adding (30) with (32) and by
adding (31) with (33) respectively, we obtain that

2ai‖pi(k)− p∗i ‖2 ≤ (λi(k)− λ∗)′ (pi(k)− p∗i ) (34)

for distributed generator i ∈ N , and

0 ≤ (λi(k)− λ∗)′ (pi(k)− p∗i ) (35)

for the storage device i ∈M.
Summing (34) and (35) yields

N∑
i=1

2ai‖pi(k)−p∗i ‖2 ≤
N+M∑
i=1

(λi(k)−λ∗)′(pi(k)−p∗i ). (36)

Note that in Case 1 we considered the optimal solution
which clearly satisfies the power balance, while In Case 2
by construction p∗i satisfies the power balance. It then follows
from (20) that

r̄(k) =

N+M∑
i=1

(pi(k)− p∗i ) . (37)

With some algebra, we get

‖λ̄(k + 1)− λ∗‖2 − ‖λ̄(k)− λ∗‖2

= 2
(
λ̄(k)− λ∗

)′ (
λ̄(k + 1)− λ̄(k)

)
+ ‖λ̄(k + 1)− λ̄(k)‖2

=
−2αk
N +M

(
λ̄(k)− λ∗

)′
r̄(k) +

α2
k‖r̄(k)‖2

(N +M)2

=
−2αk
N +M

N+M∑
i=1

(
λ̄(k)− λ∗

)′
(pi(k)− p∗i ) +

α2
k‖r̄(k)‖2

(N +M)2

=
−2αk
N +M

N+M∑
i=1

(
λ̄(k)− λi(k)

)′
(pi(k)− p∗i )

− 2αk
N +M

N+M∑
i=1

(λi(k)− λ∗)′ (pi(k)− p∗i ) +
α2
k‖r̄(k)‖2

(N +M)2
,

where we have used (19) in the second equality and (37) in
the third equality.
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By using (21) and (36), we get

‖λ̄(k + 1)− λ∗‖2 − ‖λ̄(k)− λ∗‖2

≤ αk‖λe(k)‖M3 −
4αk

N +M

N∑
i=1

ai‖pi(k)− p∗i ‖2 + α2
kM4,

where M3 is such that ‖pi(k) − p∗i ‖ ≤ M3

2 (N + M) for all
i ∈ L and M4 is such that ‖r̄(k)‖2 ≤M4(N +M)2.

In Case 1 we note there exists δ such that
N∑
i=1

ai‖pi(k)− p∗i ‖2 ≥ δ

since p∗i satisfies the power balance and pi(k) is by assumption
never close to satisfying the power balance. This yields that

uk =
4αk

N +M

N∑
i=1

ai‖pi(k)− p∗i ‖2 (38)

is a divergent sequence, while
∞∑
k=0

αk‖λe(k)‖M3 <∞ and
∞∑
k=0

α2
kM4 <∞.

This leads to a contradiction according to the deterministic
counterpart of the supermartingale convergence result, which
can be found in [34, Lemma 6] and is presented as Lemma 1
in Appendix B for readers’ convenience.

Hence we only need to consider Case 2. Using the deter-
ministic counterpart of the supermartingale convergence result
in Lemma 1, it follows that the sequence { ‖λ̄(k) − λ∗‖2 }
is convergent. In particular, this result is obtained by applying
the result of Lemma 1 with

v(k) = ‖λ̄(k)− λ∗‖2, b(k) = 0,

c(k) = αk‖λe(k)‖M3 + α2
kM4.

and u(k) as in (38). Since the sequence {λ̄(k)} has a sub-
sequence that converges to λ∗, we can then conclude that it
must converge to λ∗.

Note that from (34), by using the Cauchy-Schwarz inequal-
ity, we obtain

2ai‖pi(k)− p∗i ‖2 ≤ ‖λi(k)− λ̄(k) + λ̄(k)−λ∗‖‖pi(k)− p∗i ‖.

Since ‖pi(k) − p∗i ‖ ≤ M3

2 (N + M), which is bounded, and
limk→∞ λ̄(k) = λ∗, we have

lim
k→∞

‖pi(k)− p∗i ‖ ≤ C lim
k→∞

‖λi(k)− λ̄(k)‖.

for some constant C > 0. The right hand side of the above
inequality is actually zero due to (21), (25), (24) and the
fact that αk is decreasing and converging to zero. Hence, we
conclude that

lim
k→∞

‖pi(k)− p∗i ‖ = 0, ∀i ∈ N .

It remains to show that the power of storage devices
converges to the correct value. In the case of multiple storage
devices, we only need to find a feasible solution since the
storage devices do not affect the cost function. To find a

feasible solution, we solve the following convex optimization
problem:

P′s : min
p+i,t,p

−
i,t

T∑
t=1

N+M∑
i=N+1

(p+
i,t − p

−
i,t)

2 (39)

subject to (1i*), (1b), (1e*), (1f), (1g) and (1h) with pi,t = psol
i

for i ∈ N and t ∈ T . Note that the cost function of optimiza-
tion problem (39) is irrelevant since we are only looking for
a feasible solution. The cost function is only helpful in the
sense that it guarantees that we have a way to select a unique
solution from the set of all feasible solutions. We can then
follow the first part of proof with some modifications to show
that limm→∞ ‖pi(m)− p∗i ‖ = 0 for all i ∈M.

APPENDIX B
DETERMINISTIC COUNTERPART OF SUPERMARTINGALE

CONVERGENCE THEOREM

Lemma 1: Let the sequence {v(k)} be a non-negative scalar
sequence such that

v(k + 1) ≤ (1 + b(k))v(k)− u(k) + c(k) for all k ≥ 0,

where b(k) ≥ 0, u(k) ≥ 0 and c(k) ≥ 0 for all k ≥ 0 with∑∞
k=0 b(k) < ∞, and

∑∞
k=0 c(k) < ∞. Then, the sequence

{v(k)} converges to some v ≥ 0 and
∑∞
k=0 u(k) <∞.
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